We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,400
Open access books available

118,000
International authors and editors

130M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Abstract

Exposure to ultraviolet radiation (UVR) contained in sunlight is a major cause of skin illness such as sunburn, aging and cancer. UVR triggers local effects on the skin, which involve local inflammation, tissue remodeling, regulatory cytokines release and migration of dendritic cells (DCs). However, these localized effects on the exposed area are not the only ones that take place after sun or UVR exposure. A less known effect of UVR is the modulation of systemic immunity, through the generation of specific regulatory cells. These cells are induced, at least in part, by skin-migrating tolerogenic DCs. Moreover, bone marrow cell precursors can also be biased to a tolerogenic or suppressor phenotype. The sunlight- or UVR-induced immune system modulation can cause skin disorders like skin cancer and cutaneous photosensitivity in Lupus, but it also may be useful to treat cutaneous pathologies such as psoriasis and vitiligo. Moreover, the systemic immunosuppressor effect of UVR exposure may also be useful to treat autoimmunity of internal organs. Finally, as an inducer of cutaneous inflammatory response, UV phototherapy may also be useful in the treatment of cutaneous infections. Overall, UVR has profound immunomodulatory capacity that can be beneficial or deleterious for human health.

Keywords: skin, sunlight, immunosuppression, cancer, autoimmunity

1. Introduction

Sunlight is essential for life on the Earth, since there will be no nourishment provision for all the earth life forms without it. In addition to its central role in the production of large macromolecules (carbohydrates) from carbon dioxide by photosynthetic organisms, it also plays an important role in promoting an adequate life environment through heat generation: our
The planet’s average temperature is around 15°C, comparing with 482°C in Venus and −63°C in Mars (the two nearest planets of our system). Unfortunately, global temperature is increasing during the last years due to global warming, a problem that exceeds the scope of this chapter.

Sunlight is an electromagnetic field composed of radiations with different wavelengths, ranging from X-rays to infrared radiation. Some of these radiations are absorbed in the space and in our atmosphere. Due to this absorption, sunlight spectrum that reaches the Earth’s surface is composed of ultraviolet (UV) radiation (280–400 nm), visible light (400–720 nm) and near infrared radiation (720–2500 nm). The UV-radiation at the Earth surface is subdivided into UVB (280–320 nm) and UVA (320–400 nm), which have different characteristics in their effects on biological systems.

But sunlight not only provides warmth and food to the planet but also to the human beings. The different radiations that constitute the sunlight have impacts on mammalian cells, particularly on skin cells, since these are the naturally exposed cells. These effects are multiple and include DNA damage [1], reactive oxygen species (ROS) production [2], mitochondrial alterations [3, 4], matrix metalloproteases expression [5] and complex immune system changes, which are discussed in detail in this chapter. Many of these effects are specifically mediated through UV radiation, but visible light and infrared radiation also mediate cellular alterations [6].

Human skin exposure to sunlight has a range of effects on health, both beneficial and detrimental and not only cutaneous but also systemic.

On the side of the beneficial effects, the bright side, it is very well known that sun exposure is required to provide adequate amounts of circulatory Vitamin D, since this vitamin level depends on a step of UVB-induced photoisomerization of 7-dehydrocholesterol to previtamin D$_3$ [7]. Sunlight has also been used to treat skin diseases. In ancient India and Egypt, there was a treatment for vitiligo that consisted of the consumption of an herbs extract and a subsequent exposure to the Sun, a treatment that is used in our days known as photodynamic therapy or photochemotherapy [8]. In 1901, Niels Ryberg Finsen published his work in which he treated Lupus vulgaris, a cutaneous infection caused by Mycobacterium tuberculosis, using an artificial source of ultraviolet light, during the years where the antibiotics were still undiscovered [9]. For his investigations, Finsen was awarded with the Nobel Prize in 1903, and he still remains as the only dermatologist in winning this prize, more than a century later. It is not surprising that sunlight has been employed as a treatment of different diseases. In 1903, the first hospital specialized in heliotherapy opened its doors in Switzerland. In that hospital patients with tuberculosis and rickets were treated with a precise schedule of sunbathing during several weeks [10]. Moreover, during the First World War, heliotherapy was used to treat ulcers and wounds in the absence of antibiotics.

However, there is also a dark side of sunlight exposure. It is also very well known that sunlight has the ability to promote skin cancer, both melanoma and non-melanoma ones [11]. This ability to induce malignant transformation of skin cells and their subsequent progression to form a tumor is based on its capacity to induce DNA damage and mutations to the exposed cells. This damage, described in 1958, consists of the formation of pyrimidine dimers, a covalent bond between adjacent DNA bases, being the thymidine dimers the most frequent lesions [1]. Even though mammalian cells have a specialized enzymatic machinery to detect
and correct DNA lesions, these mechanisms can be overwhelmed leading to DNA mutations. Damaged cells can arrest their growth in order to detect and correct DNA damage, being p53 a key regulator of the process. If the damage is too extensive to be repaired, apoptotic cell death is initiated, through the intrinsic pathway [12]. Besides nuclear damage, UV radiation also promotes mitochondrial alterations, leading to electron transport chain uncoupling, loosing of mitochondrial membrane polarization and increasing superoxide anion production [13, 14]. UV radiation effects on the biology of exposed cells are very well known, but it also has profound effects on immune system that may affect the local and systemic immune responses. These effects are studied in the field of photoimmunology and are presented in this chapter.

2. Ultraviolet radiation effects on skin immune system

As it was mentioned, sunlight has an important impact on human health. A vast majority of the effects initiated by sunlight are triggered by UV radiation, being UVB the most relevant in terms of induction of DNA damage and detrimental effects on immune system.

The UV-induced immune system alterations can be divided into direct effects and indirect effects. The first ones are produced on the exposed organs (most likely the skin, but also the eyes) by specific responses of UV-exposed cells, which have the ability to produce several molecular mediators and, in the case of dendritic cells, to migrate. The second ones are induced in distant organs, both primary and secondary lymphoid organs, by the skin-produced molecules and migrating cells.

2.1. Direct effects on cutaneous immune system

The energy contained in the UV radiation can be transferred to different molecules within skin cells. This energy transference can modify the target molecules, such as DNA, transurocanic acid (UCA) and L-tryptophan, leading to molecular changes and a downstream cascade of complex cellular responses.

Trans-UCA absorbs energy from UVB radiation and isomerizes to cis-UCA, which interacts with the serotonin receptor [15], activating gene transcription and promoting reactive oxygen species (ROS) production [16], which may act as intracellular second messengers activating different kinases such as Erk1/2 in UVB-exposed keratinocytes [17]. But not only ROS can activate cellular kinases. After UV exposure, many intracellular pathways are activated, including NF-κB and MAPK ones, leading to the transcription of many inflammation-related genes [18, 19].

As keratinocytes are the most abundant cell type in epidermis, around 95% of total cells, they are the most frequent target of UV radiation. This is particularly important considering that UVB radiation only reaches the epidermis, and UVA is the only one which can penetrate deeper into the skin to reach the dermis. For these reasons, keratinocytes are central players in the establishment of the UV-induced inflammatory response. These cells are able to sense and react to different stimuli (including UV radiation) by producing pro-inflammatory
cytokines (TNF-α, IL-1α and IL-1β, IL-6, IL-18, INF-γ), chemokines (IL-8, CCL-20), growth factors (GM-CSF, VEGF-α) and antimicrobial peptides (α and β-defensins, cathelicidin, S100 proteins and ribonucleases). These molecules create an environment that promotes vasodilation and an increase in vascular permeability, leading to edema formation and recruitment of different immune cells, such as neutrophils, macrophages and lymphocytes to the exposed area, reinforcing the inflammatory response. But keratinocytes are not the only cell type directly affected by UV radiation. Langerhans cells (LCs), the specific dendritic cell subtype present in the epidermis, are also affected. It has been very well described that after UV exposure, the epidermis is depleted of LCs [20], but it has also been established that in vitro UV-exposed LCs promotes defective T cell activation due to UV-induced LCs apoptosis and co-stimulatory molecules alterations [21, 22].

Besides keratinocytes and LCs, dermal cells also play an important role in the UV-induced cutaneous inflammation. Dermal fibroblasts, mast cells, macrophages and dermal dendritic cells can be stimulated both directly by UV radiation (mainly UVA, since UVB does not reach the dermis) and indirectly by epidermal produced soluble mediators [23–27]. As a consequence of repetitive acute exposures to UV radiation, there is a degeneration of skin cells, a destruction of collagen fibers and blood vessels, which, in turn, leads to premature aging, photodermatoses and actinic keratosis. These alterations are consequence of the production of ROS by exposed keratinocytes and fibroblasts and the increased production of metalloproteases, which finally ends in the extracellular matrix degradation.

Besides the abovementioned pro-inflammatory mediators, when the skin is exposed to UV radiation, keratinocytes and other immune cells, such as mast cells, neutrophils and monocytes, also produce regulatory soluble mediators such as IL-10, IL-4, prostaglandin E₂ (PGE₂) and platelet-activating factor (PAF). PAF induces the expression of cyclooxygenase-2 (COX-2, the inducible form of the COX enzyme), which is necessary to produce PGE₂. At the same time, cis-UCA induces keratinocyte’s production of neuropeptides that stimulates mast cells to release histamine, which, in turn, induces the production of PGE₂ leading to a retro alimentation system. PGE₂ induces the production of IL-4 by lymphocytes and monocytes, potentiating the release of IL-10 by keratinocytes. In this way, all the described mechanisms converge in the production of IL-10.

UV-induced cutaneous inflammation can be controlled by specific regulation of the immune system. It has been recently described that both epidermal LCs and apoptotic keratinocytes are essential for the correct control of UV-induced cutaneous inflammation, through the phagocytosis of apoptotic keratinocytes by LCs [28].

2.2. Systemic effects on immune responses

As it was mentioned in the introduction, skin cancer development is one of the major health problems associated with UV exposure. This carcinogenic effect was first demonstrated in a mice model by Dr. George Marshall Finley in 1928 [29]. More than four decades later, Dr. Margaret Kripke observed that UV-induced skin carcinomas were highly immunogenic and were rejected once transplanted on naïve mice [30]. Dr. Kripke realized that there must had been something else than mutagenic effects on UV-radiation, and she proved that this
extra effect was a marked systemic immunosuppression that impeded the immune system to attack the tumor [31, 32]. Since Dr. Kripke's pioneering work, photoimmunologists from all over the world have elucidated many mechanisms involved in UV-induced systemic immunosuppression [33].

One of the most employed models to study this specific suppression of immune responses is the contact hypersensitivity reaction (CHS) to different molecules (the most commonly used are oxazolone and dinitrofluorobenzene). The reaction consists of a first contact between the antigen and the skin, named sensitization, where specific T cell activation takes place in draining lymph nodes, and a second contact in the ear skin of sensitized animals, named challenge. After the challenge, a specific T cell-driven inflammatory response is established and can be measured as the increase in ear thickness. Using CHS reaction, it was demonstrated that several immune cells are involved in the UV-induced immunosuppression:

- The DCs that migrate from the skin to lymph nodes to present antigens to T cells expose a tolerogenic phenotype after UV irradiation. This leads to the promotion of T cell differentiation to a regulatory phenotype. The exact role of LCs in this process is controversial, since it was demonstrated that these cells are not essential to establish the UV-induced immunosuppression [27, 34], but it was also observed in other experiments that LCs are required to produce the phenomena [35]. These events were demonstrated applying the sensitizer onto the irradiated skin.

- During T cell activation by tolerogenic DCs in skin draining lymph nodes, a differentiation to regulatory T cells (Tregs) is produced [36]. These Tregs are antigen specific and may transfer the immunosuppressive estate when injected to naïve mice. Moreover, these Tregs can modulate new immature DCs to turn them into tolerogenic, reinforcing the suppression on the immune response [37].

- Skin mast cells can also migrate to the lymph nodes after irradiation. This migration is essential to establish the immunosuppression [38], and these mast cells are necessary for the generation of regulatory B cells (Bregs), which are other important regulators of the immune response that are involved in the cutaneous response after UV exposure [39].

- Regulatory B cells, as well as Tregs, can modulate DCs’ induction of immunity [40], favoring a vicious circle of specific immunosuppression that is set up after skin exposure to UV radiation.

The abovementioned cells produce their effects by sensing and releasing soluble mediators. A pivotal cytokine involved in this suppression is IL-10, since its blockade by specific antibodies [41, 42] or using knock-out mice [43] leads to normal immune responses even after UV exposure. This cytokine is produced by many cells, described earlier in this chapter, such as keratinocytes [44], DCs [45], Tregs, mast cells [46] and Bregs. Vitamin D, whose synthesis in the skin is dependent on UV exposure, also plays an important role as a soluble mediator of UV-induced immunosuppression. This vitamin induces a tolerogenic phenotype on DCs in vitro [47] and can mimic the effect of the radiation in vivo [48]. Another important soluble mediator with systemic effects which is produced in the skin after UV exposure is
prostaglandin E$_2$. This eicosanoid is a main product of cyclooxygenase-2 (COX-2), which is up-regulated in irradiated skin and whose drug-mediated blockade decreases the UV-induced immunosuppression [18]. Other soluble mediators have been implicated specifically in UVA-induced suppression such as the alternative complement component factor B [49] and serotonin [50]. Platelet-activating factor, TNF-α, IL-4 and histamine also play a role in that process.

Besides its effects on mature T and B cells during their activation in skin draining lymph nodes, UV radiation can also modulate the differentiation of immune cells in primary lymphoid organs. In particular, bone marrow cells are affected in UV-exposed animals. DCs (CD11c + cells) differentiated in vitro from the bone marrow of UV-exposed animals were less competent than the control cells (differentiated from non-exposed animals). The defective bone marrow precursor phenotype can be restored by treating the exposed animals with a COX-2 inhibitor, demonstrating the role of PGE$_2$ in affecting bone marrow cells [51].

2.3. Other indirect effects on immune system

The effects of microbiota on immune system has been vastly described and is a topic of growing interest during the last years. Even though the most important efforts are directed to study and to explain the interaction of immune system with gut microbiota, this is not the only important microenvironment that may affect the human health. Skin microbiome is indeed an important stimulus for cutaneous immunity. It is composed of a complex group of microorganisms, including bacteria, virus and fungus, which has their particular equilibrium. A disbalance in the commensal microbial community may impact on skin health, as is the case of *Staphylococcus aureus* role in atopic dermatitis [52]. It is not the aim of this chapter to discuss in detail the role of skin microbiome in health and disease, but what is certain is that it can modulate the skin immune system.

Skin exposure to the Sun and UV radiation not only impact skin cells, but also may affect microorganisms living on the skin surface. The effect of the radiation on the microorganisms depends on the type of microbe, its life cycle (spores tend to be more resistant that other forms) and the location (microbes can penetrate deep into the skin appendages). However, UV radiation can definitely affect skin microbiota, leading to different interactions with both adaptive and innate immunity [53]. The exact role of UV radiation on skin microbiome and its effects on immune system need to be studied in detail during the next years, in order to elucidate their implications in skin diseases.

3. Role of UV radiation exposure and immune system modulation on skin diseases

As it was mentioned earlier in this chapter, the most important effect of UV radiation on human health is the induction of skin cancer and the establishment of an immunosuppressive environment which allows the growth of the tumors. However, skin cells malignant transformation is not the only affection produced by UV radiation on the skin. Photosensitivity in Lupus erythematosus is also produced by UV exposure. Moreover, skin infections may be favored by skin UV irradiation. The mechanisms of these skin malignancies are discussed in the following sections.
On the other hand, UBI is an old and almost forgotten technique, whose use was extensive in the 1940s and 1950s. Similarly to ECP, it consists of blood extraction with citrate (around 5–7% of total blood) and its subsequent irradiation using UVC or UVB radiation, without any cellular separation. It was employed to treat many infectious diseases such as septicemia, tuberculosis and pneumonia, and other pathologies like arthritis and asthma [89]. The exact mechanisms of action are not fully understood, but it is known that an activation of antigen presenting cells is produced during the procedure. Even though this treatment has almost been abandoned, it may be a therapeutic option against multi-resistant bacterial infections.

5. Conclusions

Skin exposure to sunlight, specifically to UV radiation, triggers very well-known mechanisms that may ultimately promote a profound modulation of the immune system, including both innate and adaptive immunity. This modulation of the immunological response leads to a defective control of tumor cells and pathogens. Moreover, as it affects systemic immunity, it can also alter the response to vaccines. On the other hand, the knowledge of these detrimental effects has led to multiple options to treat immune-based pathologies. In this way, the potentiality of cutaneous and systemic immunomodulation by different types of phototherapy is yet far to be completely explored.

Acknowledgements

The research developed by the authors is funded by grants from Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT).

Conflict of interest

The authors have no financial conflict of interest.

Author details

Eliana M. Cela1,2, Mariela L. Paz1,2, Juliana Leoni1,2 and Daniel H. González Maglio1,2*

*Address all correspondence to: danielgm@ffyb.uba.ar

1 Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina

2 Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET – Universidad de Buenos Aires, Buenos Aires, Argentina
References


Findlay G. Ultra-violet light and skin cancer. Lancet. 1928;212:1070-1073


Ullrich SE, Kripke ML. Mechanisms in the suppression of tumor rejection produced in mice by repeated UV irradiation. Journal of Immunology. 1984;133(5):2786-2790


Schwarz A, Schwarz T. UVR-induced regulatory T cells switch antigen-presenting cells from a stimulatory to a regulatory phenotype. The Journal of Investigative Dermatology. 2010;130(7):1914-1921

Byrne SN, Limón-Flores AY, Ullrich SE. Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. Journal of Immunology. 2008;180:4648-4655

Matsumura Y, Byrne SN, Nguyen DX, Miyahara Y, Ullrich SEA. Role for inflammatory mediators in the induction of immunoregulatory B cells. Journal of Immunology. 2006;177(7):4810-4817

Byrne SN, Halliday GMB. Cells activated in lymph nodes in response to ultraviolet irradiation or by Interleukin-10 inhibit dendritic cell induction of immunity. The Journal of Investigative Dermatology. 2005;124:570-578

Rivas JM, Ullrich SE. The role of IL-4, IL-10, and TNF-a in the immune suppression induced by ultraviolet radiation. Journal of Leukocyte Biology. 1994;56:769-775

Shreedhar V, Giese T, Sung VW, Ullrich SEA. Cytokine cascade including prostaglandin E2, IL-4, and IL-10 is responsible for UV-induced systemic immune suppression. Journal of Immunology. 1998;160(8):3783-3789


[63] Meeran SM, Mantena SK, Meleth S, Elmets CA, Katiyar SK. Interleukin-12-deficient mice are at greater risk of UV radiation-induced skin tumors and malignant transformation of papillomas to carcinomas. Molecular Cancer Therapeutics. 2006;5(4):825-832


