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1. Introduction   

The classical identical parallel machine scheduling problem can be stated as follows: Given 
n jobs and m machines, the problem is to assign each job on one of the identical machines 
during a fixed processing time so that the schedule that optimizes a certain performance 
measure is obtained. Having numerous potential applications in real life, in recent years, 
various research works have been carried out to deal with the parallel scheduling problems.  
The literature of parallel machine scheduling problems has been extensively reviewed by 
(Cheng & Sin, 1990; Mokotoff, 2001). Among many criteria, minimizing makespan 
(maximum completion time) has been one of the most widely studied objectives in the 
literature.
Using the three-field classification introduced in (Graham et al., 1976), the problem is 
denoted in the scheduling literature as P||Cmax where P designates the identical parallel 
machines, Cmax denotes the makespan. We assume, as is usual, that the processing times are 
positive and that 1<m<n. The problem is known to be NP-hard in the strong sense (Garey &  
Johnson, 1979; Sethi, 1977).  
Although traditional techniques such as complete enumeration, dynamic programming, 
integer programming, and branch and bound were used to find the optimal solutions for 
small and medium sized problems, they do not provide efficient solutions for the problems 
with large size. Having found no efficient polynomial algorithm to find the optimal solution 
led many researchers to develop heuristics to obtain near optimal solutions. Though, 
efficient heuristics can not guarantee optimal solutions, they provide approximate solutions 
as good as the optimal solutions. These can be broadly classified into constructive heuristics 
and improvement heuristics. Most of the algorithms belong to the first category and have 
known worst case performance ratio (Coffman et al., 1978; Friesen & Langston, 1986; 
Friesen, 1987; Graham, 1969; Hochbaum & Shmoys, 1987; Leung, 1989; Sahni, 1976). The 
LPT rule of Graham, one of the most popular constructive heuristics, has been shown to 
perform well for the makespan criterion. This rule arranges jobs in descending order of 
processing times, such that p1 p2 … pn, and then successively assigns jobs to the least 
loaded machine. The MULTIFIT algorithm, a classical constructive heuristic developed by 
(Coffman et al., 1978), determines the smallest machine capacity to find a feasible solution 
using the LPT scheme. This is achieved by solving heuristically a series of bin packing 

Source: Multiprocessor Scheduling: Theory and Applications, Book edited by Eugene Levner,
ISBN 978-3-902613-02-8, pp.436, December 2007, Itech Education and Publishing, Vienna, Austria
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problems. Although MULTIFIT is not guaranteed to perform better than LPT, it has been 
shown that it has a worst case bound better than LPT.  
Improvement based algorithms are based upon local search in a neighbourhood in which a 
feasible solution is taken as a starting point and then tried to be improved by iterative 
changes. Application of these algorithms to the P||Cmax problem can be found in 
(Frangioni et al., 1999; Hübscher & Glover, 1994; Jozefowska et al. 1998). 
Although a large number of approaches such as mathematical programming, dispatching 
rules, expert systems, and neighborhood search to the modeling and solution of scheduling 
problems have been reported in the literature, over the last decades, there has been an 
explosion of interest in using Artificial Neural Networks (ANNs) for the solution of various 
scheduling problems. This is mainly after the success of the use of Hopfield and Tank’s 
network (Hopfield & Tank, 1985) in solving the Traveling Salesman Problem. The authors 
showed that if an optimization problem can be represented by an energy function, then a 
Hopfield network that corresponds to this energy function can be used to minimize this 
function to provide an optimal or near-optimal solution. Since then, a variety of scheduling 
problems are solved using Hopfield type networks (Chen & Dong; 1999; Foo et al. 1995; 
Liansheng et al., 2000; Lo & Bavarian, 1993; Satake et al. 1994; Vaithyanathan & Ignizio, 
1992; Willems & Brandts; 1995; Zhou et al., 1991). 
But a few papers are proposed for the solution of parallel machine scheduling problem 
using ANNs. Park et al. (2000) presented a backpropagation network for solving identical 
parallel machine scheduling problems with sequence dependent set up times. They tried to 
find the sequence of jobs processed on each machine with the objective of minimizing 
weighted tardiness. Hamad et al. (2003) dealt with the non-identical parallel machines 
problem with the sum of earliness and tardiness cost minimization and proposed a way of 
representing the problem to be fed into a backpropagation network. Akyol & Bayhan (2005) 
proposed a coupled gradient network approach for solving the earliness and tardiness 
scheduling problem involving sequence dependent setup times.  
The objective of this research is to apply ANNs to the identical parallel machine scheduling 
problem for minimizing the makespan. We employ a dynamical gradient network approach 
to attack the problem and this work is an extension of the work of Akyol & Bayhan (2006) 
where they consider only a small sized scheduling problem and analyze the effect of 5 
different initial conditions on the solutions. In this study, after the appropriate energy 
function is constructed by using a penalty function approach, the dynamics are defined by 
steepest gradient descent on the energy function. In order to overcome the tradeoff problem 
encountered in using the penalty function approach, a time varying penalty coefficient 
methodology is proposed to be used. By performing simulation experiments, we analyze the 
impact that the initial conditions of the network have on the performance on 5 different data 
sets by running each data set 20 times (20 different initial conditions) for different sizes of 
jobs and machines.  

2. Problem Statement 

Consider a set J of n jobs Ji ,i=1,...,n  to be processed, each of them on one machine, on a set 
M of m machines Mj , j=1,...,m. All the jobs can be processed on any of the m machines. We 
consider identical machines models, for which the processing times of each job, pi, are 
machine independent. The objective is to find an appropriate allocation of jobs to machines 
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that would optimize a performance criterion. We are interested in the makespan criterion 
(maximum completion time), Cmax.
The following notations are used throughout the rest of this paper. 
Ji : job i, i N={1,...,n} 
Mj : machine j, j M={1,...,m} 
pi: processing time of Ji

Ci: completion time of Ji

Cmax: makespan, the maximum completion time of all jobs 
Cmax = max{C1, C2, ...,Cn}

xij : 0/1 assignment variable = 
otherwise

jmachinetoassignedisijobif

0

1

A MIP formulation of the minimum makespan problem can be defined as follows: 
min Cmax 

subject to  

 (1) nix
m

j

ij 11
1

(2)mjxpC ij

n

i

i 10max
1

The first constraint given in (1) ensures that each job is assigned to only one machine. The 
second constraint given in (2) ensures that the makespan is at least the completion time of 
each machine.  

3. Design of the Proposed Dynamical Gradient Network 

In this section, we describe how dynamical gradient networks can be used to solve the 
considered problem presented in the previous section. The proposed approach is an 
extension of the original formulation given in (Hopfield, 1984; Hopfield & Tank, 1985). 
Firstly the network architecture is explained, and then derivation of the energy function 
representing the proposed network, and dynamics and proof of the convergence of the 
proposed network are given. Finally, the proposed penalty parameter determination 
method is illustrated with an example. 

3.1 The Network Architecture 

The proposed gradient network has two types of neurons: a continuous type neuron to 
represent real valued variable Cmax, and discrete types of neurons to represent binary 
valued variables X11,…, X1m; X21,…, X2m; Xn1,…,Xnm. UXij symbolizes the input to the neuron 
for job i and resource j, and UCmax denotes the input to the neuron representing Cmax. The 
dynamics of the gradient net will be defined in terms of these input variables. 
VXij designates the output of the neuron for job i and resource j. This neuron will be 
activated if job i is allocated to resource j. VCmax depicts the output of the neuron 
representing Cmax. We use a linear type activation function for neuron Cmax. Neurons 
with sigmoidal nonlinearity are used to represent discrete variables Xij, so that the activation 
function for discrete neurons will take the usual sigmoidal form with slopes X. Here, we 
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use a log-sigmoid function to convert discrete neurons to continuous ones and its functional 
form is shown in Figure 1. 

3.2 The Energy Function 

Instead of using linear programming or the k-out-of-N rules to develop the energy function, 
we directly formulate the cost function according to the constraints term by term. The 
energy function for this network is constructed using a penalty function approach. That is 
the energy function E consists of the objective function Cmax plus a penalty function to 
enforce the constraints. For the problem considered, the penalty function P(X, Cmax) will 
include three penalty terms: P1, P2 and P3. 
The first term P1 adds a positive penalty if the solution does not satisfy any of the equality 
constraints given in (3).  In other words, the first term attempts to ensure that each job is 
allocated to one only one machine. 

 (3) nix
m

j

ij 11
1

In this case, P1 = . This term yields zero when these equality constraints are 

satisfied. P2 adds a positive penalty if the solution does not satisfy any of the inequality 
constraints given in (4). 

m

j

ij

n

i

X
1

2

1

)1(

. (4) mjxpC ij

n

i

i 10
1

max

In accordance with this constraint, P2 will take the following form 

where v represents the penalty function. 

(Watta & Hassoun, 1996) and the functional form of this function is shown in Figure 2.  

m
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i

iji CXpv
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max )(
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We require that Xij {0,1}. These constraints will be captured by P3 which adds a positive 
penalty if the binary constraints Xij {0,1} are violated. In Fig. 3, the functional form of this 
penalty term is shown. It can be seen that the penalty will be zero at either Xij = 0 or Xij = 1.   

P3 = and correspondingly, the total penalty function P (X, Cmax) with 

all constraints can be induced as follows.  

n
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The complete energy function can thus be written as: 

n
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m
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ijiij
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where A, B, C and D are positive penalty coefficients. 
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  VXij

UXij

Figure 1. Activation function for discrete neurons 

( )

Figure 2. Penalty function for enforcing inequality constraints 

     Xij(1-Xij)

Xij

Figure 3. Penalty function for enforcing the 0,1 constraints 
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3.3 The Dynamics 

In addition to defining the energy function to be employed, we need to consider the 
equation of motion of the neuron input. The dynamics for the gradient network are obtained 
by gradient descent on the energy function. The equations of motion are obtained as 
follows.  

m

j

n

i

iji CXPCA

C

E

dt

dUC

1 1

max

max

max

][)1(

(5)

)21(][)(]1[2
1

max

1

ij

n

l

ljl

m

k

ik

ij

ij

XDCXpPiCXB

X

E

dt

dUX

 (6) 

where Cmax and X are positive coefficients which will be used to scale the dynamics of the 
network, and ’ is the derivative of the penalty function .   

00)(02)( allforandallfor

The computation is performed in all neurons at the same time so that the network operates 
in a fully parallel mode. 
The solution of equations of motion may be accomplished via the use of Euler’s 
approximation. The states of the neurons are updated at iteration k as follows. 

dt

dUC
UCUC C

kk max
max

1

maxmax
(7)

dt

dUX
UXUX

ij

X

k

ij

k

ij

1 (8)

Neuron outputs are calculated by V=g (U), where g (.) is the activation function, U is the 
input and V is the output of the neuron. 

VCmax=g(UCmax) = UCmax  (a linear function) 

VXij = g(UXij) = logsig ( X×UXij)  (a log-sigmoid function) 

where X is the slope of the activation function and logsig(n) = 1 / (1 + exp(-n)). 

3.4 Proof of Convergence 

In order to use the proposed Hopfield-like dynamical network for the solution of the 
problem, we have to prove the convergence of the network. To do so, we have to show that 
energy does not increase along the trajectories, energy is bounded below, the solutions are 
bounded and time derivative of the energy is equal to zero only at equilibria. 
Consider the time derivative of the energy function E given below. 
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Since 0])([ 1

ij

ij

ij
VXg

dVX

dUX  (monotone increasing) for log-sigmoid function, the right-

hand side of the equation given in (9) will be obviously negative. This ensures that the 

energy does not increase along trajectories, so we can write 0
dt

dE .

0
dt

dE  implies that jiallfor
dt

dVX ij
,0   and 0

max

dt

dVC . In other words, 0
dt

dE  at 

the equilibrium points.  
Since Xijs are binary variables, they are bounded but we have to check the boundedness of 
Cmax. If we rewrite the motion equation for Cmax, we obtain the following: 

m

j

n

i

iji VCVXPCA
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E

dt

dUC

1 1

max

max

max

][)1(

There may be different possible cases 

Case 1: Assume that 0max

1

VCVXP
n

i

iji A
dt
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which means that UCmax=VCmax will decrease.  
This will cause 

.0max
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VCVXP
n

i

iji
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Case 2: Assume that 0max

1

VCVXP
n

i

iji A
dt

dUCmax

which means that UCmax=VCmax will decrease.  
This will cause  

0max

1

VCVXP
n
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Therefore we have to consider Case 3 in which we assume 0max
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If we multiply both sides by eCt,

we get    
CtCtCt ezreCVC

dt

dVC
e )(2 max

max

CtCt

CtCtCt

etrVCe
dt

d

etreCVC
dt

dVC
e

)(][

)(2

max

max

max



Identical Parallel Machine Scheduling with Dynamical Networks 
using Time-Varying Penalty Parameters 301

dzzreVCetVC

dzzreetVCd

t

CzCt

t

Cz

etVC

eVC

Ct

Ct

C

)()0()(

)()).((

0

maxmax

0

)max(

)0max(

max
.0

dzzreeVCetVC Cz

t

CtCt )()0()(
0

maxmax

dzzreeVCe

dzzreeVCe

dzzreeVCetVC

dzzreeVCe

t

CzCtCt

t

CzCtCt

t

CzCtCt

t

CzCtCt

)()0(

)()0(

)()0()(

)()0(

0

max

0

max

0

maxmax

0

max

We can write 

dzzreeVCe

dzzreeVCetVC

t

CzCtCt

t

CzCtCt

)()0(

)()0()(

0

max

0

maxmax

Assume that Mzr )(

]1[)0(

]1[
1

)0(

)0()(

max

max

0

maxmax

CtCt

CtCtCt

t

CzCtCt

e
c

M
VCe

e
c

MeVCe

dzeMeVCetVC



Multiprocessor Scheduling: Theory and Applications 302

Since 1Cte and as0Cte t , then 
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ijiVXPC

)(zr  and 
dt
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and we can conclude that the solutions are bounded. 
Combining this fact with the fact that the energy E is bounded (since the cost is always 
greater than zero), we conclude that the network converges to a stable state which is a local 
minimum of E(X,Cmax). In other words, the time evolution of the network is a motion in 
space tends to that minimum point as t goes to infinity.  

3.5 Selection of Parameters 

In order to simulate the proposed network for solving the problem described by the 
dynamics given in Section 3.3, some parameters should be determined. These are the 
penalty parameters A, B, C and D; the activation slopes X; the step sizes Cmax, X and the 
initial conditions.  
Because there is no theoretically established method for choosing the values of the penalty 
coefficients for an arbitrary optimization problem, the appropriate values for these 
coefficients can be determined empirically. That is simulation runs are conducted, and 
optimality and/or feasibility of the resulting equilibrium points of the system are observed. 
The network can be initialized to small random values, and then synchronous or 
asynchronous updating of the network will allow a minimum energy state to be attained. In 
order to ensure smooth convergence, step size must be selected carefully (Watta & Hassoun, 
1996).    
The dynamics of the proposed Hopfield-like gradient network will converge to local 
minima of the energy function E. Since the energy function includes four terms, competing 
to be minimized, there are many local minima and a tradeoff among the terms. An infeasible 
solution may be obtained when at least one of the constraint penalty terms is non-zero. In 
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this case, the objective function term will generally be quite small but the solution will not 
be feasible. Alternatively, a local minimum, which causes a feasible but not a good solution, 
may be encountered even if all the constraints are satisfied. In order to satisfy the each 
penalty term, its associated penalty parameter can be increased but this results an increase 
in other penalty terms and a tradeoff occurs. The penalty parameters that result a feasible 
and a good solution, which minimizes the objective function, should be found.  
Determining the appropriate values of the penalty parameters, network parameters and 
initial states are so critical issues associated with gradient type networks that by adjusting 
the parameters, the convergence performance to valid solutions can be improved. It is clear 
that solving scheduling problems represented by many constraints will cause a tradeoff 
among the penalty terms to be minimized.
Due to the problems of Hopfield like NNs in solving optimization problems, various 
modifications are proposed to improve the convergence of the Hopfield network. While 
several authors modified the energy function of the Hopfield network to improve the 
convergence to valid solutions (Aiyer, Niranjan, & Fallside, 1990; Brandt, Wang, Laub & 
Mitra, 1988; Van Den Bout & Miller, 1988) many others studied the same formulation with 
different penalty parameters (Hedge, Sweet, & Levy, 1988; Kamgar-Parsi & Kamgar-Parsi, 
1992; Lai & Coghill, 1992). In recent years, time based penalty parameters are proposed to 
overcome the tradeoff problems encountered in using penalty function approach. Wang 
(1991) used monotonically time-varying penalty parameters for solving convex 
programming problems. Dogan & Guzelis (2006) proposed linearly increasing time-varying 
penalty parameters for solving clustering problems. Here, we propose to use time varying 
penalty parameters that take zero values as a starting value and then are increased in a 
linear fashion in a stepwise manner to reduce the feasible region and also by updating all 
the neurons synchronously, better simulation results are obtained. 
The proposed gradient network algorithm can be summarised by the following pseudo-code.
Step 1. Construct an energy function for the considered problem using a penalty function 
approach.
Step 2. Initialize all neuron states to random values. 
Step 3. Select the slope of the activation function ( ) and step sizes ( ).
Step 4. Determine penalty parameters

Step 4.1 Select C (the coefficient of the inequality constraint) and assign zero as initial 
value to other penalty parameters A, B and D. If the constraint associated with 
parameter C is satisfied, proceed to Step 4.2 otherwise go back to Step 4.1. 
Step 4.2 Select D (a higher value than C to increase the effect of equality constraint), and 
use the predetermined value of C (without taking into consideration of the effect of 
parameter A and B) to check whether both of the constraints associated with these 
terms are satisfied. If yes go to step 4.3, otherwise to step 4.4. 
Step 4.3. Select B (a higher value than D), assign 1 to A, and use the predetermined 
values of C, D together with B to check whether all of the constraints associated with 
these terms are satisfied. If yes go to step 5, otherwise to step 4.4.  
Step 4.4 Increase the value of parameter whose associated constraint is not satisfied. 

Step 5. Repeat n times: 
Step 5.1. Update U using equations (7) and (8), and then compute V by V=g (U). 

Step 6. If the energy has converged to local minimum proceed to step 7, otherwise go back to 
step 5. 
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Step 7. Examine the final solution to determine feasibility and optimality. 
Step 8. Adjust parameters A, B, C, D if necessary to obtain a satisfactory solution, reinitialize 
neuron states and repeat from step 5. 

3.6 An Example 

We explain the procedure with a 5-job 3-machine identical parallel machine scheduling 
problem. After constructing the energy function for this problem, all neuron states are 
initialized to random values chosen uniformly from the interval [0,1]. In the proposed 
approach, we firstly suggest to satisfy the inequality constraint by penalizing it.  In the first 
phase of the simulation (for the first 2000 iterations), initial value of the penalty parameter C 
is chosen as 8. Because other penalty parameters are not taken into consideration, they are 
equal to zero. Since this inequality constraint is satisfied after 2000 iterations, it is decided to 
proceed to the next phase. In the second phase (for iterations from 2001 to 4000), one of the 
equality constraints (binary constraints) is taken into consideration, and its associated 
parameter D is chosen as 20, a value greater than C.  The predetermined value of C, 8, is 
used to penalize the inequality constraint. Both of the constraints are satisfied. Thus, it is 
decided to proceed to the next phase (for iterations from 4001 to 5000). In this phase, all of 
the constraints are tried to be satisfied. Together with the predetermined values of C and D, 
the penalty parameter B belonging to the assignment constraint is chosen as 100 (a value 
greater than other parameters). Since A belongs to the original objective function, it is not 
penalized, and we assign 1 to A. After running simulations with all these 4 penalty terms, 
the feasibility and optimality of the final solution is checked. It is seen that except the 
inequality constraint, being violated with a small percentage error, all of the constraints are 
satisfied. Therefore, it is decided to enhance the weight of this constraint, and then value of 
its parameter, C, is increased to 600. Optimal solution is found at iteration 5100. All of the 
constraints were met satisfactorily, and the cost value is 3.1. In Table 1, values of penalty 
parameters used during the solution of the problem considered are displayed. 

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 1. Penalty parameter values in four phases of simulation 

4. Simulation Results 

A simulation experiment was conducted to test the effectiveness of the proposed gradient 
network approach in terms of solution quality. The initial conditions of the network and the 
processing times of jobs were chosen randomly from uniform distribution in an interval 
[0,1], and [1,3], respectively. In tables 2-11, penalty coefficients of the proposed gradient 
network and other parameters which were determined empirically by running trial 
simulations are given. 
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For each problem size, the gradient network was run for 20 different initial conditions on 5 
different datasets. It is to be noted that the same set of penalty parameters are tried to be 
found for all the test sets of each problem size during simulations. By tuning the parameters 
for each dataset, it is possible to improve the performance of the proposed network.  

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 2. Penalty coefficients during four phases of simulations for n=5 m=3

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 3. Penalty coefficients during four phases of simulations for n=10 m=3 

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 4. Penalty coefficients during four phases of simulations for n=20 m=3 

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 5. Penalty coefficients during four phases of simulations for n=50 m=3 
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   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 6. Penalty coefficients during four phases of simulations for n=100 m=3 

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 8 0

2001:4000 0 0 8 20

4001:5000 1 100 8 20

5001:5100 1 1 600 1

Table 7. Penalty coefficients during four phases of simulations for n=10 m=5 

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 10 0

2001:4000 0 0 10 30

4001:5000 1 100 10 30

5001:5100 1 1 600 1

Table 8. Penalty coefficients during four phases of simulations for n=20 m=5 

   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 10 0

2001:4000 0 0 10 30

4001:5000 1 100 10 30

5001:5100 1 1 600 1

Table 9. Penalty coefficients during four phases of simulations for n=50 m=5 
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   Penalty Coef.   

Iterations

A B C D

1:2000 0 0 10 0

2001:4000 0 0 10 30

4001:5000 1 100 10 30

5001:5100 1 1 600 1

Table 10. Penalty coefficients during four phases of simulations for n=100 m=5 

m n Cmax X X

3 5 0.001 0.1 1
3 10 0.001 0.1 1
3 20 0.001 0.1 1
3 50 0.001 0.1 1
3 100 0.001 0.1 1
5 10 0.001 0.01 1
5 20 0.0008 0.01 1
5 50 0.0008 0.1 1
5 100 0.0008 0.1 1

Table 11. Other Parameters used in the simulation 

The proposed procedure was implemented in Matlab language (Version 6.5) and run on a 
PC with a Pentium IV, 2.6 GHz processor having a 512 MB of RAM. 
In tables 12-20, the solutions obtained by the gradient network using the determined 
parameters are compared with those of the well known LPT heuristic and with the optimum 
solutions found by Lingo (version 8.0), a linear programming software package, in terms of 
Best Cmax (cost of the best solution obtained by the gradient network), Avg. Cmax (cost of the 
average solution obtained by the gradient network), Worst Cmax (cost of the worst solution 
obtained by the gradient network), and % deviations. Columns (6) and (7) represent the % 
deviations of the proposed gradient network solution from the LPT rule solution and from the 
optimal solution, respectively. The % deviations reported in Columns (6) and (7) are given by 

%100*
)max(

)max()max(.
%

LPTC

LPTCnetworkGradientCAvg
LPTfromdeviation

%100*
)max(

)max()max(.
%

optimalC

optimalCnetworkGradientCAvg
optimalthefromdeviation

where Avg. Cmax(Gradient network) is the average gradient network solution of the 20 
runs, Cmax(LPT) is the LPT solution and Cmax(optimal) is the optimal solution obtained by 
the linear programming solver. The percentage of times, which resulted in a feasible 
solution by the network, was also displayed in the last columns of these tables. It is obvious 
that the negative % deviation values from the LPT dispatching rule represent the % 
improvement realized by the gradient network. 
As our primary goal was to compare the proposed network solution with the LPT rule and 
with the optimal solutions, in terms of solution quality, the CPU times required for solving 
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each data set are not given. But from the simulation experiments, it is seen that when 
compared with the very long solution times needed to obtain the optimal solutions by the 
Lingo software, the proposed network could converge to valid solutions in reasonable times 
between 13.18 seconds (for n=3 m=5) and 203.57 seconds (for n=100 m=5).  Obviously, by 
the implementation of the proposed network in a dedicated hardware, significant 
reductions can be obtained in running times. 

Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation 
(%) from 
the LPT 
solution 

(6)

Deviation
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

3.1 3.1 3.1 3.1 3.1 0.00 0.00 100%

4.69 4.69 4.69 4.69 4.69 0.00 0.00 100%

3.55 3.55 3.55 3.55 3.55 0.00 0.00 100%

2.98 2.98 2.98 2.98 2.98 0.00 0.00 100%

3.02 3.02 3.02 3.02 3.02 0.00 0.00 100%

Table 12. Results for m=3, n=5 over 5 problems  

Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation 
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

7.33 7.54 7.67 7.59 7.21 -0.66 4.57 100 % 

6.97 7.21 7.47 7.45 6.92 -3.22 4.19 100 % 

7.28 7.56 7.72 7.69 7.2 -1.69 5 100 % 

6.79 7.11 7.30 7.46 6.72 -4.69 5.80 100  % 

 6.77 7.01 7.31 7.44 6.72 -5.78 4.31 100 % 

Table 13. Results for m=3, n=10 over 5 problems  
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Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

13.24 13.53 13.85 13.37 13.05 1.19 3.68 100 % 

13.84 14.24 14.46 14.01 13.74 1.64 3.64 100 % 

13.03 13.42 13.63 13.40 12.92 0.15 3.87 100 % 

14.25 14.54 14.76 14.60 14.05 -0.41 3.48 100  % 

13.35 13.60 13.82 13.46 13.12 1.04 3.66 100 % 

Table 14. Results for m=3, n=20 over 5 problems 

Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

33.53 33.84 34.07 33.70 33.34 0.41 1.50 100 % 

30.58 30.95 31.14 30.75 30.36 0.65 1.94 100 % 

31.47 31.85 32.15 31.65 31.38 0.63 1.49 100 % 

34.53 35.41 35.77 35.32 34.92 0.25 1.40 100  % 

34.68 35.10 35.30 34.88 34.51 0.63 1.71 100  % 

Table 15.  Results for m=3, n=50 over 5 problems 

Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

70.00 70.28 70.58 70.55 69.91 -0.38 0.53 100 % 

66.65 66.94 67.14 67.09 66.45 -0.22 0.73 100 % 

68.42 68.85 69.10 69.04 68.39 -0.27 0.67 100 % 

66.11 66.73 66.52 66.73 66.09 0.00 0.97 100  % 

65.85 66.15 66.33 66.35 65.69 -0.30 0.70 100  % 

Table 16.  Results for m=3, n=100 over 5 problems 
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Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation
(%) from the 

optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

3.43 3.53 3.68 3.43 3.43 2.91 2.91 100 % 

3.38 3.76 3.97 3.79 3.38 -0.79 11.24 100 % 

3.64 3.85 3.97 3.68 3.57 4.35 7.56 100 % 

4.03 4.16 4.24 4.03 4.03 3.22 3.22 100 % 

3.57 3.67 3.73 3.53 3.53 3.97 3.97 100 % 

Table 17. Results for m=5, n=10 over 5 problems 

Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

7.43 7.78 7.91 7.37 7.28 5.56 6.87 100 % 

7.68 7.95 8.08 7.62 7.49 4.33 6.14 100 % 

8.13 8.24 8.37 7.8 7.76 5.64 6.18 100 % 

7.79 7.98 8.13 7.69 7.51 3.77 6.26 100 % 

8.55 8.77 8.92 8.29 8.18 5.79 7.21 100 % 

Table 18. Results for m=5, n=20 over 5 problems 

Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

20.49 20.86 21.09 20.28 20.22 2. 86 3.16 100 % 

21.70 22.17 22.42 21.55 21.49 2.88 3.16 100 % 

18.69 18.94 19.15 18.42 18.40 2.82 2.93 100 % 

20.71 21.11 21.33 20.37 20.33 3.63 3.83 100 % 

19.79 20.01 20.24 19.43 19.41 2.98 3.09 100 % 

Table 19 Results for m=5, n=50 over 5 problems 
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Gradient Network 

Best 
Cmax

(1)

Avg.
Cmax

(2)

Worst
Cmax

(3)

LPT
(4)

Optimum
(5)

Deviation
(%) from 
the LPT 
solution 

(6)

Deviation 
(%) from 

the
optimal
solution 

(7)

Percent
Feasibility 

of
Computed
Solutions

(8)

41.65 41.87 42.06 41.24 41.20 1.53 1.63 100 % 

40.16 40.56 40.74 39.78 39.77 1.96 1.99 100 % 

41.90 42.12 42.28 41.36 41.34 1.84 1.89 100 % 

40.20 40.55 40.69 39.83 39.82 1.80 1.83 100 % 

41.54 41.89 42.06 41.19 41.15 1.70 1.8 100 % 

Table 20.  Results for m=5, n=100 over 5 problems 

To interpret the findings in a table, let us consider Table 12. For all the 5 data sets, 20 out of 
the 20 runs of the proposed network resulted in a feasible solution, that is percent feasibility 
is 100 %. The average, worst and the best cost of the 20 feasible solutions for the first dataset 
is 3.1, which is equal to the global optimal solution value, therefore the percent above the 
optimal solution and LPT result is 0.0. Similarly, if we consider Table 20, for the first dataset, 
again, 100 % of the runs resulted in a feasible solution by the proposed network. The 
average Cmax of the feasible solutions is 41.87, which is 1.53 % more costly than the result of 
LPT rule, and 1.63 % more costly than the global optimal solution. The best makespan value 
produced by the gradient network is 41.65, which is 0.99 % ([(41.65-41.24)*100]/41.24) above 
than the LPT result and 1.09 % ([(41.65-41.20)*100]/41.20) above the global optimal solution. 
According to these findings, it is clear that the initial conditions of the network appear to 
have a serious impact on the solution quality. For example in Table 17, for n=10 and m=5, 
although the proposed network results in gaps between 2.91 and 4.35 % from the LPT 
solution, on average, it outperforms the LPT heuristic for one of the datasets. In the same 
table, if the results obtained using the first data set are considered, it is seen that although 
the average makespan from the 20 different initial runs is found as 3.53, the best makespan 
out of the 20 runs, produced by the proposed network is 3.43, which is equal to the optimal 
solution. In addition, although the average Cmax results obtained by the proposed network 
are above the LPT results for the 4 data sets, the best Cmax results outperform the LPT rule 
in 4 data sets. 
In all the simulations carried out to show the performance of the network, convergence to 
valid schedules is achieved and better results are obtained for small number of machines 
and large number of jobs. If all the test cases are considered, the proposed network is, on 
average, able to produce a solution with a makespan value, which is 1.14 % above of cost of 
the LPT result. By tuning the penalty coefficients for each dataset, it is possible to improve 
the convergence and the optimality of the solutions. On the other hand, besides its 
convergence to valid schedules, convergence to good quality solutions of the proposed 
network points out its general applicability in other scheduling environments.   
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5. Conclusions and Future Research 

This study has presented a dynamical gradient network for solving the identical parallel 
machine scheduling problem with the makespan criterion which is known to be NP-hard 
even for the case of two identical parallel machines. Focus of this paper has been on 
demonstrating the optimization capabilities of the proposed network by solving a set of 
randomly generated problems. The proposed Hopfield-like network uses time-varying 
penalty parameters that start from zero and increase in a stepwise manner during iterations 
to overcome the tradeoff problem of the penalty function method, one of the important 
drawbacks of the penalty function approach.. To analyse the performance of the network, it 
is compared with the well-known LPT heuristic commonly used to solve the problem under 
study, and also with the optimal solutions in terms of the solution quality. The simulation 
experiments demonstrated that the proposed network generated feasible solutions in all the 
cases, and, in some of the data sets it found smaller makespan compared to LPT. In general, 
for all the instances, the average deviation percentage of the proposed network is 1.14 % 
from the LPT heuristic. 
By conducting several simulation experiments, the influence of different initializations 
schemes was investigated on the solutions of the problem considered. The analysis results 
showed that the percent error of the network is very sensitive to the selection of the starting 
points and the choice of the parameters used in simulation.   
The contribution of this paper is two fold. We propose to use a novel time varying penalty 
method that guarantees feasible and near optimal solutions for solving the identical parallel 
machine scheduling problem with the makespan criterion. Although a large body of 
literature exists for solving identical parallel machine scheduling problem with the 
makespan minimization criterion, to the best of our knowledge, there is no previously 
published article that tried to solve this NP-hard problem using neural networks, so that this 
study will also make a contribution to the scheduling literature.  
Several issues are worthy of future investigations. First, further studies will be focused on 
selecting the parameters of the network automatically rather than choosing by trial and 
error, which is one of the drawbacks of neural networks. Second, extension of the results to 
large size problems will be worthwhile. Finally, extension of the results to different 
manufacturing scheduling environments is important for industrial applications, and 
implementation of the network in hardware can make progress in computational efficiency.  

6. References 

Aiyer, S.V.B.; Niranjan, M. & Fallside, F. (1990). A theoretical investigation into the 
performance of the Hopfield model. IEEE Transactions on Neural Networks. 1, 204-
215.

Akyol, D.E. & Bayhan, G.M. (2005). A Coupled Gradient Network Approach for the Multi 
Machine Earliness and Tardiness Scheduling Problem, Lecture notes in computer 
science, 3483, 596-605.  

Akyol, D.E. & Bayhan, G.M. (2006). Minimizing Makespan on Identical Parallel Machines 
using Neural Networks, Lecture notes in computer science, 4234, 553-562.  

Brandt, R.D.; Wang, Y.; Laub, A.J. & Mitra. S.K. (1988). Alternative Networks for Solving the 
Travelling Salesman Problem and the List-Matching Problem. In Proceedings of the 
International Conference on Neural Networks, 2, 333-340. 



Identical Parallel Machine Scheduling with Dynamical Networks 
using Time-Varying Penalty Parameters 313

Chen, M. & Dong, Y. (1999). Applications of neural networks to solving SMT scheduling 
problems-a case study. International Journal of Production Research, 37, 4007-4020. 

Cheng, T. & Sin, C. (1990). A State-of-the-Art Review of Parallel-Machine Scheduling 
Research. European Journal of Operational Research, 47, 271-292. 

Coffman, E.G., Garey, M.R. & Johnson, D.S. (1978). An application of bin-packing to multi-
processor scheduling, SIAM Journal of Computing, 7, 1-17. 

Dogan, H. & Guzelis, C. (2006). Robust and Fuzzy Spherical Clustering by a Penalty 
Parameter Approach. IEEE Transactions on Circuits and Systems-II. 53(8), 637-641. 

Foo, S.Y.; Takefuji, Y. & Szu, H. (1995).  Scaling properties of neural networks for job-shop 
scheduling, Neurocomputing, 8,  79-91. 

Frangioni, A.; Scutella, M.G. & Necciari, E. (1999). Multi-exchange algorithms for the 
minimum makespan machine scheduling problem, Technical Report: TR-99-22.

Friesen, D.K. & Langston, M.A. (1986). Evaluation of a MULTIFIT based scheduling 
algorithm, J. Algorithm, 7, 35-59. 

Friesen, D.K. (1987). Tighter bounds for LPT scheduling on uniform processors. SIAM J. 
Computing. 16, 554-560. 

Garey, M.R. & Johnson, D.S. (1979). Computer and intractability: a guide to the theory of    
NP completeness, (W.H Freeman, San Francisco). 

Graham, R.L. (1969). Bounds on multiprocessor timing anomalies. SIAM Journal of Applied 
Mathematics, 17, 416-429. 

Graham, R.L.; Lawler, E.L.; Lenstra, J.K. & Rinnooy Kan, A.H.G. (1979). Optimization and 
approximation in deterministic sequencing and scheduling: A survey. Annals of 
Discrete Mathematics, 5, 287–326. 

Hamad, A.; Sanugi, B. & Salleh, S. (2003). A neural network model for the common due date 
job scheduling on unrelated parallel machines, International Journal of Computer 
Mathematics, 80, 845-851. 

Hedge, S.; Sweet, J. & Levy, W. (1988). Determination of parameters in a Hopfield/Tank 
computational network. In Proc. IEEE International Conference on Neural Networks, 2, 
291-298.

Hochbaum, D.S. & Shmoys, D.B. (1987). Using dual approximation algorithms for 
scheduling problems: Practical and theoretical results. Journal of the Association for 
Computing Machinery. 34, 144-162. 

Hopfield, J. (1984). Neurons with graded response have collective computational properties 
like of two-state neurons. In Proc. of the National Academy of Sciences of the USA, 81, 
3088-3092.

Hopfield, J. & Tank, T.W. (1985). Neural computation of decisions in optimization problems. 
Biological Cybernetics, 52, 141-152. 

Hübscher, R. & Glover, F. (1994). Applying Tabu Search with influential diversification to 
multiprocessor scheduling, Computers and Operations Research, 8, 877-884. 

Jozefowska, J.; Milka, M.; Rozycki, R.; Waligora, G. & Weglarz, J. (1998). Local search 
metaheuristics for discrete-continuous problems. European Journal of Operational 
Research, 107, 354-370. 

Kamgar-Parsi, B. & Kamgar-Parsi, B. (1992). Dynamical Stability and Parameter Selection in 
Neural Optimization. Proc. of International Joint Conference on Neural Networks, 4, 
566-571.



Multiprocessor Scheduling: Theory and Applications 314

Lai, W.K. & Coghill, G.G. (1992). Genetic Breeding of Control Parameters for the 
Hopfield/Tank Neural Net. Proc. of the International Joint Conference on Neural 
Networks, 4, 618-623. 

Leung, J.Y.-T. (1989). Bin packing with restricted piece sizes, Information Processing Letters,
31, 145-149. 

Liansheng, G.; Gang, S. & Shuchun, W. (2000). Intelligent scheduling model and algorithm 
for manufacturing, Production Planning and Control, 11, 234-243. 

Lo, Z.P. & Bavarian, B. (1993). Multiple job scheduling with artificial neural networks. 
Computers and Electrical Engineering, 19, 87-101. 

Mokotoff, E. (2001). Parallel Machine Scheduling Problems: A Survey. Asia-Pacific Journal of 
Operational Research, 18, 193-242. 

Park, Y.; Kim, S. & Lee, Y.H. (2000). Scheduling jobs on parallel machines applying neural 
network and heuristic rules. Computers and Industrial Engineering, 38, 189-202. 

Sahni, S.K. (1976). Algorithms for scheduling independent tasks. J. Assoc. Comput mach., 23, 
116-127.

Satake, T.; Morikawa, K. & Nakamura, N. (1994). Neural network approach for minimizing 
the makespan of the general job-shop. International Journal of Production Economics.
33, 67-74. 

Sethi, R. (1977). On the complexity of mean flow time scheduling. Mathematics of Operations 
Research. 2, 320-330. 

Vaithyanathan, S. & Ignizio, J.P. (1992). A stochastic neural network for resource constrained 
scheduling. Computers and Operations Research, 19, 241-254. 

Van Den Bout, D.E. & Miller, T.K. (1988). A Traveling Salesman Objective Function that 
Works. In Proc. of IEEE International Conference on Neural Networks, 2, 299-303. 

Wang, J. (1991). A Time-Varying Recurrent Neural System for Convex Programming. Proc.
of IJCNN-91-Seattle International Joint Conference on Neural Networks, 147-152. 

Watta, P.B. & Hassoun, M.H. (1996). A Coupled Gradient Network Approach for Static and 
Temporal Mixed-Integer Optimization. IEEE Transactions on Neural Networks, 7, 578-
593.

Willems, T.M. & Brandts, E.M.W. (1995). Implementing heuristics as an optimization 
criterion in neural networks for job-shop scheduling. Journal of Intelligent 
Manufacturing, 6, 377-387. 

Zhou, D.N.; Cherkassy, V.; Baldwin, T.R. & Olson, D.E. (1991). A Neural Network Approach 
to Job-Shop Scheduling. IEEE Transactions on Neural Networks, 2, 175-179. 



Multiprocessor Scheduling, Theory and Applications

Edited by Eugene Levner

ISBN 978-3-902613-02-8

Hard cover, 436 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

A major goal of the book is to continue a good tradition - to bring together reputable researchers from different

countries in order to provide a comprehensive coverage of advanced and modern topics in scheduling not yet

reflected by other books. The virtual consortium of the authors has been created by using electronic

exchanges; it comprises 50 authors from 18 different countries who have submitted 23 contributions to this

collective product. In this sense, the volume can be added to a bookshelf with similar collective publications in

scheduling, started by Coffman (1976) and successfully continued by Chretienne et al. (1995), Gutin and

Punnen (2002), and Leung (2004). This volume contains four major parts that cover the following directions:

the state of the art in theory and algorithms for classical and non-standard scheduling problems; new exact

optimization algorithms, approximation algorithms with performance guarantees, heuristics and metaheuristics;

novel models and approaches to scheduling; and, last but least, several real-life applications and case studies.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Derya Eren Akyol (2007). Identical Parallel Machine Scheduling with Dynamical Networks using Time-Varying

Penalty Parameters, Multiprocessor Scheduling, Theory and Applications, Eugene Levner (Ed.), ISBN: 978-3-

902613-02-8, InTech, Available from:

http://www.intechopen.com/books/multiprocessor_scheduling_theory_and_applications/identical_parallel_mac

hine_scheduling_with_dynamical_networks_using_time-varying_penalty_parameters



© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.


