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1. Introduction  

Humans have intrinsic limitations in manual positioning accuracy due to small involuntary 
movements that are inherent in normal hand motion. Among the several types of erroneous 
hand movements, physiological tremor is well studied and documented. Physiological 
tremor is roughly sinusoidal, in the frequency band of 8 – 12 Hz, and measures about 50 µm 
rms or more in each principal direction. Physiological hand tremor degrades the quality of 
many micromanipulation tasks and is intolerable in certain critical applications such as 
microsurgery and cell manipulation. In the human hand, humans are already in possession 
of a high dexterity manipulator with an unbeatable user interface. Hence, instead of 
replacing the human hand with a robotic manipulator, Riviere et al. [Riviere et al., 2003] 
proposed a completely handheld ophthalmic microsurgical instrument, named Micron, that 
senses its own movement, distinguishes between desired and undesired motion, and 
deflects its tip to perform active compensation of the undesired component (Fig. 1). 

Figure 1. Overview of Micron 
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Source: Human-Robot Interaction, Book edited by Nilanjan Sarkar,
ISBN 978-3-902613-13-4, pp.522, September 2007, Itech Education and Publishing, Vienna, Austria
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This active compensation approach presents several technical challenges in the control of 
the robotic mechanism that manipulates the intraocular shaft. The accuracy required can go 
down to a few microns for applications like microsurgery. To achieve that, the controller 
must be able to perform tracking control of the actuator to sub micron level. Physiological 
tremor is typically 8 – 12 Hz. Controlling the actuator to accurately track a motion of about 
10 Hz is beyond the system bandwidth of many actuators. In order to actively compensate 
the tremor motion, real-time issue is another concern. Minimal phase difference is permitted 
as phase difference will result in larger tracking error. Most controllers, which introduce 
phase difference, are therefore not recommended. Thus, an open loop feedforward 
controller is proposed. To make things even more challenging, tremor is not rate-
independent. The tremor frequency of a person modulates with type of motion and time. 
Due to the high velocity and good resolution required, actuators involving smart materials 
like piezoelectric are proposed. However, their hysteretic behavior makes control difficult. 
In this chapter, the authors used the Prandtl-Ishlinskii (PI) hysteresis model to model the 
hysteretic behavior. The PI hysteresis model is a simple model. Its inverse can be obtained 
analytically, shortening the computational time and making it ideal for real-time 
application. Since the PI operator inherits the symmetry property of the backlash operator, a 
saturation operator is used to make it not symmetrical. The inverse model, also of the PI 
type, is used as the feedforward controller. A slight modification is also proposed to account 
for the one-sided characteristic of the actuator.  
To accommodate human tremor’s modulating frequency behavior, a rate-dependent 
hysteresis model is proposed. As the velocity or load increases, the slope of the hysteretic 
curve at the turning point tends to 0 and then negative, creating a singularity problem. This 
chapter also shows how the problem can be overcome by mapping the hysteresis through a 
transformation onto a singularity-free domain where the inversion can be obtained. 

2. Piezoelectric Actuators 

Figure 2. A Crystal Unit Cell of PZT Ceramics 

Piezoelectric ceramic has been of increasing interest due to the developments in precision 
engineering and micro-positioning applications, especially in situations wherein precision, 
high frequency, and compactness are needed. Piezoelectric ceramic is also playing an 
increasing role in the medical industry as it is compatible with sensitive medical devices like 
MRI. Choi et al. [Choi et al., 2005] used piezoelectric actuators for their microsurgical 
instrument. One common example of piezoelectric ceramic is PZT ceramic. PZT is a solid 
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solution of PbZrO3 and PbTiO3 and the general formula is Pb(ZryTi1-y)O3. PZT has the 
pervoskite ABO3 structure (Fig. 2).  
When a voltage is applied across the ceramic, the potential difference causes the atom at the 
centre (Zr or Ti) to displace (Fig. 3). A pole is thus induced and the net polarization in the 
PZT ceramic changes. This results in the deformation of the material. An opposite 
phenomenon occurs when the ceramic is loaded with a force. A change in polarization 
occurs and a voltage potential difference is induced. This explains why piezoelectric 
materials are commonly used both as actuators and sensors. 

Figure 3. Polarization 

A piezoelectric ceramic is an excellent choice because of its ability to output a large force, 
large operating bandwidth and fast response time. Unfortunately, effective employment of 
piezoelectric actuators in micro-scale dynamic trajectory-tracking applications is limited by 
two factors: (1) the intrinsic hysteretic behavior of piezoelectric material, and (2) structural 
vibration. The maximum hysteretic error is typically about 15%. To make matters worse, the 
hysteresis path changes according to rate (Fig. 4), as time is needed for the atoms to move 
and switching of the polarization to adjust and settle down. Landauer et al. [Landauer et al.,
1956] discussed about the dependence of the polarization, in barium titanate, on the rate at 
which the field is cycled. 
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Figure 4. Hysteresis Path at different frequency 

While research on rate-independent control of piezoelectric actuators has been extensive, 
there have been few attempts and little success at controlling the actuator at varying 
frequency. Hysteresis modeling or compensation can be generally classified into 5 
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categories: (1) Linear control with feedforward inverse hysteresis model; (2) Microscopic 
theories; (3) Electric Charge Control; (4) Phase Control; and (5) Closed-loop displacement 
control. The more recent methods comprise a hybrid of the methods. 
Category (1) relates the underlying understanding of the material at microscopic level with 
respect to displacement. Landauer et al., 1956 discussed the dependence of the polarization, 
in barium titanate, on the rate at which the field is cycled. Category (2) makes use of the 
knowledge that the hysteresis of the actuator’s displacement to the applied voltage is about 
15% while the displacement to induced charge is 2%. This motivated Furutani et al.
[Furutani et al., 1998] to combine induced charge feedback with inverse transfer function 
compensation. Category (3) includes Cruz-Hernandez & Hayward [Cruz-Hernandez & 
Hayward, 1998; 2001] proposing the idea of considering phase as a control approach to 
design a compensator to reduce hysteresis. Category (4) consists of many different 
approaches. Some proposed incorporating inverse hysteresis model with a controller while 
others proposed advance controllers like neural network [Hwang et al. 2003], fuzzy logic 
[Stepanenko et al. 1998], sliding mode [Abidi et al. 2004] and H  control [Chen et al. 1999]. 
Category (5), a phenomenological approach, is about obtaining a mathematical 
representation of the hysteresis motion through observation. Phenomenological approach is 
more commonly used because the underlying physics of the relationship of the smart 
materials like piezo-actuator’s hysteresis path with rate and load is not well understood. 
Thus, there are many different attempts to derive different mathematical models that best 
describe the complex hysteretic motion. The inverse model is then used as a feedforward 
controller to linearize the hysteresis response as shown in Fig. 5. 
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Figure 5. Linearization of Hysteresis Model using Inverse Feedforward Controller 

A number of hysteresis mathematical models have been proposed over the years. Hu et al.
[Hu et al., 2002] and Hughes et al. [Hughes et al., 1995] proposed using the Preisach model 
while Goldfarb et al. [Goldfarb et al., 1996; 1997] and Choi et al. [Choi et al., 1997] used 
Maxwell’s model. Tao [Tao, 1995] used the hysteron model. The more recent papers are a 
variation from the classical models to avoid certain conditions. 
Another model is the Prandtl-Ishlinskii model. [Kuhnen & Janocha, 2001; 2002] and [Janocha 
& Kuhnen, 2000] demonstrated that the classical Prandtl-Ishlinskii operator is less complex 
and its inverse can be computed analytically. Thus, it is more suitable for real-time 
applications because minimal mathematical computation time is required. Unfortunately, to 
use the model, the operating frequency must not be too high as the hysteresis non-linearity 
becomes more severe. Like most models, the classical Prandtl-Ishlinskii model is unable to 
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function as a feedforward controller when the largest displacement does not occur at the 
highest input signal (Fig. 6) as singularity occurs in the inverse.  

Figure 6. Ill-Conditioned Hysteresis 

In this chapter, there are two main contributions: (1) In order to accommodate human 
tremor’s modulating frequency behaviour, a rate-dependent feedforward controller is 
proposed; and (2) a solution to the inverse of the ill-conditioned hysteresis because as the 
velocity or load increases, the slope of the hysteretic curve at the turning point tends to 0 
and then negative, creating a singularity problem. This is achieved by mapping the 
hysteresis through a transformation onto a singularity-free domain where the inversion can 
be obtained. 

3. Hysteresis Modeling 

3.1 Prandtl-Ishlinskii (PI) Operator 

The elementary operator in the PI hysteresis model is a rate-independent backlash operator. 
It is commonly used in the modeling of backlash between gears with one degree of freedom. 
A backlash operator is defined by  

[ ] )(,)( 0 tyxHty r= { }{ })(,)(min,)(max Ttyrtxrtx −+−=  (1) 

where x is the control input, y is the actuator response, r is the control input threshold value 
or the magnitude of the backlash, and T is the sampling period. The initial condition of (1) is 
normally initialised as 

{ }{ }),)0(min,)0(max)0( 0yrxrxy +−=  (2) 

where y0 ∈ ℜ, and is usually but not necessarily initialized to 0. Multiplying the backlash 
operator Hr by a weight value wh, the generalized backlash operator is  

[ ] )(,)( 0 tyxHwty rh= . (3) 
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The weight wh defines the gain of the backlash operator (wh = y/x, hence wh =1 represents a 

45° slope) and may be viewed as the gear ratio in an analogy of mechanical play between 
gears, as shown in Fig.7. 

Figure 7. The rate-independent generalized backlash operator is characterized by the 
threshold or backlash magnitude, r, and the weight or backlash operator gain, wh

Complex hysteretic nonlinearity can be modeled by a linearly weighted superposition of 
many backlash operators with different threshold and weight values,  

[ ] )(,)( 0 tyxHwty r
T
h= , (4) 

with weight vector T
hw  = [wh0 … whn] and [ ] )(, 0 tyxH r = [Hr0[x, y00](t) … Hrn[x, y0n](t)]T with 

the threshold vector r = [r0 … rn]T where 0 = r0 < … < rn, and the initial state vector 0y = [y00

… y0n]T. The control input threshold values r  are usually, but not necessarily, chosen to be 

equal intervals. If the hysteretic actuator starts in its de-energized state, then .0 10 ×= ny

Equation (4) is the PI hysteresis operator in its threshold discrete form. The hysteresis model 
formed by the PI operator is characterized by the initial loading curve (Fig. 8). It is a special 
branch traversed by equation (4) when driven by a monotonically increasing control input 
with its state initialized to zero (i.e. y(0) = 0). The initial loading curve is defined by the 

weight values hw  and threshold values r ,

−=
=

i

j
jhj rrwr

0

),()(ϕ ri ≤ r < ri+1, i = 0, …, n.   (5) 

The slope of the piecewise linear curve at interval i is defined by Whi, the sum of the weights 
up to i,

==
=

i

j
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d
W

0

)(ϕ . (6) 

The subsequent trajectory of the PI operator beyond the initial loading curve with non-
negative control input is shown as the dotted loop in Fig. 8. The hysteresis loop formed by 
the PI operator does not return to zero with the control input. This behaviour of the PI 
operator closely resembles the hysteresis of a piezoelectric actuator. 
The backlash operators cause each of the piecewise linear segments to have a threshold 
width of 2r beyond the initial loading curve. As such, there is no need to define any 
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backlash operators beyond the midpoint of the control input range, i.e. rn ≤ ½max{control 
input} [Ang 2003]. This also implies that the backlash operators have descending importance 
from the first to the last, since the first operator is always used and the subsequent operators 
are only used when the control inputs go beyond their respective threshold values, ri’s.
Moreover, observations from the piezoelectric hysteretic curves suggest that more drastic 
changes in the slope occur after the turning points, i.e. in the region of the first few backlash 
operators. To strike a balance between model accuracy and complexity, the authors propose 

to importance-sample the threshold intervals r , i.e., to have finer intervals for the first few 
backlash operators and increasing intervals for the subsequent ones. 

Figure 8. The PI hysteresis model with n = 4. The hysteresis model is characterized by the 
initial loading curve. The piecewise linear curve is defined by the equally spaced threshold 

values r  and the sum of the weight values hw .

3.2 Modified Prandtl-Ishlinskii (PI) Operator 

The PI operator inherits the symmetry property of the backlash operator about the center 
point of the loop formed by the operator. The fact that most real actuator hysteretic loops 
are not symmetric weakens the model accuracy of the PI operator. To overcome this overly 
restrictive property, a saturation operator is combined in series with the hysteresis operator.  
The general idea is to bend the hysteresis. A saturation operator is a weighted linear 
superposition of linear-stop or one-sided dead-zone operators. A dead-zone operator is a 
non-convex, asymmetrical, memory-free nonlinear operator (Fig. 9). A one-sided dead-zone 
operator and a saturation operator are given by 
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[ ] )()( tySwtz d
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where y is the output of the hysteresis operator, z is the actuator response, T
sw  = [ws0 … wsm]
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dm)T where 0 = d0 < d1 < … < dm. For convenience, intervals of d  between d0 and dm need not 

be equal. Good selection of d depends on the shape of the hysteresis loop, and typically 

involves some trials and errors. 
The modified PI operator is thus 

[ ] )()( txtz Γ= [ ][ ] )(, 0 tyxHwSw r
T
hd

T
s= .  (9) 

Figure 9. (a) The one-sided dead-zone operator is characterized by the threshold, d, and the 
gain, ws. (b) The saturation operator with m = 2. The slope of the piecewise linear curve at 
interval i, Wsi is defined by the sum of the weights up to i.   

3.3 Parameter Identification 

Figure 10.  The lighter solid lines are the measured piezoelectric actuator response to a 10 

Hz, 12.5 µm p-p sinusoidal control input. The dark dotted line is the identified modified PI 
hysteresis model with 10 backlash operators (n = 9) and 4 dead-zone operators (m = 3). 
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To find the hysteresis model parameters as shown in Fig. 10, we first have to measure 
experimentally the responses of the piezoelectric actuator to periodic control inputs.  A good 
set of identification data is one that covers the entire operational actuation range of the 
piezoelectric actuator at the nominal operating frequency. Next decide the order of the PI 

operator (n) and the saturation operator (m), and set the threshold values r  and d  as 

described in the previous section. The weight parameters hw  and sw  are found by 

performing a least-squares fit of (9) to the measured actuator response, minimizing the error 
equation which is linearly dependent on the weights: 

[ ]( ) [ ][ ] )(')(),(,,, '0 tzSwtytxHwtwwzxE d
T
sr

T
hsh −= .  (10) 

Fig. 10 shows superposition of the identified modified PI hysteresis model on the measured 
piezoelectric actuator response, subjected to a sinusoidal control input. 

3.4 Inverse Modified Prandtl-Ishlinskii (PI) Operator 

The key idea of an inverse feedforward controller is to cascade the inverse hysteresis 

operator, Γ−1, with the actual hysteresis which is represented by the hysteresis operator, Γ, to 

obtain an identity mapping between the desired actuator output )(ˆ tz  and actuator response 

z(t),

[ ][ ] [ ] )(ˆ)(ˆ)(ˆ)( 1 tztzItztz ==ΓΓ= −   (11)  

The operation of the inverse feedforward controller is depicted in Fig.6.  
The inverse of a PI operator is also of the PI type. The inverse PI operator is given by 

[ ] [ ][ ] )(',ˆ'')(ˆ 0''
1 tyzSwHwtz d

T
sr

T
h=Γ−   (12) 

where the inverse modified PI parameters can be found by 
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4. Rate-Dependent Phenomena 

Most, if not all, of the present mathematical models are defined rate-independent 
mathematically. This is too restrictive in real life. In this section, a rate-dependent hysteresis 
model is proposed. 
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4.1 Rate-dependent Hysteresis Slope 

In this section, an extension to the modified PI operator is proposed in order to also model 
the rate-dependent characteristics of the piezoelectric hysteresis is proposed. One of the 
advantages of the PI hysteresis model is that it is purely phenomenological; there are no 
direct relationships between the modeling parameters and the physics of the hysteresis. 
While the rate dependence of hysteresis is evident from Fig. 4, the sensitivity of actuator 
saturation to the actuation rate is not apparent. Hence, assuming that saturation is not rate-

dependent and hold the saturation weights, sw , as well as the threshold values, r  and d ,

constant a relationship between the hysteresis and the rate of actuation )(tx  is constructed. 

The hysteresis slope (i.e., sum of the PI weights) at time t as a rate-dependent function is 

)),((ˆ))(( txfWtxW hihi +=  i = 1 … n.;  (15) 

where .0)0(,
)()(

)( =
−−

= x
T

Ttxtx
tx   (16) 

4.2 Rate-dependent Model Identification 

The piezoelectric actuator, subjected to periodic constant-rate or sawtooth control inputs. 
Measurements were made over a frequency band whose equivalent rate values cover the 
entire operational range of the actuation rates. For example, in an application tracking 

sinusoids of up to 12.5 µm p-p in the band of 1 to 19 Hz, the operational range of the 

actuation rate is from 0 to 746 µm/s, which corresponds to the rate of 12.5 µm p-p sawtooth 
waveforms of up to about 60 Hz. PI parameter identification is then performed on each set 
of measured actuator responses. The sum of the hysteresis weights Whi, i = 0 … n, of each 

identification is then plotted against the actuation rate )(tx  and shown in Fig. 11.  

Figure 11. Plot of Sum of hysteresis weights against actuation rate 

From Fig. 11, it can be seen that the hysteresis slope of the piezoelectric actuator can be 
modelled as linear to the velocity input with good approximation. Thus the rate-dependent 
hysteresis slope model would be: 

),(ˆ))(( txcWtxW ihihi += i = 0 … n  (17) 
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where ci is the slope of the best fit line through the Whi’s and the referenced slope, hi, is the 
intercept of the best fit line with the vertical Wh axis or the slope at zero actuation. The 
individual rate-dependent hysteresis weight values can be calculated from 

)),(())(())(( )1( txWtxWtxw ihhihi −−= i = 1 … n;

))(())(( 00 txWtxw hh = .  (18) 

4.3 Rate-dependent Modified Prandtl-Ishlinskii Operator 

The rate-dependent modified PI operator is defined by 

[ ] )(,)( txxtz Γ= [ ][ ] )(,)( 0 tyxHxwSw r
T
hd

T
s=   (19) 

The inverse rate-dependent modified PI operator is also of the PI type:  

[ ] [ ][ ] )(',ˆ')(')(ˆ 0''
1 tyzSwHxwtz d

T
sr

T
h=Γ− .  (20) 

The inverse rate-dependent parameters can be found by (13), replacing hw  with the rate-

dependent )(xwh ,
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5. Motion Tracking Experiments 

Two motion tracking experiments were performed to demonstrate the rate-dependent 
feedforward controller. The first experiment compares the performance of the open loop 
feedforward controllers driven at fix frequencies. The rate-independent controller is based on 
the modified PI hysteresis model identified at the 10Hz at 12.5µm peak to peak sinusoid. The 
second experiment is tracking a multi-frequency (1, 10 and 19 Hz) nonstationary motion profile. 

5.1 Experiment Setup 

Figure 12. Experimental Architecture 
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As seen from Fig. 12, a 16-bit D/A card is used to give out the necessary voltage, which is 
then passed through the amplifier (the gain is approximately 10). Given the voltage, the 
actuator will move and the interferometer will detect the displacement and convert it to 
analog voltage. Using a 16-bit A/D card, the PC reads in the displacement. 

5.2 Stationary Sinusoid Experiment 

The first experiment compares the performance of the rate-independent and rate-dependent 
modified PI models based open-loop feedforward controllers in tracking 12.5 µm p-p 
stationary sinusoids at 1, 4, 7, 13, 16 and 19 Hz. The tracking rmse and maximum error of 
each controller at each frequency are summarized in Table 1 and plotted in Fig. 13. 

 Without Model Rate-independent Rate-dependent 

Freq. (Hz) rmse (µm) max ε (µm) rmse (µm) max ε (µm) rmse (µm)
max ε

(µm)

1 1.13 2.11 0.25 0.63 0.21 0.57 

4 1.12 2.07 0.19 0.67 0.16 0.46 

7 1.23 2.24 0.18 0.52 0.16 0.50 

10 1.19 2.26 0.14 0.46 0.17 0.47 

13 1.21 2.31 0.19 0.53 0.17 0.55 

16 1.30 2.49 0.27 0.59 0.17 0.53 

19 1.37 2.61 0.34 0.70 0.18 0.59 

Mean

± σ

1.22

± 0 09 

2.30

± 0.19 

0.23

± 0.07 

0.59

± 0.8 

0.18

± 0.02 

0.52

±0.05

The rmse’s and max errors are the mean results over a set of three 5-second (5000 data 
points) experiments.
Table 1. Measured Performance of the Rate-Independent and Rate-Dependent Inverse 
Feedforward Controllers 

Figure 13: Experimental tracking results of different controllers for stationary 12.5 µm at 10 
Hz
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As shown in Fig. 13, at 19 Hz, the tracking rmse of the rate-independent controller is almost 
double that of the rate-dependent controller and will continue to worsen as the frequency 
increases. Fig. 14 shows the results of the different controllers. Fig. 14(a) plots the hysteretic 
response of the piezoelectric actuator with a proportional controller. Fig. 14(b) and Fig. 14(c) 
presents the tracking ability of the rate-independent and rate-dependent inverse 
feedforward controllers respectively. The rate-independent controller is based on the 

modified PI hysteresis model identified at the same 10Hz, 12.5 µm p-p sinusoid. 
Both the rate-independent and rate-dependent controllers significantly reduced the tracking 
error due to the piezoelectric hysteretic behaviour. However, the tracking accuracy of the 
rate-independent controller deteriorates when the frequency deviates from 10 Hz. 
Meanwhile, the rate-dependent controller maintained a smaller rmse and maximum error. 

Figure 14. Rmse and maximum errors of the rate-independent and rate-dependent 

controllers in tracking 12.5µm p-p stationary sinusoids at different frequencies 
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5.3 Multi-Frequency Nonstationary Experiment 

The second experiment is an experiment to test the ability of the controllers to track a multi-
frequency nonstationary motion profile. Both the feedforward controllers do improve the 
tracking capability. However, the rate-dependent controller did noticeably better. The result 
is shown in Fig. 15 and summarised in table 2. 

Figure 15. Experimental open-loop tracking results of a multi-frequency, nonstationary 
dynamic motion profile. The motion profile is made up of superimposed modulated 1, 10, 
and 19 Hz sinusoids with time-varying amplitudes. The rate-independent controller is based 

on the modified PI hysteresis model identified at the same 10Hz, 12.5 µm p-p sinusoid. 
Transient error is observed for the rate-independent controller in the first 2 seconds.(a) 
Without compensation. (b) Rate-independent controller. (c) Rate-dependent controller 
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 Without model Rate-independent Rate-dependent 

rmse ± σ
(µm)

1.02 ± 0.07 0.31 ± 0.03 0.15 ± 0.003 

(%)
amplitudep-p

rmse
9.2 2.8 1.4 

max error ± σ
(µm)

1.91 ± 0.08 0.89 ± 0.04 0.59 ± 0.06 

(%)
amplitudep-p

errormax
17.3 8.0 5.3 

The rmse and max errors are the mean results over a set of seven 5-second (5000 data points) 
experiments.
Table 2. Measured Performance of the Rate-Independent and Rate-Dependent Inverse 
Feedforward Controllers in Tracking Multi-Frequency (1, 10 and 19 Hz) Nonstationary Signals 

The rate-dependent controller registers a tacking rmse less than half of that of the rate-
independent controller. Maximum tracking errors for both controllers occur in the transient 
phase. This might explain why the improvement in maximum error with the rate-dependent 
controller is not as large as the improvement in rmse. One limitation of all PI-type hysteresis 
models is that singularity occurs when the first PI weight is 0 as seen in equation (13). Also, 
when the slope is negative, the inverse hysteresis loading curve violates the fundamental 
assumption that it should be monotonically increasing. Thus, the inverse model will be lost. 
In order to maintain a good tracking accuracy for high velocity by having small threshold 
intervals, a method to solve the singularity problem is proposed in the next section. 

6. Using a different Domain to solve Singularity Problem 

The PI operator, while being able to model the hysteresis behaviour of a piezoelectric actuator 
well, has one major inadequacy: the inverse of the operator does not exist when the slope of 
the hysteretic curve is not positive definite, i.e. singularity occurs when the PI weights  0. 
Such ill conditioned situations arise when the piezoelectric actuators are used to actuate heavy 
loads or when operating at high frequency. Another possible situation for ill condition is when 
small intervals between the threshold values are used. Presently, most people avoid this 
problem by having larger intervals between the threshold values. However, this is not solving 
the problem and resulted in higher error around the turning point. 
This section presents how the authors managed to overcome this problem by mapping the 
hysteresis through a linear transformation onto another domain, where the inversion would 
be better behaved. The inverse weights are evaluated in this domain and are subsequently 
used to compute the inverse hysteresis model, which is to be used in the feedforward 
controller, before the inverse model is transformed back to the original domain. The 
singularity problem is first illustrated, followed by the solution to map the ill-conditioned 
hysteresis onto a singularity-free domain. 

6.1 Illustration of Problem 

As seen in Fig. 5, using the inverse as a feedforward controller linearizes the response. 
Unfortunately, to use the hysteresis model, the operating frequency must not be too high as 
the hysteresis non-linearity will become more severe and like most models, the classical 
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Prandtl-Ishlinskii model is also unable to function as a feedforward controller when the 
largest displacement does not occur at the highest input signal (Fig. 6). The inverse model 
equation (13) fails when the convex curve is encountered.  
Most systems can be approximated as a spring mass damper system. When driven at high 
velocity, the actuator/mechanism has a high momentum at the turning point, especially if a 
rapid change is made. The large momentum tends to keep the system in motion and the large 
momentum results in the convex curve. Similar explanation is applicable for large loads. 

Figure 16. Loading Curve of Hysteresis example involving negative gradient 

Figure 17. Inverse Loading Curve of example to illustrate failure of PI inverse operator 
when negative gradient is encountered 

There is also an inevitable trade-off between modeling accuracy and inversion stability. The 
modeling of the hysteretic loop gets better with the number of backlash operators used in 
the modeling. However, as the piecewise continuous interval represented by each backlash 
operator shrinks, there is a greater chance for the reciprocal of the PI weights to be ill 
conditioned, especially at the hysteretic curve turning points. An example to show that the 
inverse model equation (13) fails when the convex curve is encountered is illustrated here. 

Given weights of T
hw = [-0.2 0.1 0.2 0.2 0.2 0.2] and r = [ 0 1 2 3 4 5] for an application where 

the amplitude of the periodic input voltage is 10V. The loading curve is shown in Fig. 16.  
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Applying equation (13) to the get the inverse PI parameters, we obtain 
T
hw' = [-5 -5 20 -

6.6667 -1.333 -0.5714] and 'r = [0 -0.2 -0.3 0.1 0.6]. Fig. 17 illustrates the inverse curve that 
will be obtained using equation (13). The two graphs are not a reflection of each other along 
the 45 degrees line. This simple proof clearly illustrates that equation (13) has failed as an 
inverse function when the condition of positive gradient is not met. Zero gradient is not 
demonstrated in this example as it is clear that the reciprocal of 0 is a singular point. 

6.2 Obtaining Inverse Model in a Different Domain 

6.2.1 Intuition of Proposed Method 

Figure 18. Transformation 

Figure 19.  Method to Obtain Appropriate Input Voltage 

With the singularity problem, the author came up with the idea to model the hysteresis in 
an alternative domain when the inverse of the PI model fails in a situation like the largest 
displacement not occurring at the highest input signal (Fig. 6). A transformation is used to 
map y (the original hysteretic displacement values) to z, which has no singular points as 
shown in Fig. 18. The inverse model can now be obtained in the new domain. The 
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appropriate input voltages can now be obtained using the inverse model found in the new 
domain as shown in Fig. 19. 
The saturation operator is just another transformation and thus can be ignored for the time 
being. The inverse of the saturation operator can be applied after the inverse of the 
singularity-free model. 
The desired value displacement y is first passed through the transformation function to 
obtain the corresponding new domain z value. This z value is then passed through the 
inverse model obtained in the new domain to get the appropriate input voltages. 

6.2.2 Obtaining the Inverse Model in a different Domain 

Although the inverse of the PI model fails, PI model can still describe the pneumonia path 
like figure 4. The PI parameters for the ill-conditioned hysteresis can be obtained as shown 
in section 2. Recall that equation (2) can describe the hysteresis. 

[ ] )(,)( 0 tyxHwty r
T
h=  (3) 

Using least square method, 
T
hw  is be obtained. To illustrate the transformation, nine points 

(x0 to x8) are labelled in Fig. 20. Negative gradient for the loading curve occurs between x0

and x1 while 0 gradient is between x1 and x2. In the hysteresis loop, region between x3 to x4

and x6 to x7 has negative gradient while x4 to x5 and x7 to x8 contain gradient value 0. 
The labelled points x0 to x8 can be calculated using: 
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To obtain the points a0 to a8, x0 to x8 are substituted into equation (4). 
The transformation function f(x) as shown in Fig. 19 is a function that changes the weights of 
the PI hysteresis model. The weights of the transformed hysteresis are obtained via: 
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where c is a positive non-zero constant to force the transformed gradient to be positive non-
zero number. Fig. 21 shows the relationship of z and y after passing through the 
transformation function. The constants ai and bi are the corresponding y and z values 
respectively to input voltage xi.
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Figure 20: Graph of an ill-conditioned Hysteresis with points x0 to x8 labelled 

Figure 21: Relationship of z (new domain) with y (real displacement) 
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Because of the way the transformation function is formed, all the gradients of the line are 1, -
1 or infinite. Points b0 to b8 are obtain using (24). 
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With these points, the relationship between z to y is in table 3. 

7. Simulation and Experimental Results of Transformation Method 

7.1 Simulation 

This section demonstrates how the transformation function is used to help the reader in 
applying the equations shown to their applications. 
The actual ill conditioned hysteresis of the system is first obtained and modelled using 
Prandtl-Ishlinskii operator. The hysteresis curve is then mapped onto another domain using 
the transformation function illustrated in section 6. A well-conditioned hysteresis is 
obtained as seen in Fig.18. The inverse parameters of the well-conditioned hysteresis curve 
in the new domain are obtained using (13) and the inverse model is obtained. 
After obtaining the inverse function in the new domain, the desired y values are passed 
through the transformation to obtain the desired z values using table 4, starting with A=0, 
B=0 and C=0. The desired z values are then passed through the inverse Prandtl-Ishlinskii 
model to obtain the required input x. An example is illustrated in Fig. 22, where the red 
graph is the hysteresis and blue graph is the inverse curve. 

y value Corresponding z value Equation 

a0 to a1
yz −= (25)

a1 to a2, 2bz = , any value between b1 to b2 (26)

a2 to a3, 22 abyz −+= (27)

a3 to a4 33 abyz ++−= (28)

a4 to a5 5bz = , any value between b4 to b5 (29)

a5 to a6 55 abyz −+= (30)

a6 to a7 66 abyz ++−= (31)

a7 to a8 8bz = , any value between b7 to b8 (32)

Table 3. Relation between the two domains 
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Condition (1) Condition (2) Equation Setting 

|y(t)| < |a1| && y(t) < y(t-1) (25)  
A’B’C’

otherwise (26)  

y(t) = a2 (26)  
A’B’C

otherwise (27) B=1 

y(t) a3 (27)  
A’BC

otherwise (28) A=1 

y(t) a4 (28)  
ABC

otherwise (29) B=0 

y(t) = a5 (29)  
AB’C

otherwise (30)  

y(t) a6 (30)  
AB’C’

otherwise (31) B=1 

y(t) a7 (31)  
ABC’

otherwise (32) A=0 

y(t) = a8 (32)  
A’BC’

otherwise (27)  

Table 4. Equations to obtain y values 

The value of C is as follows: 
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As shown in Fig. 22, the final inverse graph (blue) is a reflection of the hysteresis graph (red) 
along the line y = x. This clearly illustrates the ability of the transformation function to 
obtain the inverse of the hysteresis curve. The transformation function has no effect on well-
conditioned hysteresis graphs as x2 = x1 = x0.

Figure 22. Simulation to illustrate that the inverse can be obtained with desired y as input 
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7.2 Experimental Results 

The experiment setup is as described in section 5.1. Three types of experiments were carried 
out. The first set of experiments is 8 Hz triangular wave. Triangular wave is used because of 
its constant velocity. This is followed by varying amplitude linear motion with varying 
velocity to demonstrate the capability to model rate-dependent. The last experiment is a 
varying frequency with varying amplitude sinusoidal wave. 
The same model is being used for both with and without mapping. The first experiment’s 
desired displacement is a triangular wave with the velocity high enough for the first weight 
to go into the negative region.  
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Figure 23. Triangular Wave Without Mapping 

Figure 24. Triangular Wave With Mapping 
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Figure 25. Exploded View of Error of Triangular Wave Without Mapping 

 Triangular Non-Periodic linear motion 

Without
Mapping

With
Mapping

Without
Mapping

With
Mapping

rmse (µm) 0.2580 0.1544 0.2267 0.1328 

rms error reduction 40.1% 41.4% 

Max. Error (µm) 0.5478 0.4222 0.4959 0.3473

Table 5. Experimental Results on Control of Piezoelectric Actuator 

From Fig. 25, it can be clearly seen that the error has a general shape of a square wave. It has 
a general offset of overshoot when the desired displacement is increasing and an offset of 
undershoot when the displacement is decreasing. With mapping, this overshoot or 
undershoot are removed. Thus it can be clearly seen that the error in Fig. 23 (without 
mapping) is higher than the error in Fig. 24 (with mapping) and the rms error is greatly 
reduced by 40.1%. This proved that it is the singularity problem in the inverse expression 
that is creating the problem and not the hysteresis model.  
Similar findings were obtained with non-periodic linear motion. Fig. 26 and Fig. 27 show the 
result of without and with mapping respectively. As seen from Fig. 26, like Fig. 23, there is 
also a constant overshoot or undershoot in the error depending on the direction of actuation. 
With mapping, the offsets are removed and the rms error is reduced by 41.4%. Table 5 is a 
summary of the results. 
Fig. 28 is an experiment to show that the model is also valid for non-periodic varying 
sinusoidal waves and the rms error obtained is 0.14436µm. These figures demonstrate that 
the model is able to model non-periodic motion. 

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

Time (ms)

D
is

p
la

ce
m

en
t 

(µ
m

) Measured

Desired

Error

Figure 26. Non-Periodic Linear Motion Without Mapping 
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Figure 27. Non-Periodic Linear Motion With Mapping 
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Figure 28. Superposition of a few different frequencies of sinusoidal waves 

8. Conclusion 

Human hand is the best manipulator available. However, its manual positioning accuracy is 
limited due to the involuntary tremor motion. Most of the current methods are non-active 
compensating methods like filtering of the tremor motion. Examples include the master and 
slave systems and the third hand. In this chapter, since humans are in possession of a high 
dexterity manipulator with an unbeatable user interface, instead of replacing the human 
hand with a robotic manipulator, active compensation of the physiological tremor is 
proposed.
Piezoelectric actuators are used to compensate the tremor motion. Two main contributions 
are made in this chapter, namely: (1) a rate-dependent feedforward controller; and (2) a 
solution to the inverse of an ill-conditioned hysteresis. 
Physiological tremor is modulating frequency behaviour. Although the tremor is near 
sinusoidal at 8-12 Hz, tremor is non-periodic. Active compensation of active physiological 
tremor requires a zero phase rate-dependent controller. In this chapter, a rate-dependent 
Prandtl-Ishlinskii hysteresis model has been proposed. With this rate-dependent 
feedforward controller, piezoelectric actuators can now be used to compensate non-periodic 
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disturbance. With velocity as one of its input, the rate-dependent feedforward controller is 
now able to account for the non-periodic signals. 
The feedforward controller is obtained through phenomenal modelling. Although the model 
obtained is specific to the hardware and setup, the method can be applied to other 
applications because underlying physics knowledge is not required. The feedforward 
controller is implemented in an open loop system. Some advantages of open loop control 
includes no stability problem faced by controllers and lower cost as sensors are not required 
for the feedback information. 
Traditionally, people tried to control the conditions such that the ill-conditioned hysteresis 
situation is avoided. This is not solving the problem and will result in higher error. A 
method to overcome this problem has also been demonstrated. This is achieved by mapping 
the ill-conditioned hysteresis onto a different domain to obtain a well conditioned 
hysteresis. The inverse is then obtained in this new domain. The equations relating the two 
domains are also given in this chapter. 

9. References 

Abidi, K.; Sabanovic, A. & Yesilyurt, S. (2004). Sliding Mode Control Based Disturbance 
Compensation and External Force Estimation for a Piezoelectric Actuator, IEEE Int. 
Workshop on Advance Motion Control, pp. 529-534, Japan, March 2004. 

Ang, W. T.; Garmon, F. A.; Khosla, P. K. & Riviere, C. N. (2003). Modeling Rate-dependent 
Hysteresis in Piezoelectric Actuators, IEEE/RSJ Int. Conf. Intelligent Robots and 
Systems (IROS), pp. 1975-1980, Las Vegas, Nevada, Oct., 2003. 

Chen, B. M.; Lee, T. H.; Hang, C. C.; Guo, Y. & Weerasooriya, S. (1999). An H  Almost 
Disturbance Decoupling Robust Controller Design for a Piezoelectric Bimorph 
Actuator with Hysteresis. IEEE Transactions on Control Systems Technology, vol. 7 
No. 2, (March 1999), pp. 160-174. 

Choi, D. Y. & Riviere, C. N. (2005). Flexure-Based Manipulator for Active Handheld 
Microsurgical Instrument, 27th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBS), pp. 5085-5088, Shanghai, China, 
Sept. 2005. 

Choi, G. S.; Kim, H. S. & Choi, G. H. (1997). A Study on Position Control of Piezoelectric 
Actuators, IEEE Int. Symposium on Industrial Electronics, pp. 851-855, Guimaraes, 
Portugal, 1997. 

Cruz-Hernandez, J. M. & Hayward, V. (1998). Reduction of Major and Minor Hysteresis 
Loops in a Piezoelectric Actuator, IEEE Conference on Design & Control, pp. 4320-
4325, Tampa, Florida USA, 1998. 

Cruz-Hernandez, J. M. & Hayward, V. (2001). Phase Control Approach to Hystersis 
Reduction. IEEE Transactions on Control Systems Technology, vol. 9, No. 1, (Jan. 2001), 
pp. 17-26. 

Furutani, K.; Urushibata, M. & Mohri, N. (1998) Improvement of Control Method for 
Piezoelectric Actuator by Combining Induced Charge Feedback with Inverse 
Transfer Function Compensation, IEEE Int. Conf. On Robotics & Automation, pp. 
1504-1509, Leuven, Belgium, May 1998. 

Goldfarb, M. & Celanovic, N. (1996). Behavioral Implications of Piezoelectric Stack 
Actuators for Control of Micromanipulation, IEEE Int. Conf. on Robotics & 
Automation, pp. 226-231, Minneapolis, Minnesota, USA, 1996. 



Human-Robot Interaction 394

Goldfarb, M. & Celanovic, N. (1997). Modeling Piezoelectric Stack Actuators for Control of 
Micromanipulation. IEEE Control Systems Magazine, vol. 17, No. 3, (June 1997), pp. 
69-79.

Hu, H. & Mrad, R. B. (2002). On the Classical Preisach model for hysteresis in piezoceramic 
actuators. Mechatron, vol. 13, No. 2, (March 2002), pp. 85-94. 

Hughes, D. & Wen. J. T. (1995). Preisach Modeling of Piezoceramic and Shape Memory 
Alloy Hysteresis, 4th IEEE Conf. on Control Applications, pp. 1086-1091, New York, 
USA, Sep., 1995. 

Hwang, C. L. & Jan, C. (2003). A Reinforcement Discrete Neuro-Adaptive Control for 
Unknown Piezoelectric Actuator Systems with Dominant Hysteresis. IEEE
Transactions on Neural Networks, vol. 14, No. 1, (Jan 2003) pp. 66-78. 

Janocha, H. & Kuhnen, K. (2000). Real-time Compensation of Hysteresis and Creep in 
Piezoelectric Actuators. Sensors & Actuators A: Physical, vol. 79, No. 2, (Feb. 2000), 
pp. 83-89. 

Kuhnen, K. & Janocha, H. (2001). Inverse Feedforward Controller for Complex Hysteretic 
Nonlinearities in Smart-Material Systems. Control and Intelligent Systems, vol. 29, 
(2001), pp. 74-83. 

Kuhnen, K. & Janocha, H. (2002). Complex hysteresis modeling of a broad class of hysteretic 
nonlinearities, 8th Int. Conf. on New Actuators, Bremen, June 2002. 

Landauer, R.; Young, D. R. & Drougard, M. E. (1956). Polarization reversal in the barium 
titanate hystersis loop. Journal of Applied Physics, vol. 27, No. 71, (1956) pp 752-758. 

Riviere, C. N.; Ang, W. T. & Khosla, P. K. (2003). Toward Active Tremor Canceling in 
Handheld Microsurgical Instruments. IEEE Transactions on Robotics and Automation,
vol. 19, No. 5, (Oct. 2003), pp. 793-800. 

Stepanenko, Y. and Su, C. Y. (1998). Intelligent Control of Piezoelectric Actuators, IEEE Conf. 
on Decision & Control, pp. 4234-4239, Tampa, Florida USA, Dec. 1998. 

Tao, G. (1995). Adaptive Control of Plants with Unknown Hystereses. IEEE Transactions on 
Automatic Control, vol. 40, No. 2, (Feb. 1995), pp. 200-212. 



Human Robot Interaction

Edited by Nilanjan Sarkar

ISBN 978-3-902613-13-4

Hard cover, 522 pages

Publisher I-Tech Education and Publishing

Published online 01, September, 2007

Published in print edition September, 2007

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Human-robot interaction research is diverse and covers a wide range of topics. All aspects of human factors

and robotics are within the purview of HRI research so far as they provide insight into how to improve our

understanding in developing effective tools, protocols, and systems to enhance HRI. For example, a significant

research effort is being devoted to designing human-robot interface that makes it easier for the people to

interact with robots. HRI is an extremely active research field where new and important work is being published

at a fast pace. It is neither possible nor is it our intention to cover every important work in this important

research field in one volume. However, we believe that HRI as a research field has matured enough to merit a

compilation of the outstanding work in the field in the form of a book. This book, which presents outstanding

work from the leading HRI researchers covering a wide spectrum of topics, is an effort to capture and present

some of the important contributions in HRI in one volume. We hope that this book will benefit both experts and

novice and provide a thorough understanding of the exciting field of HRI.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

U-Xuan Tan, Win Tun Latt, Cheng Yap Shee, Cameron Riviere and Wei Tech Ang (2007). Modeling and

Control of Piezoelectric Actuators for Active Physiological Tremor Compensation, Human Robot Interaction,

Nilanjan Sarkar (Ed.), ISBN: 978-3-902613-13-4, InTech, Available from:

http://www.intechopen.com/books/human_robot_interaction/modeling_and_control_of_piezoelectric_actuators

_for_active_physiological_tremor_compensation



© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.


