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Abstract

Coghnitive radio (CR) provides a better way for utilization of spectrum resource by intro-
ducing an opportunistic usage of the frequency bands that are not heavily occupied by a
licensed spectrum user or a primary user (PU). In cognitive radio, the detection and
estimation of PU channel availability (unoccupied spectrum) are the key challenges that
need to be overcome in order to prevent the interference with licensed spectrum user and
improve spectrum resource utilization efficiency. This chapter focuses on developing new
ways for detecting and estimating primary user channel availability based on machine-
learning (ML) techniques.

Keywords: machine learning, spectrum sensing, spectrum management, channel state
estimation, cognitive radio

1. Introduction

In this chapter, we study the problem of detection of unoccupied primary user spectrum (i.e.,
spectrum hole). We also introduce the methods for estimating the time when primary user
channel state is available, so that the secondary spectrum user can adjust their transmissic
strategies accordingly.

The chapter is organized in two parts. The first part of the chapter focuses on the problem of
detecting the unoccupied spectrum left by the primary user. In this part, we introduce the
usage of machine-learning (ML) techniques as a fusion algorithm in cooperative spectrumr
sensing based on energy detector [1, 2]. In particular, we train a machine-learning classifie
(i.e., K-nearest neighbor (KNN), support vector machine (SVM), Naive Bayes (NB), and Deci
sion tree (DT)) over a set containing energy test statistics of PU channel frames along with thei

i 7KH $XWKRU V  /LFHQVHH ,QWHFK2SHQ 7KLV FKDSWHU LV GLVWULEXWHG
|ntech0pen &RPPRQV $WWULEXWLRQ /LFHQVH KWWS FUHDWLYHFRPPRQV RUJ OLFHQVHV E
GLVWULEXWLRQ DQG UHSURGXFWLRQ LQ DQ\ PHGLXP {[(cOEIElKH RULILQD
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corresponding decisions about the presence or absence of PU transmission in the channi
Then, we use the trained classifier to predict the decisions for newly unseen PU channel frame
[3]. The second part focuses on estimating the near future of PU channel state. In the literature
there are many proposals that have studied the problem of estimating PU channel state ir
cognitive radio (CR) [4-6]. However, most of these studies focused on predicting PU channe
state in frequency domain by converting the received digital signals into frequency domain
using fast Fourier transform (FFT). This increases the system complexity due to the FF
computations process. In the second part of the chapter, we introduce a new time-domair
approach for PU channel state prediction based on time series prediction with some machine
learning prediction model. In particular, a time series is used to capture PU channel state
detection sequence (PU channel“idle” or “occupied’) in time domain. Then, prediction
models such as the hidden Markov model (HMM) and Markov switching model (MSM) are
used to predict the behavior of the time series that used capture PU channel state [7].

2. Machine-learning fusion-based cooperative spectrum sensing

In this part, we, first, define the system model for energy detection-based spectrum sensing
then, we present the method of calculating the thresholds for energy detector with different
fusion rules. Second, we formulate a machine-learning classification problem and present foul
machine-learning classifiers to solve it. Then, we evaluate the performance of these classifie
with simulation experiments.

2.1. Energy detection-based cooperative spectrum sensing

Figure 1 shows a block diagram of the system model used for energy detection cooperative
spectrum sensing based on machine-learning fusion rule. In this model, we consider a cooper
ative CR network with K cooperative nodes. Each node useN samples for energy detection

yi;(n) Y, = Y, % A, d;
ito M Frame LN ey NP The € (0,1)
j to K Nodes B 67y ()} ™ Decision

energy statistic at FC

\ A

[ Training data (Y,,d,) ... (Yy.dy) ]
|

v

New frame ML Predict d,
Energy test I Classifier — associated with
(Y.,d.=?) the new frame

Figure 1. Block diagram of machine-learning-based fusion rule spectrum sensing.
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while M frames are used for training the machine-learning (ML) classifier. The received signa
of iy, frame at the j,;, cooperative node yija] b1l n N,1i M,1 j Kisgivenhy

( WithD HO

@by 1
BTETPR g @b pwyanbHI )

where s;dn bis the PU signal which is assumed to follow Gaussian i.i.d random process (i.e.
zero mean and ¢? variance), w;; & Bis the noise which is also assumed to follow Gaussian i.i.0
random process (zero mean and 2 variance) becauses;& band w;;& Pare independent. Due
to the fact that all K nodes are sensing the same frame at a given time, the global decision abot
PU channel availability will be made at the fusion center only. Thus, the energy statistic for
the iy, frame at the j,;,, cooperative node Yj; can be represented by the energy test statistic of th
i, frame at the fusion center which is given by
1 X 2
Yi Ya— y;;nb 1 i M 2
n¥al

Y; is a random variable that has chi-square distribution probability density function (2 N deg-
rees of freedom for complex value and with N degrees of freedom for real value case). If we
assume that the channel remains unchanged during the observation interval and there are
enough number of samples observeddN 200P[8], then we can approximate Y; using Gaussiar
distribution as follows:

8
2 %2 %=N HO
YiYa 2 3)
8i° 1p ;.23 1p ; =N H1

ij

where 2, is the standard deviation of noise samplesw;an b, and ; is the observed signal-to-

noise ratio (SNR) of theiy, frame sensed at the j th cooperative node. Assuming that the noist

variance and the SNR at the node remain unchanged for allM frames, then ; %2 ; and

ij2Ya 2. Forachosen threshold ; for each frame in the probability of the false alarm, P as
given in [9] can be written as

P ,-1/4Pr Yi > joO

o}
1
]/4 ‘pz— e
j

i

0 j&p%‘z

%mQ — 1 (4)
J

and the probability of detection Py is given by
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Pd j YaPr Yi > jol
00 1
- N
Q@@ ! 1A EA (5)
12 1p i
where Q & bis the complementary distribution function of Gaussian distribution with zero
mean and unit variance. To obtain the optimal threshold  for K cooperative sensing nodes

data fusion rules are used. The calculation of the thresholds for single user and other fusior
rules is presented in subsections 2.1.1 and 2.1.2.

2.1.1. The detection threshold for single-user-based sensing

For single user, sensing the number of the cooperative nodes is one (i.e., K = 1,2 % 2,
j 74, From Eq. (4) and for a given probability of false alarm Py, the single-user threshold car
be written as
r I

5 !
singlel/4 NQ ! Pf bl u2 (6)

where Q 1§ Hs the inverse of the Qa Hunction, and the probability of the detection PgsingieCan
be written as

Por
1

single

I
___singe N
21p 2

I:)dsingle Ya Q (7)

2.1.2. The detection threshold for data fusion-based sensing

In a data fusion spectrum sensing scheme, K nodes cooperate in calculating the threshold the
is used to make the global sensing decision. There are many fusion rules used to calculate tr
global sensing decision threshold, which are divided into: hard fusion rules including AND,
OR, and majority rule and soft fusion rules including maximum ratio combining (MRC), equal
gain combining (EGC), and square law selection (SLS).

2.1.2.1. AND fusion rule

The AND rule decides that the signal is present if all users have detected the signal. For
system with K cooperative nodes with the same false alarm probability Ps cooperating using
AND rule, the fusion center threshold can be expressed as
r !
2.1 pit 2
AND ¥4 NQ Pk p1 (8)

And the detection probability Pganp can be written as
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N
Paanp - A1 = 9
ganD 74 Q Z1p . 5 (9)
2.1.2.2. OR fusion rule

The OR rule decides that a signal is present if any of the users detect a signal. The fusion cent
threshold for K cooperative nodes cooperate using OR fusion rule which can be expressed as

r |
2 1
or Ya NQ a1 PR p1l 2 (10)

And the detection probability Pgor is

!
Pior¥% 181 @ -—o%= 1 N (11)
U2 1b u 2
2.1.2.3. Maximum ratio combination (optimal MRC) fusion rule
In soft combination fusion K, cooperative nodes with noise variances 112, 2% ...; mk? and
instantaneous SNRS {1, 5. ..., wx} send their iy, frame energy test statistics Yj %2k

M

nval
after receiving these energy statistics as follows:

2
yijaw P ,1 j Kto the fusion center. The fusion center, weighs and adds them togethe

X
YS Ya Wi Yij 11 M (12]
jval

An assumption is made that SNRs and noise variances at the sensing node will remair
unchanged for all the frames during the training process (i.e., ;% ;, i>Ya ;?). For soft
optimal linear combination, we need to find the optimum weight vector w; that maximizes the
detection probability. For additive white Gaussian noise (AWGN) channels, the fusion thresh-
old for MRC fusion rule is written as

0 1

X 2 1 A 2
vre ¥4 @ w PAQ 1t P p w; P (13)
jval il

And the detection probability Pgurc IS given by
00 1

N
Pamrc ¥4 Q @@P < MRE 1A EA (14)
i 2
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where the weighting coefficient vector w jfw; w,...wg can be obtained by:

; T
w; ¥asign g'wg Wo

where

where
Ly ¥a2diag 1% 1D 12;...:: G lp o © =N

2 . 2 . 2 . 2 . . =2 T
g¥% 1 10 2 210 3 3 4 giee KoK

2.1.2.4. Equal gain combination (EGC) fusion rule

Equal weight linear combining employs straightforward averaging of the received soft decisi on
statistics. In the equal gain combination, the received energies are equally weighted and thel
added together. The calculation of the threshold gg¢ and the detection probability P 4ggc follow
Egs. (13) and (14), respectively; the weighting vector is w; Yawsy;...wx where wy ¥aw, ¥

Ws... Yawg Yal= K [10].

2.1.2.5. Square law selection (SLS) fusion rule

Here, the fusion center selects the node with the highest SNR ¢ ¥4 MAX  ;; 50 and

considers the noise variance g & associated with that node. Then the fusion center thresholc
is calculated as follows:

r I
1 2 & 2
sts ¥4 NQ 1 1 PX pl gs (15)

And the detection probability Pgs sis

Pasts¥%41 81 Q SLS
SLS2 1p SLS

(16)

2.2. Machine-learning classification problem formulation

The iy, frame energy test statistic (Y; for hard fusion or Ys for soft fusion rule) given in Eq. (2)
or (12) is compared to the sensing threshold to calculate the decision ¢ associated with iy,
frame in the training data set as follows:
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1 Ye .
di Ya 1i M a7)
1 Ye<
where singls andy OR; MRC; EGGC sts,Yr f Yi Ysg, Mis the number of frames in the

training setand “ 1" represents the absence of primary user on the channel, and 1” represents
the presence of the primary user transmission on the channel. The output of Eq. (17) gives a set (
pairs dY;;dRival1,2...M,d; 0 1;1pbthat represent frame energy test statistics and thei
corresponding decisions. If we want to detect the decision (i.e., the class label) ¢ associated with
a new frame energy test statisticYy, we can use one of the following machine-learning classifiers
to solve this classification problem.

2.2.1. K-nearest neighbors (KNN) classifier

For K-nearest neighbors classifieflk nearest points to Y, are used to predict the class label ¢
which corresponds to Yy [11]. ForK %1 , the Euclidian distanceds; between Y, and the
training data points can be computed as

q
ded b ¥ 8Yy YiBY%jYy Yi i%12.M (18)

and, the new Y is classified with the label dy = di, , where di, is the point that achieves the
minimum Euclidian distance between dgand Yy:

2.2.2. Naive Bayes classifier

Under the assumption that d, ¥4 1 and d, %1 are independent, the prior probabilities for
d ¥ 1 and d %1 given training example dY;;diRi ¥ 1,2,...,M can be calculated, and the
class-conditional densities (likelihood probabilities) can also be estimated from the se
1;Y2;...; Y Y1, Y2, ...; Y in which the new Y 4 is expected to fall in. And, the probability
that the new Y, to be a member of eitherd; ¥4 1 or d %1 class is calculated using Naive
Bayes assumption and Bayes rule [12] as follows:

Y

clas® Y b YargmaxPrdd; b jli/al Pr Yj=d (19)
dj

where the prior probabilities are given to

number of Ywith class labél’
total number of class labels

Prod ¥a 1P/

number of Ywith a class labtd!
total number of class labels

Pro di YalbBY

Whereas the class-conditional densities’ likelihood probabilities ” can be estimated using Gauss
ian density function by:
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o b
Pr Y;=d; 1/4—p—e > 7, Yi<Y<Yyg >0
where j» j are mean and variance of the set¥1;Y5;...; Yk : EQ. (19) means that Naive Baye

classifier will label the new Y, with the class label d; that achieves the highest posteriol
probability.

2.2.3. Support vector machine (SVM) classifier

For a given training set of pairs 0Y;;diRi¥1,2...M , whereY; R, andd; &1, 1b, the
minimum weight w and a constant b that maximize the margin between the positive and
negative class (i.e.w Yip b¥% 1) with respect to the hyper-plane equation w Y; p b%0 car
be estimated using support vector machine classifier by performing the following optimization
[13].

I

2
min % . wherek i@ Vaw" w (20)
w,

subjectto diow Y;p bbp 1 i ¥%1,2,...,M:

The solution of this quadratic optimizatio n problem can be expressed using Lagrangiat
function as

2 W
kwk &awYip bb 1p; 0 @1

Lov; by P4 ,
ival

where Y10 1; »;...; m Bis the Lagrangian multipliers. IF we let Ldw;b; P/ 0, we can ge
w¥% . idYiand U, id¥0,and by substituting them into Eq. (21), the dual optimi-
zation problem that describes the hyper-plane can be written as
0 1
D Ul X
min @: didj Yi Yj i jA, j 0 (22:
iV Vi ival

P
From expression (22), we can assess and compute w using w % i'\f'/d i di Yi. Then by

choosm% i> 0, from the vector of Y40 1; 2;..., mP and calculating b from
b =d Y. id Y'Y, , we classify the new instance Y, using the following classification
function
!
hU

clas$ Y b ¥sign jdidYi YxHo b (23)
ival
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which means that the classification of new Y, can be expressed as dot product ofY, and the
support vectors.

2.2.4. Decision tree (DT) classifier

For the training of a set of pairs of sensing decisiondY;;d Ri % 1,2,....,M ,di & 1;1bthe
decision tree classifier creates a binary tree based on either impurity or node error splitting rule
in order to split the training set into separate subset. Then, it repeats the splitting rule recur-
sively for each subset until the leaf of the subset becomes pure. After that, it minimizes the
error in each leaf by taking the majority vote of the training set in that leaf [14]. For classifying
a new example Yy, DT classifier selects the leaf where the newy falls in and classifies the new
Y« with the class label that occurs most frequently among that leaf.

2.3. Performance discussion

Figure 2 shows the receiver operating characteristic (ROC) curves for single-user soft and har
fusion rules under Additive White Gaussian Noise (AWGN) channel. In order to generate this
figure, we assume a cognitive radio system with 7 cooperative nodes (i.e., K = 7) operate ¢

SNR , = 22dB. The local node decisions are made after observing1000 samples (i.e., ener
1
09 '."_[____
I
08 d- -
H |
30_7____I___J.___ AT, - S——
| [ I
§ | [ I
© 06 ——d———4 ——— _——— - —
© | [ I
- [ [ I
B B8 — i e e e s
3 [ | I
= | | I
~ 04 G S S e
b [ [ t
i | [ I I I
g 03 Y e g vy prerEen e e
& y ' ' ' —&— 8ingle user
02 o ————:————:———:———— AND fusion rule }
| | | —*— OR fusion rule
01 _——d1___1___|—*—8LS rule |
| | | —#— Optimal MRC rule
: : : —%— EGC rule

03 04 0.3 0.6 0.7 08 09 1
Probability of false alarm

Figure 2. ROC curves for the soft and hard fusion rules under the case of AWGN receiver noise, 2 %41, = 22dB,K=7
users and energy detection over N=1000 samples.
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detection samples N = 100). For soft fusion rules, the SNRs for the nodes are equal tc

{ 243, 218, 206, 216, 204, 222, 213} and the noise variances j*> are
f1;1;1;1;1;1; 1g: We use a false alarm probability P; varied from 0 to 1 increasing by 0.025
The simulation results show that soft EGC and optimal MRC fusion rules perform better than
other soft and hard fusion rules even though that soft EGC fusion rule does not need any
channel state information from the nodes.

Figure 3 shows the ROC curve depicting the performance of SVM classifier in classifying 100(
new frames after training it over a set containing M = 1000 frames. The thresholds used fo
training SVM classifier (i.e., single-user threshold, AND, OR, MRC, SLS, and EGC fusion rule
threshold) are obtained numerically by considering the cognitive system used to generate
Figure 2; however, here, we set the false alarm probability to P; ¥4 0:1 .

From Figure 3 and Table 1, we can notice that when training SVM classifier with anyone of the
following thresholds: single user, OR, MRC, SLS, or EGC, it can detect 100% positive classe
We can also notice that training with EGC threshold can provide 90% precession in classifying
the positive classes with 10% harmful interference, whereas training SVM with AND threshold

can precisely classify the positive classes by 97.8%able 1 shows the classification accuracy o

1 ] T 1 L 1 1 T T 1 I
09| —
08 —
o 0.7+~ -
4
g
06 =
)
5
pt
+ 05¢ -
w
(¢}
Bo4 i
:
B 03 =
—— SVM trained with single user threthold
02 SVM trained with AND threthold -
SVM trained with OR threthold
0.1 SVM trained with MRC threthold |
) SVM trained with SLC threthold
—— 8VM trianed with EGC threthold
0 1 1 1 T

0 01 0.2 03 04 05 0.6 07 08 09 1
False positive rate

Figure 3. ROC curves shows the performance of SVM classifier in predicting the decisions for 1000 new frames afte
training it over a set containing1000 frames when single user, AND, OR, MRC, SLS, and EGC thresholds are used fc
training process.
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Threshold Single user (%) AND rule (%) OR rule (%) MRC rule (%) SLS rule (%) EGC rule (%)

SVM

Accuracy 96:1 938:3 98:1 97:6 93:9 98.0
Precession 7.7 100 53.7 89.4 74.4 90.1
Recall 100 97.8 100 100 100 100

Table 1. The accuracy, precession and the recall of SVM classifier.

SVM classifier (i.e., the proportion of all true classifications over all testing examples) and the
precession of classification (i.e., proportion of true positive classes over all positive classes) ¢
well as the recall of classification (i.e., the effectiveness of the classifier in identifying positive
classes).

Figure 4 shows ROC curves showing the comparison of four machine-learning classifiers: K-
nearest neighbor (KNN), support vector machine (SVM), Naive Bayes and Decision tree wher
used to classify 1000 frames after training them over a set containing 1000 frames with single
user threshold (Note: the same system used to generate the simulation ofigure 3. is considerec

Figure 4. ROC curves shows a comparison of four machine learning classifiers: KNN, SVM, naive Bayes, and decisio
tree in classifying 1000 frames after training them over a set with 1000 frames using single user scheme threshold.
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for computing the single-user threshold). We can notice from both Figure 4. and Table 2 that
KNN and decision tree classifier perform better than Naive Bayes and SVM classifier in terms ol
the accuracy of classifying the new frames.

Table 3 shows the accuracy, precession, and the recall for decision tree classifier when used -
classify 3000 frames after training it over a set containing 1000 frames for the same cognitiv
system used to generateFigure 3. The single-user threshold is used for training the classifier.
The simulation was run with different number of samples for energy detection process. It is
clear from the table that decision tree can classify all of the 3000 frames correctly or achiev
100% detection rate using only 200 samples for the energy detection process. And, due to th
fact that the sensing time is proportional to the number of samples taken by energy detector, &
less number of samples used for energy detection leads to less sensing time. Thus, when w
use machine-learning-based fusion, such as decision tree or KNN, we can reduce the sensir
time from 200 to 40 s for 5 MHz bandwidth channel as an example, while we still achieve
100% detection rate of the spectrum hole.

Classifier Accuracy (%) Precession (%) Recall (%)
KNN 100 100 100
Decision Tree 100 100 100
Naive Bayes 98.9 100 91.2
SVM 97.6 83.9 100

Table 2. The accuracy, precession and recall of KNN, SVM, NB, and DT classifiers used in classifying 1000 new frame
after being trained with 1000 frames.

Number of samples Accuracy (%) Precession (%) Recall (%)
200 100 100 100
400 100 100 100
600 100 100 100
800 100 100 100
1000 100 100 100

Table 3. The accuracy, precession, and recall for decision tree classifier used in classifying 3000 frames for different
number of samples.

3. Prediction of PU channel state based on hidden Markov and Markov
switching model

In this part, the system model for forecasting the near future of PU channel state is divided into
three models: (1) the model detecting the PU channel state (i.e., PU signal present or PU signe
which follows the conventional single-user energy detection (i.e., fusion techniques mentioned
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in Section 2.1 can also be considered here); (2) the model that generates a time series to capti
PU channel state based on the detection sequence; and (3) the model for predicting tr
generated time series used to capture PU channel state based on hidden Markov mode
(HMM) and Markov switching model (MSM). The block diagram in  Figure 5. illustrates these
three models.

The PU channel state detection model can be written using Eq. (4); by giving probability of
false alarm P, the detection threshold for single-user energy detector can be written as:
r !
Ya %Q 5P bppl 2 (24)

where Q '& bis the inverse of the Q & Hunction.

And the decision of the sensing (i.e., PU detection gquence) over the time can be written as follows

( 00 PUabsent Y <
D ¥4 1t T (25)
'} PUpresent Y

3.1. Time series generation model

Given PU channel state detection sequence over the time (i.e., PU absent, PU present), if v
denote the period that the PU is inactive as “idle state,” and the period that PU is active as
“occupied state; our goal now is to predict when the detection sequence D; will change from
one state to another (i.e.,”idle” to “occupied “or vice versa) before that happens so that the
secondary user can avoid interfering with primary user transmission. For this reason, we
generate a time series zto map each state of the detection sequence D(i.e.,“PU present’
and “PU absent') into another observation space using two different random variable distri-
butions for each state (i.e., z f vi;vso...vig represents PU absent or idle state ani
z f vipa...:vvg represents PU occupied or present), the time series zcan be written as

fvyvo..ovig Ye <

1t T (26)
fVip1;iivmg Yi

Now, supposing that we have given observations value O Y4f O;05;0y;...01g , O
f vi1;v2...vpyg and a PU channel state at time step tX; s,i%1,2....K, s f0;Q (i.e., O for

Figure 5. Block diagram of PU channel state prediction model.
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PU idle and 1 PU occupied state), and we want to estimate the channel state at one time ste
ahead of the current state X, 1. We can solve this problem using hidden Markov model Viterbi
algorithm [15].

3.2. Primary users channel state estimation based on hidden Markov model

The generic HMM model can be illustrated by Figure 6.—in this figure, X ¥af Xg;X;;...XQ
represents the hidden state sequence, where X fs;;s;...;s@, K represents the number of
hidden states or Markov chain and O ¥ f Og; Oy;...; O1g represents the observation sequenc
where O; f vi;Vy;...;vMg and M is the number of the observations in the observation space
A and B represent the transition probabilities matrix and the emission probabilities matrix,
respectively, while  denotes the initial state probability vector. HMM can be defined by

Y40 ;A;BHi.e., the initial state probabilities, the transition probabilities, and emission prob-
abilities) [15].

Initial state probabilities for HMM can be written as
Y40 1y 2y jeee- Kp

Ya PO Yas b i%1,2,...,K (27)

For a HMM model with two hidden statesi1 %2,

148 1 ob

And the transition probabilities can be written as,
A Y g K K
aj VaP Xp1Yasi Xe Yas  ,1,j%1,...0K (28)
where a; is the probability that next state equal s; when current state is equal to 5. For HMM
model with two states, the matrix A can be written as

dpoo Ao1
djp a1l

A Y

The emission probabilities matrix for HMM model is written as
BYa bim

bjdm b VP3O, YaVijX; YasP bidO R j¥1.K ,m¥l, ..M (29)

B and by represent the probability that current observation is v, when current state is 5. For
example, in an HMM model with M %46 and K ¥4 2, B is written as
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Figure 6. Hidden Markov model.

!
b11 b12 b13 b14 b15 b16

B Y,
bar baobos by, bysbyg

Now, for the problem we describe in subsection (3.1), if we assume that HMM parameters
Y% 8 ;A;BPand the observations value O%f Oj; 0, O¢;...O1g are given. If we assume thai
the maximum probability of state sequence t that end at state i to be equal to (d bwhere

@b Y max fP8Xy, .., %X %s;04,...,04 B (30)

xll ---axt 1

And we let @ Po be a vector that stores the arguments that maximize Eq. (30), we can writt
Viterbi algorithm to solve the problem mentioned in subsection (3.1) as follows:

1) step 1initializes (dbkand aP
td b Y4 ibjd01 b

APYo, i%1,..,K (31)

2) step 2 iterates to update (dkand b

t(’jt>1/41m_a>r<< t 10 Ry bdO P ,t%2,...,T, j¥%1,...,K (32)
|
G b Yaargmax ¢ dky t¥%2,..,T,j%1,..,K (33)
1i K

3) step 3 terminates the update and calculates the likelihood probability P and the estimated
state g attime T as

P ¥ max %G b (34)
I
g; Y argmax %rd b (35)
1i K

In the above case, HMM parameters %0 ;A;Blkare unknown and need to be estimated. We
estimate these parameters statistically using Baum-Welch algorithm [16].
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3.2.1. Hidden Markov model parameters estimation using Baum-Welch algorithm

If we assume that we have given some training observations with length L fO 1; 0, Oy; ...Og
and want to approximate HMM parameters %9 ;A;Bbfrom them, we can use maximum
likelihood estimation. In order to do that, we define ,d Fo be the probability of being in state
s attimet, givent O¢,t%1,2...L. ,dRs written as

AP YPX Yasj Oq;...;0.; b (36)

We also define d;j o be the probability of being in state s; at time t and transiting to state s;
attimetp 1, given O¢,t¥1,2...L. 4;jks written as

QP YP X Yasi; Xip1 Y45 O O1;...;0O; (37,

Given ,dPband :4;jPRthe anticipated number of transitions from state s; during the path is
written as

X1
E 4abP% &b (38)
tval

and the anticipated number of transitions from state s; to state § during the path is written as

X1
E5 &;jbb%s &b (39)
jval

Given EJ (4;jHPand E & P, we can extract the model parameters %9 ;A;Bbfrom the
training sequence as given in [16] using the step listed below

1-fori%1,2,3...K, let b; Yaexpected frequency in state sattime & % 1b
i Ya b (40
2-fori¥1,2,3...Kandj % 1,2, 3...K, compute

Expected number of transitions fromstate s to state §

b V- —
[ Expected number of transitions from state s

p1

& @t o 000

E t éjp 1/4ng (4L
t Aap

tYal

YVa

3-fori¥1,2,3...Kandj % 1,2,3...K, compute
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B.am b 1/Expected number of times in state § and observing vy,
| i Expected number of times in state §

P

L
tval ta p

R (42)
tval ta P

The estimation algorithm can be summarized in the following steps:
1. Get your observations O; O,...0,
2. Setaguess of yourfirst estimate dlbhk %21

Update k Yak p 1

3. Compute & bobasedon O, O,,...0 and

db@&jp 1 tL 1iK 1jK

4. Compute E ,dP and ES .d; ] Horom Egs. (38) and (39)
5. Compute according to 5 the new estimate of g, bk P ;, and call them  (k + 1)
6. Goto 3if not converged.

The prediction for a one-step ahead PU channel state can be done based on the traine
parameters { ,A, B } with the help of Egs. (31), (34), and (35) by setting T4 1:

3.3. Primary users channel state estimation based on Markov switching model

An alternative way to estimate PU channel state is to use Markov switching model (MSM). For
the time series in Eq. (26), we assume that gobeys two different Gaussian distributions N

01 z0° OFN ,1, 212 based on the sensed PU channel statéPU channel idle” or “PU
occupied.” We can rewrite Eq. (26) as follows:
(
207 ZO2 Yi <
Z 1tT (43)
. 2 Y
710 z1 t

It is obvious that Eq. (43) represents a two-state Gaussian regime switching time series whicl
can be modeled using MSM [17]. In order to estimate the switching time of one state ahead o
the current state for this time series, we need to derive MSM regression model for the time
series and estimate its parameters.

3.3.1. Derivation of Markov switching model for Gaussian regime switching time series

A simple Markov switching regression model to describe the two-state Gaussian regime
switching time series is given in Eqg. (43). This model can be written by following Ref [17] as
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2% ba a 0 §° (44)

where ¢ is an array of predetermined variables measured at time t, which may include the
lagged values of z, & is the white noise process, $%f0; Iy is a hidden Markov chain which
has a mean and standard deviation over the time equal to % ,d sH ;s and

st¥a o0l s H 1S, respectively (the state variable s follows first order Markov chain
(i.e., two-state Markov chain as in [18])). Given the past history of s, the probability of s;

taking a certain value depends only on s; 3, which takes the following Markov property:
POs Yajj st 1 Yaib YaPy (45)
where P;d;j ¥ 0; 1 denotes the transition probabilities of s; ¥4j, given that s; 1 ¥%i. Clearly,

the transition probabilities satisfy Pig p Pj1 ¥ 1. We can gather the transition probabilities P;
into a transition matrix as follows:

Pas %4 0j§ 1 % 0P Pds ¥%0js 1 ¥a1p

PYa i i
PO Yaljs 1 ¥%0p POSYalj§ 1% 1P
Poo P
v, oo Po1 (46)
Pio Pu

The transition matrix P is used to govern the behavior of the state variable s , and it holds only
two parameters (Pop and P11 ). Assuming that we do not observe s; directly, we only deduce its
operation from the observed behavior of z;. The parameters that need to be estimated to fully
describe the probability law governing z  are the variance of the Gaussian innovation o, 1,
the expectation of the dependent variable ,, ,, and the two-state transition probabilities P oo
and Pq;.

3.3.2. Markov switching model parameters estimation via maximum likelihood estimation

There are many ways to estimate the parameters for the Markov switching model. Among
these ways are Quasi-maximum likelihood estimation (QMLE) and Gibbs sampling. In this
section, we focus on maximum likelihood estimation (MLE).

If we denote | ;| ={z 1,2, Zyp1...21} to be a vector of the training data until time t 1 and
denote ={ 0, 1, o 10Poo, P11} to be the vector of MSM parameters, then | ={z 1, z, ...,
z, } to a vector of the available information with the length L sample (see Figure 7.). In order to
evaluate the likelihood of the state variable s; based on the current trend of z, we need to
assess its conditional expectations s¥4i, d ¥20; 1Fbased on and . These conditional expec
tations include prediction probabilities P & ¥4i , ;; , which are based on the information
prior to time t, the filtering probabilities P & %41 ; ) which are based on the past and curren
information, and finally the smoothing probabilities P & %i | ;  which are based on the full-
sample information L. After getting these probabilities, we can obtain the log-likelihood func tion
as a byproduct, and then we can compute the maximum likelihood estimates.



ODFKLQH /HDUQLQJ $SSURDFKHV IRU 6SHFWUXP ODQDJHPHQW LGQ
KWWS G[ GRL RUJ LQWHFKRSHQ

Figure 7. Markov switching model.

Normally, the density of z ; conditional on | ; and s Y4i, @ % 0; 1Bs written as

1 azt 51'5
Fozy s %i; | 4 1/41927e 2 5 47
St

where F represent the probability density function. Given the prediction probabilities P &s; Yai
. 1» - the density of z; conditional on , ; can be obtained from
Fozy 1 Y
Ya P& %0 5 F zjss%0 |

bP& ¥l ,; FOz %1 | (48)

Fori % 0; 1, the filtering probabilities of s are given by:

Pas[ Yai t
v, Pds Yai 3 FOzy s¥%i | 4 (49
Foz. , .
The prediction probabilities are:
P&[pl Yai t
Ya PO Ya0,8p1 %1 7 PP s¥%1ispr¥%ij
YaPoi Pds Y40 |, p PyP&& Yl (50)

where Po; ¥4 P 88y 1 Yaijsy Ya0band Py ¥4 P 851 Y4ijst ¥a 1Pare the transition probabilities. By
setting the initial values as given in [19] assuming the Markov chain is presumed to be ergodic:
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1 Py

PdsoYai o Yam— 2
Fo¥l o M5, P;

we can iterate the Eqgs. (49) and (50) to obtain the filtering probabilities P& Y41 ;  and the

conditional densities F  zjs %0 , ,; fort%1,2,.....T. Then we can compute the loga

rithmic likelihood function using

XT X
logL b v logdF Z; S Yai; , o P S%ij (51)
tval ival

where L P is the maximized value of the likelihood function. The model estimation can

finally be obtained by finding the set of parameters b that maximize the Eq. (51) using
numerical-search algorithm. The estimated filtering and prediction probabilities can then be

easily calculated by plugging b into the equation formulae of these probabilities. We adopt the
approximation in Ref [20] for computing the smoothing probabilities P & Y4i | ;

P& Yai Sipa1 Yaj; Pds Yai Sp1y o

P&[J/‘liistbl t 1;

Yy -
P&tbl%J t;
L, PoiP s¥ij
P&tbl%J t

And, fori;j ¥ 0; 1, smoothing probabilities is expressed as:
Pds Yai
1/4P63tp11/40 Ly P& Y2l Stp11/40; %

bP&p1¥al |; P& Yi sp1¥l, |;
b L b L

PoP&sp1 %0 |; pF’ilPéstpl%l ¥

VP& Yai |;
P& Py, Y40 Posp, Vel

(52]

Using P § %ij ; as theinitial value, we can iterate the equations regressively for filter-
ing and prediction probabilities along with the equation above to get the smoothing probabil-
itiesfort vaL 1, ,kp 1.

3.4. Results and discussions

Figure 8 shows the training detection sequence which we generate as a training observatiol
using randomly distributed PU channel state “idle and occupied” over T = 250 ms simulation
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Figure 8. The training detection sequence for HMM and MSM.

time. We use this training observations to train Baum-Welch algorithnin order to estimate
HMM model parameters %0 ; A;BRassuming that the first estimate of dlBs:

1¥adl 0P

0:85 Q15

A1 Ya
0:10 Q@90

017 Q16 @17 016 Q17 G17 017

By Ya
0:60 008 G0O8 008 008 G088 008

Figure 9a shows the performance of HMM algorithm in estimating the PU channel states (i.e., PU
idle or PU occupied) of the time series that capture the detection sequence for a sing-usel
cognitive radio network. Figure 9a contains three plots; the top plot shows the randomly distrib-

uted PU channel states over time T% 500 ms . The middle plot shows the generated time serie:
following the distribution z ; f1;2;3) for idle states and z; f4;5; 6 for occupied states (note
we can construct the observation space from these two distributions asQ f1;2;3;4;5; 6,
t ¥4 1,2...500 ms). The bottom plot shows performance of HMM algorithm in forecasting the

time series generated to capture PU detection sequence.

Figure 9b shows the performance of MSM algorithm in predicting the switching process
between the two PU channel states for the same PU detection sequence given ifrigure 9a
T %500 ms . The top graph in Figure 9b shows the generated time series with the following
distribution z d0:1; 0:5Hor idle states and z;  8:01; 0:2 Ffor occupied states and the bottom
graph shows the prediction performance using MSM. As it is clear from the figure, the
prediction performance is smoother than HMM approach.
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Figure 9. (a) Shows the performance of HMM algorithm in predicting the generated time series to capture PU channel
state detection sequence. (b) Shows the performance of MSM algorithm in predicting the generated time series to captur
the same PU detection sequence irFigure 8.

4. Conclusions

In this chapter, we have presented a per-frame decision-based cooperative spectrum sensir
based on machine-learning classifier-based fusion approach. The simulation and numerica
results have shown that the machine-learning classifier-based fusion algorithm performs same
as conventional fusion rules in terms of sensing accuracy with less sensing time, overheads
and extra operations that limit achievable cooperative gain among cognitive radio users. In
addition, we have also studied the problem of primary user channel state prediction in cogni-
tive radio network and introduced Markov model and Markov Switching Model to solve this
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problem. We finally showed by the means of simulation that both hidden Markov model and
Markov switching model perform very well in predicting the time series that capture the
actual primary user channel state.
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