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1. Introduction     

The performance of human-robot teams is complex and multifaceted reflecting the 
capabilities of the robots, the operator(s), and the quality of their interactions. Recent efforts 
to define common metrics for human-robot interaction (Steinfeld et al., 2006) have favored 
sets of metric classes to measure the effectiveness of the system’s constituents and their 
interactions as well as the system’s overall performance. In this chapter we follow this 
approach to develop measures characterizing the demand imposed by tasks requiring 
cooperation among heterogeneous robots. 
Applications for multirobot systems (MRS) such as interplanetary construction or 
cooperating uninhabited aerial vehicles will require close coordination and control between 
human operator(s) and teams of robots in uncertain environments. Human supervision will 
be needed because humans must supply the perhaps changing goals that direct MRS 
activity. Robot autonomy will be needed because the aggregate decision making demands of 
a MRS are likely to exceed the cognitive capabilities of a human operator. Autonomous 
cooperation among robots, in particular, will likely be needed because it is these activities 
(Gerkey & Mataric, 2004) that theoretically impose the greatest decision making load. 
Controlling multiple robots substantially increases the complexity of the operator’s task 
because attention must constantly be shifted among robots in order to maintain situation 
awareness (SA) and exert control. In the simplest case an operator controls multiple 
independent robots interacting with each as needed. A search task in which each robot 
searches its own region would be of this category although minimal coordination might be 
required to avoid overlaps and prevent gaps in coverage. Control performance at such tasks 
can be characterized by the average demand of each robot on human attention (Crandal et 
al., 2005). Under these conditions increasing robot autonomy should allow robots to be 
neglected for longer periods of time making it possible for a single operator to control more 
robots. 
Because of the need to share attention between robots in MRS, teloperation can only be used 
for one robot out of a team (Nielsen et al., 2003) or as a selectable mode (Parasuraman et al., 
2005). Some variant of waypoint control has been used in most of the MRS studies we have 
reviewed (Crandal et al., 2005, Nielsen et al., 2003, Parasuraman et al., 2005, Trouvain & 
Wolf, 2002) with differences arising primarily in behavior upon reaching a waypoint. A 
more fully autonomous mode has typically been included involving things such as search of 

Source: Advances in Human-Robot Interaction, Book edited by: Vladimir A. Kulyukin,  
 ISBN 978-953-307-020-9, pp. 342, December 2009, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 Advances in Human-Robot Interaction 

 

92 

a designated area (Parasuraman et al., 2005), travel to a distant waypoint (Trouvain & Wolf, 
2002), or executing prescribed behaviors (Murphy and Burke, 2005). In studies in which 
robots did not cooperate and had varying levels of individual autonomy (Crandal et al., 
2005, Nielsen et al., 2003, Trouvain & Wolf, 2002) (team size 2-4) performance and workload 
were both higher at lower autonomy levels and lower at higher ones. So although increasing 
autonomy in these experiments reduced the cognitive load on the operator, the automation 
could not perform the replaced tasks as well. 
For more strongly cooperative tasks and larger teams individual autonomy alone is unlikely 
to suffice. The round-robin control strategy used for controlling individual robots would 
force an operator to plan and predict actions needed for multiple joint activities and be 
highly susceptible to errors in prediction, synchronization or execution. Estimating the cost 
of this coordination, however, proves a difficult problem. Established methods of estimating 
MRS control difficulty, neglect tolerance and fan-out (Crandal et al., 2005) are predicated on 
the independence of robots and tasks. In neglect tolerance the period following the end of 
human intervention but preceding a decline in performance below a threshold is considered 
time during which the operator is free to perform other tasks. If the operator services other 
robots over this period the measure provides an estimate of the number of robots that might 
be controlled. Fan-out works from the opposite direction, adding robots and measuring 
performance until a plateau without further improvement is reached. Both approaches 
presume that operating an additional robot imposes an additive demand on cognitive 
resources. These measures are particularly attractive because they are based on readily 
observable aspects of behavior: the time an operator is engaged controlling the robot, 
interaction time (IT), and the time an operator is not engaged in controlling the robot, 
neglect time (NT).  
This chapter presents an extension of Crandall’s Neglect Tolerance model intended to 
accommodate both coordination demands (CD) and heterogeneity among robots. We 
describe the extension of Neglect Tolerance model in section 2. Then in section 3 we 
introduce the simulator and multi-robot system used in our validation experiments. Section 
4 and 5 describes two experiments that attempt to manipulate and directly measure 
coordination demand under tight and weak cooperation conditions separately. Finally, we 
draw conclusion and discuss the future work in section 6. 

2. Cooperation demand 

If robots must cooperate to perform a task such as searching a building without redundant 
coverage or act together to push a block, this independence no longer holds. Where 
coordination demands are weak, as in the search task, the round robin strategy implicit in 
the additive models may still match observable performance, although the operator must 
now consciously deconflict search patterns to avoid redundancy. For tasks such as box 
pushing, coordination demands are simply too strong, forcing the operator to either control 
the robots simultaneously or alternate rapidly to keep them synchronized in their joint 
activity. In this case the decline in efficiency of a robot’s actions is determined by the actions 
of other robots rather than decay in its own performance. Under these conditions the 
sequential patterns of interaction presumed by the NT and fan-out measures no longer 
match the task the operator must perform. To separate coordination demand (CD) from the 
demands of interacting with independent robots we have extended Crandall’s Neglect 
Tolerance model by introducing the notion of occupied time (OT) as illustrated in Figure 1. 
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NT IT

OTFT FT

NT: Neglect Time;  IT: Interaction Time;  

FT: Free Time, time off task; OT: Occupied Time  

IT+OT: time on task 

Time 

Effectiveness

 

Fig. 1.  Extended neglect tolerance model for cooperative 

The neglect tolerance model describes an operator’s interaction with multiple robots as a 

sequence of control episodes in which an operator interacts with a robot for period IT 

raising its performance above some upper threshold after which the robot is neglected for 

the period NT until its performance deteriorates below a lower threshold when the operator 

must again interact with it. To accommodate dependent tasks we introduce OT to describe 

the time spent controlling other robots in order to synchronize their actions with those of the 

target robot. The episode depicted in Figure 1 starts just after the first robot is serviced. The 

ensuing FT preceding the interaction with a second dependent robot, the OT for robot-1 

(that would contribute to IT for robot-2), and the FT following interaction with robot-2 but 

preceding the next interaction with robot-1 together constitute the neglect time for robot-1. 

Coordination demand, CD, is then defined as: 

 CD =1
FT OT

NT NT

∑ ∑− =  (1) 

where, CD for a robot is the ratio between the time required to control cooperating robots 
and the time still available after controlling the target robot, i.e. the portion of a robot’s free 
time that must be devoted to controlling cooperating robots. Note that the OT associated 
with a robot is less than or equal to NT because OT covers only that portion of NT needed 
for synchronization. A related measure, team attention demand (TAD), adds IT’s to both 
numerator and denominator to provide a measure of the proportion of time devoted to the 
cooperative task, either performing the task or coordinating robots. 

2.1 Measuring weak cooperation for heterogeneous robots 
Most MRS research has investigated homogeneous robot teams where additional robots 
provide redundant (independent) capabilities. Differences in capabilities such as mobility or 
payload, however, may lead to more advantageous opportunities for cooperation among 
heterogeneous robots. These differences among robots in roles and other characteristics 
affecting IT, NT, and OT introduce additional complexity to assessing CD. Where tight 
cooperation is required as in the box-pushing experiment, task requirements dictate both the 
choice of robots and the interdependence of their actions. In the more general case 
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requirements for cooperation can be relaxed allowing the operator to choose the subteams of 
robots to be operated in a cooperative manner as well as the next robot to be operated. This 
general case of heterogeneous robots cooperating as needed characterizes the types of field 
applications our research is intended to support. To accommodate this case the Neglect 
Tolerance model must be further extended to measure coordination between different robot 
types. We describe this form of heterogeneous MRS as a MN system with M robots that 

belong to N robot types, and for robot type i, there are mi robots, that is ∑
=

=
N

i
imM

1

. Thus, 

we can denote a robot in this system as Rij , where i = [1, N], j = [1, mi]. If we assume that the 
operator serially controls the robots for time T and that each robot Rij is interacted with lij 
times, then we can represent each interaction as ITijk, where i = [1, N], j = [1, mi], k = [1, lij], 
and the following free time as FTijk, where i = [1, N], j = [1, mi], k = [1, lij]. The total control 

time Ti for type i robot should then be ( )∑ +=
kj

ijkijki FTITT
,

. Because robots that are of the 

same robot type are identical, and substitution may cause uneven demand, we are only 
interested in measuring the average coordination demand CDi, i=[1, N] for a robot type. 
Given robots of the same type Rij, j = [1, mi], we define OTi* and NTi* as the average 
occupation time and interaction time in a robot control episode. Therefore, the CDi for type i 
robot is 

∑

∑
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Assume all the other types robots are dependent with the current type robots, then the 

numerator is the total interaction time of all the other robot types, i.e. ∑∑
≠
==

=
N

itype
type

m

j
iji

ITlOT
j

11

* . 

 

… 

R11 R12 R13 Time 

(IT,FT) 

(IT111,FT111) (IT112,FT112) (IT113,FT113) (IT121,FT121) (IT122,FT122)(IT131,FT131)

T1 

 

Fig. 2. Distribution of (IT, FT) 

For the denominator, it is hard to directly measure NTi* because the system performance 
depends on multiple types of robots and an individual robot may cooperate with different 
team members over time. Because of this dependency, we cannot use individual robot’s 
active time to approximate NT. On the other hand, the robots may be unevenly controlled. 
For example a robot might be controlled only once and then ignored because there is 
another robot of the same type that is available, so we cannot simply use the time interval 
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between two interactions of an individual robot as NT. Considering all the robots belonging 
to a robot type, the population of individual robots’ (IT, FT)s reveal the NT for a type of 
robot. Figure 2 shows an example of how robots’ (IT, FT) might be distributed over task 
time. Because robots of the same capabilities might be used interchangeably to perform a 
cooperative task it is desirable to measure NT with respect to a type rather than a particular 
robot. In Figure 2 robots R11 and R12 have short NTs while R13 has an NT of indefinite length. 
F(IT, FT), the distribution of (IT, FT) for the robot type, shown by the arrowed lines between 
interactions allows an estimate of NT for a robot type that is not affected by long individual 
NTs such as that of R13. When each robot is evenly controlled, the F(IT, NT) should be  

( )*, iii FTITm ×  where (ITi, FTi)* is the (IT, FT) for each type i robot, ( )
∑
=

=
im

j
ij

i

ii

l

T
FTIT

1

*
, . And 

when only one robot is controlled, F(ITi, NTi)* will be the (ITi, FTi) for this robot. Here, we 

introduce weight 
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= to assess how evenly the robots are controlled. ii mw ×  is 

the “equivalent” number of evenly controlled robots. With the weight, we can approximate 
F(ITi, NTi) as: 
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Thus, the denominator in CDi can be calculated as: 
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where ∑
=itype

IT is the total interaction time for all the type i robots. 

In summary, we can compute CDi as: 
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3. Simulation environment and multirobot system 

To test the usefulness of the CD measurement, we conducted two experiments to 

manipulate and measure coordination demand directly. In the first experiment robots 

perform a box pushing task in which CD is varied by control mode and robot heterogeneity. 

www.intechopen.com



 Advances in Human-Robot Interaction 

 

96 

The second experiment attempts to manipulate coordination demand by varying the 

proximity needed to perform a joint task in two conditions and by automating coordination 

within subteams in the third. Both experiments were conducted in the high fidelity 

USARSim robotic simulation environment we developed as a simulation of urban search 

and rescue (USAR) robots and environments intended as a research tool for the study of 

human-robot interaction (HRI) and multi-robot coordination. 

3.1 USARSim 
USARSim supports HRI by accurately rendering user interface elements (particularly 
camera video), accurately representing robot automation and behavior, and accurately 
representing the remote environment that links the operator’s awareness with the robot’s 
behaviors. It was built based on a multi-player game engine, UnrealEngine2, and so is well 
suited for simulating multiple robots. USARSim uses the Karma Physics engine to provide 
physics modeling, rigid-body dynamics with constraints and collision detection. It uses 
other game engine capabilities to simulate sensors including camera video, sonar, and laser 
range finder. More details about USARSim can be found at (Wang et al. 2003; Lewis et al. 
2007). Validation studies showing agreement for a variety of feature extraction techniques 
between USARSim images and camera video are reported in (Carpin et al., 2006a), showing 
close agreement in detection of walls and associated Hough transforms for a simulated 
Hokuyo laser range finder (Carpin et al., 2005) and close agreement in behavior between 
USARSim models and the robots being modeled (Carpin et al., 2006b, Wang et al., 2005, 
Pepper et al., 2007, Taylor et al., 2007, Zaratti et al., 2006). USARSim is freely available and 
can be downloaded from www.sourceforge.net/projects/usarsim. 

3.2 Multirobot Control System (MrCS) 
A multirobot control system (MrCS), a multirobot communications and control infrastructure 
with accompanying user interface, was developed to conduct these experiments. The system 
was designed to be scalable to allow of control different numbers of robots, reconfigurable to 
accommodate different human-robot interfaces, and reusable to facilitate testing different 
control algorithms. It provides facilities for starting and controlling robots in the simulation, 
displaying camera and laser output, and supporting inter-robot communication through 
Machinetta, a distributed mutiagent system with state-of-the-art algorithms for plan 
instantiation, role allocation, information sharing, task deconfliction and adjustable autonomy 
(Scerri et al. 2004). 
The user interface of MrCS is shown in Figure 8. The interface is reconfigurable to allow the 
user to resize the components or change the layout. Shown in the figure is a configuration 
that used in one of our experiments. On the upper and center portions of the left-hand side 
are the robot list and team map panels, which show the operator an overview of the team. 
The destination of each of robot is displayed on the map to help the user keep track of 
current plans. On the upper and center portions of the right-hand side are the camera view 
and mission control panels, which allow the operator to maintain situation awareness of an 
individual robot and to edit its exploration plan. On the mission panel, the map and all 
nearby robots and their destinations are represented to provide partial team awareness so 
that the operator can switch between contexts while moving control from one robot to 
another. The lower portion of the left-hand side is a teleoperation panel that allows the 
operator to teleoperate a robot. 
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4. Tight cooperation experiment 

4.1 Experiment design 
Finding a metric for cooperation demand (CD) is difficult because there is no widely 
accepted standard. In this experiment, we investigated CD by comparing performance 
across three conditions selected to differ substantially in their coordination demands. We 
selected box pushing, a typical cooperative task that requires the robots to coordinate, as our 
task. We define CD as the ratio between occupied time (OT), the period over which the 
operator is actively controlling a robot to synchronize with others, and FT+OT, the time 
during which he is not actively controlling the robot to perform the primary task. This 
measure varies between 0 for no demand to 1 for maximum demand. When an operator 
teleoperates the robots one by one to push the box forward, he must continuously interact 
with one of the robots because neglecting both would immediately stop the box. Because the 
task allows no free time (FT) we expect CD to be 1. However, when the user is able to issue 
waypoints to both robots, the operator may have FT before she must coordinate these robots 
again because the robots can be instructed to move simultaneously. In this case CD should 
be less than 1. Intermediate levels of CD should be found in comparing control of 
homogeneous robots with heterogeneous robots. Higher CD should be found in the 
heterogeneous group since the unbalanced pushes from the robots would require more 
frequent coordination. In the present experiment, we measured CDs under these three 
conditions. 
 

 

Fig. 3. Box pushing task 

Figure 3 shows our experiment setting simulated in USARSim. The controlled robots were 
either two Pioneer P2AT robots or one Pioneer P2AT and one less capable three wheeled 
Pioneer P2DX robot. Each robot was equipped with a GPS, a laser scanner, and a RFID reader. 
On the box, we mounted two RFID tags to enable the robots to sense the box’s position and 
orientation. When a robot pushes the box, both the box and robot’s orientation and speed will 
change. Furthermore, because of irregularities in initial conditions and accuracy of the physical 
simulation the robot and box are unlikely to move precisely as the operator expected. In 
addition, delays in receiving sensor data and executing commands were modeled presenting 
participants with a problem very similar to coordinating physical robots. 
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Fig. 4. GUI for box pushing task 

We introduced a simple matching task as a secondary task to allow us to estimate the FT 
available to the operator. Participants were asked to perform this secondary task as possible 
when they were not occupied controlling a robot. Every operator action and periodic 
timestamped samples the box’s moving speed were recorded for computing CD. 
A within subject design was used to control for individual differences in operators’ control 
skills and ability to use the interface. To avoid having abnormal control behavior, such as a 
robot bypassing the box bias the CD comparison, we added safeguards to the control system 
to stop the robot when it tilted the box. 
The operator controlled the robots using a distributed multi-robot control system (MrCS) 
shown in Figure 4. On the left and right side are the teleoperation widgets that control the 
left and right robots separately. The bottom center is a map based control panel that allows 
the user to monitor the robots and issue waypoint commands on the map. On the bottom 
right corner is the secondary task window where the participants were asked to perform the 
matching task when possible. 

4.2 Participants and procedure 
14 paid participants, 18-57 years old were recruited from the University of Pittsburgh 
community. None had prior experience with robot control although most were frequent 
computer users. The participants’ demographic information and experience are summarized 
in Table 1. 
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Age Gender Education 

 
18~35 >35 Male Female

Currently/Complete 
Undergraduate 

Currently /Complete 
Graduate 

Participants 11 3 11 3 2 12 

Computer Usage (hours/week) Game Playing (hours/week) 
 

<1 1-5 5-10 >10 <1 1-5 5-10 >10 

Participants 0 1 2 11 8 4 2 0 

Mouse Usage for Game Playing 
 

Frequently Occasionally Never 

Participants 9 4 1 

Table 1. Sample demographics and experiences 

The experiment started with collection of the participant’s demographic data and computer 
experience. The participant then read standard instructions on how to control robots using 
the MrCS. In the following 8 minutes training session, the participant practiced each control 
operation and tried to push the box forward under the guidance of the experimenter. 
Participants then performed three testing sessions in counterbalanced order. In two of the 
sessions, the participants controlled two P2AT robots using teleoperation alone or a mixture 
of teleoperation and waypoint control. In the third session, the participants were asked to 
control heterogeneous robots (one P2AT and one P2DX) using a mixture of teleoperation 
and waypoint control. The participants were allowed eight minutes to push the box to the 
destination in each session. At the conclusion of the experiment participants completed a 
questionnaire about their experience. 

4.3 Results 
Figure 5 shows a time distribution of robot control commands recorded in the experiment. 
As we expected no free time was recorded for robots in the teleoperation condition and the 
longest free times were found in controlling homogeneous robots with waypoints. The box  
 

 

Fig. 5. The time distribution curves for teleoperation (upper) and waypoint control (middle) 
for homogeneous robots, and waypoint control (bottom) for heterogeneous robots 
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speed shown on Figure 5 is the moving speed along the hallway that reflects the interaction 
effectiveness (IE) of the control mode. The IE curves in this picture show the delay effect and 
the frequent bumping that occurred in controlling heterogeneous robots revealing the 
poorest cooperation performance. 
 

Heterogeneous

Robot1 CD

Homogenous

Average CD

Heterogeneous

TAD

Homogenous

TAD

0.4000

0.3000

0.2000

0.1000
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Error bars: 95.00% CI  

Fig. 6. Team task demand (TAD) and Cooperation demand (CD) 

None of the 14 participants were able to perform the secondary task while teleoperating the 
robots. Hence, we uniformly find TAD = 1 and CD = 1 for both robots under this condition. 
Within participants comparison found that under waypoint control the team attention 
demand in heterogeneous robots is significantly higher than the demand in controlling 
homogeneous robots, t(13) = 2.213, p = 0.045 (Figure 6). No significant differences were 
found between the homogeneous P2AT robots in terms of the individual cooperation 
demand (P = 0.2). Since the robots are identical, we compared the average CD of the left and 
right robots with the CDs measured under heterogeneous condition. Two-tailed t-test shows 
that when a participant controlled a P2AT robot, lower CD was required in homogeneous 
condition than in the heterogeneous condition, t(13) = -2.365, p = 0.034. The CD required in 
controlling the P2DX under heterogeneous condition is marginally higher than the CD 
required in controlling homogenous P2ATs, t(13) = -1.868, p = 0.084 (Figure 6). Surprisingly, 
no significant difference was found in CDs between controlling P2AT and P2DX under 
heterogeneous condition (p=0.79). This can be explained by the three observed robot control 
strategies: 1) the participant always issued new waypoints to both robots when adjusting the 
box’s movement, therefore similar CDs were found between the robots; 2) the participant 
tried to give short paths to the faster robot (P2DX) to balance the different speeds of the two 
robots, thus we found higher CD in P2AT; 3) the participant gave the same length paths to 
both robots and the slower robot needed more interactions because it trended to lag behind 
the faster robot, so lower CD for the P2AT was found for the participant. Among the 14 
participants, 5 of them (36%) showed higher CD for the P2DX contrary to our expectations. 

5. Weak cooperation experiment 

To test the usefulness of the CD measurement for a weakly cooperative MRS, we conducted 
another experiment assessing coordination demand using an Urban Search And Rescue 
(USAR) task requiring high human involvement (Murphy and Burke, 2005) and of a 
complexity suitable to exercise heterogeneous robot control. In the experiment participants 
were asked to control explorer robots equipped with a laser range finder but no camera and 
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inspector robots with only cameras. Finding and marking a victim required using the 
inspector’s camera to find a victim to be marked on the map generated by the explorer. The 
capability of the robots and the cooperation autonomy level were used to adjust the 
coordination demand of the task. The experiment was conducted in simulation using 
USARSim and MrCS. 

5.1 Experiment design 
Three simulated Pioneer P2AT robots and 3 Zergs (Balakirsky et al., 2007), a small 
experimental robot were used. Each P2AT was equipped with a front laser scanner with 180 
degree FOV and resolution of 1 degree. The Zerg was mounted with a pan-tilt camera with 45 
degree FOV. The robots were capable of localization and able to communicate with other 
robots and control station. The P2AT served as an explorer to build the map while the Zerg 
could be used as an inspector to find victims using its camera. To accomplish the task the 
participant must coordinate these two types robot to ensure that when an inspector robot finds 
a victim, it is within a region mapped by an explorer robot so the position can be marked. 
 

 

Fig. 7. Urban search and rescue task 

Three conditions were designed to vary the coordination demand on the operator. Under 
condition 1, the explorer had 20 meters detection range allowing inspector robots 
considerable latitude in their search. Under condition 2, scanner range was reduced to 5 
meters requiring closer proximity to keep the inspector within mapped areas. Under 
condition 3, explorer and inspector robots were paired as subteams in which the explorer 
robot with a sensor range of 5 meters followed its inspector robot to map areas being 
searched. We hypothesized that CDs for explorer and inspector robots would be more even 
distributed under condition-2 (short range sensor) because explorers would need to move 
more frequently in response to inspectors’ searches than in condition-1 in which CD should 
be more asymmetric with explorers exerting greater demand on inspectors. We also 
hypothesized that lower CD would lead to higher team performance. Three equivalent 
damaged buildings were constructed from the same elements using different layouts. Each 
environment was a maze like building with obstacles, such as chairs, desks, cabinets, and 
bricks with 10 evenly distributed victims. A fourth environment was constructed for 
training. Figure 7 shows the simulated robots and environment. 
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A within subjects design with counterbalanced presentation was used to compare the 
cooperative performance across the three conditions. The same control interface shown in 
Figure 8 allowing participants to control robots through waypoints or teleoperation was 
used in all conditions. 
 

 

Fig. 8. GUI for urban search and rescue 

5.2 Participants and procedure 
19 paid participants, 19-33, years old were recruited from the University of Pittsburgh 
community. None had prior experience with robot control although most were frequent 
computer users. 6 of the participants (31.5%) reported playing computer games for more 
than one hour per week. The participants’ demographic information and experience are 
summarized in Table 2. 
 

Age Gender Education 

 
19~29 30~33 Male Female

Currently/Complete 
Undergraduate 

Currently /Complete 
Graduate 

Participants 18 1 7 12 11 8 

Computer Usage (hours/week) Game Playing (hours/week) 
 

<1 1-5 5-10 >10 <1 1-5 5-10 >10 

Participants 0 1 5 13 13 4 1 1 

Mouse Usage for Game Playing 
 

Frequently Occasionally Never 

Participants 14 2 3 

Table 2. Sample demographics and experiences 
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After collecting demographic data the participant read standard instructions on how to 

control robots via MrCS. In the following 15~20 minute training session, the participant 

practiced each control operation and tried to find at least one victim in the training arena 

under the guidance of the experimenter. Participants then began three testing sessions in 

counterbalanced order with each session lasting 15 minutes. At the conclusion of the 

experiment participants completed a questionnaire. 

5.3 Results 
Overall performance was measured by the number of victims found, the explored areas, and 

the participants’ self-assessments. To examine cooperative behavior in finer detail, CDs were 

computed from logged data for each type robot under the three conditions. We compared 

the measured CDs between condition 1 (20 meters sensing range) and condition 2 (5 meters 

sensing range), as well as condition 2 and condition 3 (subteam). To further analyze the 

cooperation behaviors, we evaluated the total attention demand in robot control and control 

action pattern as well. Finally, we introduce control episodes showing how CDs can be used 

to identify and diagnose abnormal control behaviors. 
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Fig. 9. Found victims (left) and explored areas (right) by mode 

Examination of data showed two participants failed to perform the task satisfactorily. One 

commented during debriefing that she thought she was supposed to mark inspector robots 

rather than victims. After removing these participants a paired t-test shows that in 

condition-1 (20 meters range scanner) participants explored more regions, t(16) = 3.097, p = 

0.007, as well as found more victims, t(16) = 3.364, p = 0.004, than under condition-2 (short 

range scanner). In condition-3 (automated subteam) participants found marginally more 

victims, t(16) = 1.944, p = 0.07, than in condition-2 (controlled cooperation) but no difference 

was found for the extent of regions explored (Figure 9). 

In the posttest survey, 12 of the 19 (63%) participants reported they were able to control the 

robots although they had problems in handling some interface components, 6 of the 19 

(32%) participants thought they used the interface very well, and only one participant 

reported it being hard to handle all the components on the user interface but still maintained 

she was able to control the robots. Most participants (74%) thought it was easier to 

coordinate inspectors with explorers with long range scanner. 12 of the 19 (63%) participants 
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rated auto-cooperation between inspector and explorer (the subteam condition) as 

improving their performance, and 5 (26%) participants though auto-cooperation made no 

difference. Only 2 (11%) participants judged team autonomy to make things worse. 
 

2. Coordination effort 

IT distribution
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Fig. 10. Typical (IT,FT) distribution (higher line indicates the interactions of 

During the experiment we logged all the control operations with timestamps. From the log 

file, CDs were computed for each type robot according to equation 2. Figure 10 shows a 

typical (IT,FT) distribution under condition 1 (20 meters sensing range) in the experiment 

with a calculated CD for the explorer of 0.185 and a CD for the inspector of 0.06. The low 

CDs reflect that in trying to control 6 robots the participant ignored some robots while 

attending to others. The CD for explorers is roughly twice the CD for inspectors. After the 

participant controlled an explorer, he needed to control an inspector multiple times or 

multiple inspectors since the explorer has a long detection range and large FOV. In contrast, 

after controlling an inspector, the participant needed less effort to coordinate explorers. 

 

 

Fig. 11. CDs for each robot type 

Figure 11 shows the mean of measured CDs. We predicted that when the explorer has a 

longer detection range, operators would need to control the inspectors more frequently to 

cover the mapped area. Therefore a longer detection range should lead to higher CD for 

explorers. This was confirmed by a two tailed t-test that found higher coordination demand, 
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t(18) = 2.476, p = 0.023, when participants controlled explorers with large (20 meters) sensing 

range. 

We did not find a corresponding difference, t(18)=.149, p=0.884, between long and short 

detection range conditions for the CD for inspectors. This may have occurred because under 

these two conditions the inspectors have exactly the same capabilities and the difference in 

explorer detection range was not large enough to impact inspectors’ CD for explorers. 

Under the subteam condition, the automatic cooperation within a subteam decreased or 

eliminated the coordination requirement when a participant controlled an inspector. Within 

participant comparisons shows that the measured CD of inspectors under this condition is 

significantly lower than the CD under condition 2 (independent control with 5 meters 

detection range), t(18) = 6.957, p < 0.001. Because the explorer always tries to automatically 

follow an inspector, we do not report CD of explorers in this condition. 

As auxiliary parameters, we evaluated the total attention demand, i.e. the occupation rate of 

total interaction time in the whole control period, and the action pattern, the ratio of control 

times between inspector and explorer, as well. Total attention demand measures the team 

task demand, i.e.; how hard the task is. As we expected paired t-test shows that under 

subteam condition, participants spent less time in robot control than under short sensing 

range condition, t(18)=3.423, p=0.003. However, under long sensing conditions, paired t-test 

shows that participants spent more time controlling robots than under the short sensing 

condition, t(18) = 2.059, p = 0.054. This is opposite to our hypothesis that searching for 

victims with shorter sensing range should be harder because the robot would need to be 

controlled more often. Noticing that total attention demand was based on the time spent 

controlling not the number of times a robot was controlled we examined the number of 

control episodes. Under long and short sensing range conditions two tailed t-tests found 

participants to control explorers more times with short sensing explorers, t(18)=2.464, 

p=.024, with no differences found in frequency of inspector control, p=.97. We believe that 

with longer sensing explorers participants tend to issue longer paths in order to build larger 

maps. Because the sensing range in condition 1 is five times longer than the range in 

condition 2, the increased control time under the long sensing condition my overwhelm the 

increased explorer control times. This is partially confirmed by a paired t-test that found 

longer average control time for explorers and inspectors under the long detection condition, 

t(18)=3.139, p=.006, t(18)=2.244, p=.038, respectively. On average participants spent 1.5s and 

1.0s more time in explorer and inspector control in the long range condition. The mean 

action patterns under long and short range scanner conditions are 2.31 and 1.9 respectively. 

This means that with 20 and 5 meters scanning ranges, participants controlled inspectors 

2.31 and 1.9 times respectively after an explorer interaction. Within participant comparisons 

shows that the ratio is significantly larger under long sensing condition than under short 

range scanner condition, t(18) = 2.193, p = 0.042. 

3. Analyzing Performance 

As an example of applying CDs to analyze coordination behavior, Figure 11 shows the 

performance over explorer CD and total attention demand under the 20 meters sensing 

range condition. Three abnormal cases A, B, and C can be identified from the graph. 

Associating these cases with recorded map snapshots (Table 3), we observed that in case A, 

one robot was entangled by a desk and stuck after five minutes; in case B, two robots were 
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controlled in the first five minutes and afterwards ignored; and in case C, the participant 

ignored two inspectors throughout the entire trial. Comparing with case B and C, in case A 

only one robot didn’t function properly after five minutes. 
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Fig. 12.  Found victims distribution over CDexp and TAD 

6. Conclusion 

We proposed an extended Neglect Tolerance model to allow us to evaluate coordination 

demand in applications where an operator must coordinate multiple robots to perform 

dependent tasks. Results from the first experiment that required tight coordination 

conformed closely to our hypotheses with the teleoperation condition producing CD=1 as 

predicted and heterogeneous teams exerting greater demand than homogenous ones. The 

CD measure proved useful in identifying abnormal control behavior revealing inefficient 

control by one participant through irregular time distributions and close CDs for P2ATs 

under homogeneous and heterogeneous conditions (0.23 and 0.22), a mistake with extended 

recovery time (41 sec) in another, and a shift to a satisficing strategy between homogeneous 

and heterogeneous conditions revealed by a drop in CD (0.17 to 0.11) in a third.  

As most target applications such as construction or search and rescue require weaker 

cooperation among heterogeneous platforms the second experiment extended NT 

methodology to such conditions. Results in this more complex domain were mixed. Our 

findings of increased CD for long sensor range may seem counter intuitive because 

inspectors would be expected to exert greater CD on explorers with short sensor range. Our 
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    5 minutes snapshot    10 minutes snapshot   15 minutes snapshot 

A 

 

the robot on the center of 
the map was stuck 

 

B 

the two robots on the upper 
map were never controlled 
since then  

C 

the two robots on the upper 
left corner were totally 
ignored 

 

Table 3. Map snapshots of abnormal control behaviors 

data show, however, that this effect is not substantial and provide an argument for focused 

metrics of this sort which measure constituents of the human-robot system directly. 

Moreover, this experiment also shows how CD can be used to guide us to identify and 

analyze aberrant control behaviors. 
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We anticipated a correlation between found victims and the measured CDs. However, we 

did not find the expected relationship in this experiment. From observation of participants 

during the experiment we believe that high level strategies, such as choosing areas to be 

searched and path planning, have significant impact on the overall performance. The 

participants had few problems in learning to jointly control explorers and inspectors but 

they needed time to figure out effective strategies for performing the task. Because CD 

measures control behaviours not strategies these effects were not captured.  

On the other hand, because the NT methodology is domain and task independent our CD 

measurement could be used to characterize any dependent system. For use in performance 

analysis, however, it must be associated with additional domain and task dependent 

information. As shown in our examples, combined with generated maps and traces CD 

provides an excellent diagnostic tool for examining performance in detail. 

In the present experiment, we examined the action pattern under long and short sensing 

range conditions. The results reveal that it can be used as an evaluation parameter, and 

more important, it may guide us in the design of multiple robot systems. For instance, the 

observation that one explorer control action was followed on average by 2 inspector control 

actions may imply that the MRS should be constructed by n explorer and 2n inspectors. 

In the weak cooperation experiment, the time-based assessment showed higher coordination 

demand under a longer sensing condition. The control times evaluation reported more 

control times, which implies a higher coordination demand in the shorter sensing condition. 

This difference illustrates how the measurement unit, control time or control times, may 

impact the HRI evaluation. Usually, the time-consuming operations such as teleoperation 

are suited to time-based assessment. In contrast, control times may provide more accurate 

evaluation to the one-time style operations such as command issuing. Improving the 

Neglect Tolerance model to suit control times based evaluation should be an area for future 

work. 

In summary, the proposed methodology enables us evaluate weak or tight cooperation 

behaviors in control of heterogeneous robot teams. The time parameter based measurement 

makes this methodology domain independent and practical in real applications. The lack of 

consideration of domain, other system characteristics and information available to the 

operator, however, makes this metric too impoverished to use in isolation for evaluating 

system performance. A more complete metric for evaluating coordination demand in 

multirobot systems would require additional dimensions beyond time. Considering human, 

robot, task and world as the four elements in HRI, possible metrics might include mental 

demand, situation awareness, robot capability, autonomy level, overall task performance, 

task complexity, and world complexity. 
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