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Abstract 
 

Adaptive control has been developed for decades, and now it has become a rigorous and 
mature discipline which mainly focuses on dealing parametric uncertainties in control 
systems, especially linear parametric systems. Nonparametric uncertainties were seldom 
studied or addressed in the literature of adaptive control until new areas on exploring 
limitations and capability of feedback control emerged in recent years. Comparing with the 
approach of robust control to deal with parametric or nonparametric uncertainties, the 
approach of adaptive control can deal with relatively larger uncertainties and gain more 
flexibility to fit the unknown plant because adaptive control usually involves adaptive 
estimation algorithms which play role of “learning” in some sense. 
This chapter will introduce a new challenging topic on dealing with both parametric and 
nonparametric internal uncertainties in the same system. The existence of both two kinds of 
uncertainties makes it very difficult or even impossible to apply the traditional recursive 
identification algorithms which are designed for parametric systems. We will discuss by 
examples why conventional adaptive estimation and hence conventional adaptive control 
cannot be applied directly to deal with combination of parametric and nonparametric 
uncertainties. And we will also introduce basic ideas to handle the difficulties involved in 
the adaptive estimation problem for the system with combination of parametric and 
nonparametric uncertainties. Especially, we will propose and discuss a novel class of 
adaptive estimators, i.e. information-concentration (IC) estimators. This area is still in its infant 
stage, and more efforts are expected in the future for gainning comprehensive 
understanding to resolve challenging difficulties. 
Furthermore, we will give two concrete examples of semi-parametric adaptive control to 
demonstrate the ideas and the principles to deal with both parametric and nonparametric 
uncertainties in the plant. (1) In the first example, a simple first-order discrete-time nonlinear 
system with both kinds of internal uncertainties is investigated, where the uncertainty of 
non-parametric part is characterized by a Lipschitz constant L, and the nonlinearity of 
parametric part is characterized by an exponent index b. In this example, based on the idea 
of the IC estimator, we construct a unified adaptive controller in both cases of b = 1 and 
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b > 1, and its closed-loop stability is established under some conditions.  When the  
parametric part is bilinear (b = 1), the conditions given reveal the magic number 

2
2

3
+ which appeared in previous study on capability and limitations of the feedback 

mechanism. (2) In the second example with both parametric uncertainties and non-
parametric uncertainties, the controller gain is also supposed to be unknown besides the 
unknown parameter in the parametric part, and we only consider the noise-free case. For this 
model, according to some a priori knowledge on the non-parametric part and the unknown 
controller gain, we design another type of adaptive controller based on a gradient-like 
adaptation law with time-varying deadzone so as to deal with both kinds of uncertainties.  
And in this example we can establish the asymptotic convergence of tracking error under 
some mild conditions, althouth these conditions required are not as perfect as in the first 

example in sense that L < 0.5 is far away from the best possible bound 2
2

3
+ .  

These two examples illustrate different methods of designing adaptive estimation and 
control algorithms.  However, their essential ideas and principles are all based on the a 
priori knowledge on the system model, especially on the parametric part and the non-
parametric part. From these examples, we can see that the closed-loop stability analysis is 
rather nontrivial. These examples demonstrate new adaptive control ideas to deal with two 
kinds of internal uncertainties simultaneously and illustrates our elementary theoretical 
attempts in establishing closed-loop stability. 

 
1. Introduction 
 

This chapter will focus on a special topic on adaptive estimation and control for systems with 
parametric and nonparametric uncertainties. Our discussion on this topic starts with a very 
brief introduction to adaptive control. 

 
1.1 Adaptive Control 

As stated in [SB89], “Research in adaptive control has a long and vigorous history” since 
the initial study in 1950s on adaptive control which was motivated by the problem of 
designing autopilots for air-craft operating at a wide range of speeds and altitudes. With 
decades of efforts, adaptive control has become a rigorous and mature discipline which 
mainly focuses on dealing parametric uncertainties in control systems, especially linear 
parametric systems. 
From the initial stage of adaptive control, this area has been aiming at study how to deal 
with large uncertainties in control systems. This goal of adaptive control essentially means 
that one adaptive control law cannot be a fixed controller with fixed structure and fixed 
parameters because any fixed controller usually can only deal with small uncertainties in 
control systems. The fact that most fixed controllers with certain structure (e.g.  linear 
feedback control) designed for an exact system model (called nominal model) can also work 
for a small range of changes in the system parameter is often referred to as robustness, 
which is the kernel concept of another area, robust control. While robust control focuses on 
studying the stability margin of fixed controllers (mainly linear feedback controller), whose 
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design essentially relies on priori knowledge on exact nominal system model and bounds 
of uncertain parameters, adaptive control generally does not need a priori information 
about the bounds on the uncertain or (slow) time-varying parameters. Briefly speaking, 
comparing with the approach of robust control to deal with parametric or nonparametric 
uncertainties, the approach of adaptive control can deal with relatively larger uncertainties 
and gain more flexibility to fit the unknown plant because adaptive control usually 
involves adaptive estimation algorithms which play role of “learning” in some sense. 
The advantages of adaptive control come from the fact that adaptive controllers can adapt 
themselves to modify the control law based on estimation of unknown parameters by 
recursive identification algorithms. Hence the area of adaptive control has close connections 
with system identification, which is an area aiming at providing and investigating 
mathematical tools and algorithms that build dynamical models from measured data. 
Typically, in system identification, a certain model structure is chosen by the user which 
contains unknown parameters and then some recursive algorithms are put forward based 
on the structural features of the model and statistical properties of the data or noise.  The 
methods or algorithms developed in system identification are borrowed in adaptive control 
in order to estimate the unknown parameters in the closed loop. For convenience, the 
parameter estimation methods or algorithms adopted in adaptive control are often 
referred to as adaptive estimation methods.  Adaptive estimation and system identification 
share many similar characteristics, for example, both of them originate and benefit from 
the development of statistics. One typical example is the frequently used least-squares (LS) 
algorithm, which gives parameter estimation by minimizing the sum of squared errors (or 
residuals), and we know that LS algorithm plays important role in many areas including 
statistics, system identification and adaptive control. We shall also remark that, in spite of 
the significant similarities and the same origin, adaptive estimation is different from 
system identification in sense that adaptive estimation serves for adaptive control and 
deals with dynamic data generated in the closed loop of adaptive controller, which means 
that statistical properties generally cannot be guaranteed or verified in the analysis of 
adaptive estimation.  This unique feature of adaptive estimation and control brings many 
difficulties in mathematical analysis, and we will show such difficulties in later examples 
given in this paper. 

 
1.2 Linear  Regression Model and Least Square  Algorithm 
 

Major parts in existing study on regression analysis (a branch of statistics) [DS98, Ber04, 
Wik08j], time series analysis [BJR08, Tsa05], system identification [Lju98, VV07] and 
adaptive control [GS84, AW89, SB89, CG91, FL99] center on the following linear regression 
model 
 

kkk vz += φθ τ
                                                   (1) 

 

where }{ kz , kφ , kv represent observation data, regression vector and noise disturbance (or 

external uncertainties), respectively. Here θ is the unknown parameter to be estimated.  
Linear regression models have many applications in many disciplines of science and 
engineering [Wik08g, web08, DS98, Hel63, Wei05, MPV07, Fox97, BDB95]. For example, as 
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stated in [web08], Linear regression is probably the most widely used, and useful, statistical 
technique for solving environmental problems. Linear regression models are extremely powerful, and 
have the power to empirically tease out very complicated relationships between variables. Due to the 
importance of model (1.1), we list several simple examples for illustration: 
� Assume that a series of (stationary) data (xk , yk ) (k = 1, 2, · · · , N ) are generated from the 

following model 
 

εββ ++= XY 10  

 

where β0 , β1  are unknown parameters, }{ kx are i. i. d. taken from a certain probability 

distribution, and ),0( 2σε Nk ≈  is random noise independent of X . For this model, let θ 

= [β0 , β1 ]τ , φk = [1, xk ]τ , then we have kkky εφθ τ += . This example is a classic 

topic in statistics to study the statistical properties of parameter estimates θ̂N as the data size 

N grows to infinity. The statistical properties of interests may include )ˆVar(),ˆE( θθθ − , 

and so on.  

� Unlike the above example, in this example we assume that kx  and 1+kx  have close 

relationship modeled by 
 

kkk xx εββ ++=+ 101  

 

where β0, β1 are unknown parameters, and  ),0( 2σε Nk ≈  are i. i. d. random noise 

independent of {x1, x2, · · · , xk}. 
This model is an example of linear time series analysis, which aims to study asymptotic 

statistical properties of parameter estimates  under certain assumptions on statistical 

properties of kε . Note that for this example, it is possible to deduce an explicit expression 

of xk in terms of jε  ( 1,,1,0 −= kj L ).  

� In this example, we consider a simple control system 
 

kkkk buxx εββ +++=+ 101  

 

where b ≠ 0 is the controller gain, kε  is the noise disturbance at time step k. For this model, 

in case where b is known a priori, we can take; 
τββθ ],[ 10= , 

τφ ],1[ 1−= kk x , 

1−−= kkk buxz ;otherwise, we can take  
τββθ ],,[ 10 b= , τφ ],1[ 1−= kk x , 

1−−= kkk buxz .  

In both cases, the system can be rewritten as 
 

kkkz εφθ τ +=  
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which implies that intuitively, θ can be estimated by using the identification algorithm since 

both data zk and 
kφ  are available at time step k. Let 

kθ̂  denote the parameter estimates at 

time step 
kθ̂ , then we can design the control signal 

ku  by regarding  as the real parameter 

θ: 
 

 
 

where { kr } is the known reference signal to be tracked, and  b̂ , 0β̂ , 1β̂  are estimates of b , 

0β , 1β , respectively. Note that for this example, the closed-loop system will be very 

complex because the data generated in the closed loop essentially depend on all history 
signals. In the closed-loop system of an adaptive controller, generally it is difficult to 
analyze or verify statistical properties of signals, and this fact makes that adaptive 
estimation and control cannot directly employ techniques or results from system 
identification. Now we briefly introduce the frequently-used LS algorithm for model (1.1) 
due to its importance and wide applications [LH74, Gio85, Wik08e, Wik08f, Wik08d]. The 
idea of LS algorithm is simply to minimize the sum of squared errors, that is to say, 
 

                            (1.2) 
 

This idea has a long history rooted from great mathematician Carl Friedrich Gauss in 1795 
and published first by Legendre in 1805. In 1809, Gauss published this method in volume 
two of his classical work on celestial mechanics, heoria Motus Corporum Coelestium in 
sectionibus conicis solem ambientium[Gau09], and later in 1829, Gauss was able to state that the 
LS estimator is optimal in the sense that in a linear model where the errors have a mean of 
zero, are uncorrelated, and have equal variances, the best linear unbiased estimators of the 
coefficients is the least-squares estimators. This result is known as the Gauss-Markov 
theorem [Wik08a]. 
By Eq. (1.2), at every time step, we need to minimize the sum of squared errors, which 
requires much computation cost. To improve the computational efficiency, in practice we 
often use the recursive form of LS algorithm, often referred to as recursive LS algorithm, 
which will be derived in the following. First, introducing the following notations 
 

                              (1.3) 
 

and using Eq. (1.1), we obtain that 
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Noting that 
 

 
 

where the last equation is derived from properties of Moore-Penrose pseudoinverse  
[Wik08h] 
 

 
 

we know that the minimum of  ][][ ςς τ
nnnn ZZ Φ−Φ−  can be achieved at 

 

                                            (1.4) 
 

which is the LS estimate of θ. Let 
 

 
 
and then, by Eq. (1.3), with the help of matrix inverse identity 
 

 
 
we can obtain that 
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Further, 
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Thus, we can obtain the following recursive LS algorithm 
 

 
 

where Pn−1 and θn−1 reflect only information up to step n − 1, while an, 
nφ  and 1−− nnnz θφττ

 

reflect information up to step n. 
In statistics, besides linear parametric regression, there also exist generalized linear models 
[Wik08b] and non-parametric regression methods [Wik08i], such as kernel regression 
[Wik08c]. Interested readers can refer to the wiki pages mentioned above and the references 
therein. 

 
1.3 Uncertainties and Feedback Mechanism 

By the discussions above, we shall emphasize that, in a certain sense, linear regression 
models are kernel of classical (discrete-time) adaptive control theory, which focuses to cope 
with the parametric uncertainties in linear plants. In recent years, parametric uncertainties 
in nonlinear plants have also gained much attention in the literature[MT95, Bos95, Guo97, 
ASL98, GHZ99, LQF03]. Reviewing the development of adaptive control, we find that 
parametric uncertainties were of primary interests in the study of adaptive control, no 
matter whether the considered plants are linear or nonlinear. Nonparametric uncertainties 
were seldom studied or addressed in the literature of adaptive control until some new areas 
on understanding limitations and capability of feedback control emerged in recent years. 
Here we mainly introduce the work initiated by Guo, who also motivated the authors’ 
exploration in the direction which will be discussed in later parts.  
Guo’s work started from trying to understand fundamental relationship between the 
uncertainties and the feedback control. Unlike traditional adaptive theory, which focuses on 
investigating closed-loop stability of certain types of adaptive controllers, Guo began to 
think over a general set of adaptive controllers, called feedback mechanism, i.e., all possible 
feedback control laws. Here the feedback control laws need not be restricted in a certain 
class of controllers, and any series of mappings from the space of history data to the space of 
control signals is regarded as a feedback control law. With this concept in mind, since the 
most fundamental concept in automatic control, feedback, aims to reduce the effects of the 
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plant uncertainty on the desired control performance, by introducing the set F of internal 
uncertainties in the plant and the whole feedback mechanism U, we wonder the following 
basic problems: 
1. Given an uncertainty set F, does there exist any feedback control law in U which can 
stabilize the plant? This question leads to the problem of how to characterize the maximum 
capability of feedback mechanism. 
2. If the uncertainty set F is too large, is it possible that any feedback control law in U cannot 
stabilize the plant? This question leads to the problem of how to characterize the limitations 
of feedback mechanism. 
 
The philosophical thoughts to these problems result in fruitful study [Guo97, XG00, ZG02, 
XG01, LX06, Ma08a, Ma08b]. 
The first step towards this direction was made in [Guo97], where Guo attempted to answer 
the following question for a nontrivial example of discrete-time nonlinear polynomial plant 
model with parametric uncertainty: What is the largest nonlinearity that can be dealt with 
by feedback? More specifically, in [Guo97], for the following nonlinear uncertain system 
 

                        (1.5) 
 

where θ  is the unknown parameter, b characterizes the nonlinear growth rate of the 

system, and {
tw } is the Gaussian noise sequence, a critical stability result is found — system 

(1.5) is not a.s. globally stabilizable if and only if b ≥ 4. This result indicates that there exist 
limitations of the feedback mechanism in controlling the discrete-time nonlinear adaptive 
systems, which is not seen in the corresponding continuous-time nonlinear systems (see 
[Guo97, Kan94]). The “impossibility” result has been extended to some classes of uncertain 
nonlinear systems with unknown vector parameters in [XG99, Ma08a] and a similar result 
for system (1.5) with bounded noise is obtained in [LX06]. 
Stimulated by the pioneering work in [Guo97], a series of efforts ([XG00, ZG02, XG01, 
MG05]) have been made to explore the maximum capability and limitations of feedback 
mechanism. Among these work, a breakthrough for non-parametric uncertain systems was 
made by Xie and Guo in [XG00], where a class of first-order discrete-time dynamical control 
systems 
 

                                 (1.6) 
 

is studied and another interesting critical stability phenomenon is proved by using new 
techniques which are totally different from those in [Guo97]. More specifically, in [XG00], 
F(L) is a class of nonlinear functions satisfying Lipschitz condition, hence the Lipschitz 
constant L can characterize the size of the uncertainty set F(L). Xie and Guo obtained the 

following results: if  2
2

3
+≥L , then there exists a feedback control law such that for any 

f  F(L), the corresponding closed-loop control system is globally stable; and if 

2
2

3
+<L , then for any feedback control law and any 

1

0 Ry ∈ , there always exists 
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some )(LFf ∈ such that the corresponding closed-loop system is unstable. So for system 

(1.6), the “magic” number  2
2

3
+  characterizes the capability and limits of the whole 

feedback mechanism. The impossibility part of the above results has been generalized to 
similar high-order discrete-time nonlinear systems with single Lipschitz constant [ZG02] 
and multiple Lipschitz constants [Ma08a]. From the work mentioned above, we can see two 
different threads: one is focused on parametric nonlinear systems and the other one is 
focused on non-parametric nonlinear systems. By examining the techniques in these threads, 
we find that different difficulties exist in the two threads, different controllers are designed 
to deal with the uncertainties and completely different methods are used to explore the 
capability and limitations of the feedback mechanism. 

 
1.4 Motivation of Our Work 

From the above introduction, we know that only parametric uncertainties were considered 
in traditional adaptive control and non-parametric uncertainties were only addressed in 
recent study on the whole feedback mechanism. This motivates us to explore the following 
problems: When both parametric and non-parametric uncertainties are present in the 
system, what is the maximum capability of feedback mechanism in dealing with these 
uncertainties? And how to design feedback control laws to deal with both kinds of internal 
uncertainties? Obviously, in most practical systems, there exist parametric uncertainties 
(unknown model parameters) as well as non-parametric uncertainties (e.g. unmodeled 
dynamics). Hence, it is valuable to explore answers to these fundamental yet novel 
problems. Noting that parametric uncertainties and non-parametric uncertainties essentially 
have different nature and require completely different techniques to deal with, generally it 
is difficult to deal with them in the same loop. Therefore, adaptive estimation and control in 
systems with parametric and non-parametric uncertainties is a new challenging direction. In 
this chapter, as a preliminary study, we shall discuss some basic ideas and principles of 
adaptive estimation in systems with both parametric and non-parametric uncertainties; as to 
the most difficult adaptive control problem in systems with both parametric and non-
parametric uncertainties, we shall discuss two concrete examples involving both kinds of 
uncertainties, which will illustrate some proposed ideas of adaptive estimation and special 
techniques to overcome the difficulties in the analysis closed-loop system. Because of 
significant difficulties in this new direction, it is not possible to give systematic and 
comprehensive discussions here for this topic, however, our study may shed light on the 
aforementioned problems, which deserve further investigation. 
The remainder of this chapter is organized as follows. In Section 2, a simple semi-parametric 
model with parametric part and non-parametric part will be introduced first and then we 
will discuss some basic ideas and principles of adaptive estimation for this model. Later in 
Section 3 and Section 4, we will apply the proposed ideas of adaptive estimation and 
investigate two concrete examples of discrete-time adaptive control: in the first example, a 
discrete-time first-order nonlinear semi-parametric model with bounded external noise 
disturbance is discussed with an adaptive controller based on information-contraction 
estimator, and we give rigorous proof of closed-loop stability in case where the uncertain 
parametric part is of linear growth rate, and our results reveal again the magic number 
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2
2

3
+ ; in the second example, another noise-free semi-parametric model with 

parametric uncertainties and non-parametric uncertainties is discussed, where a new 
adaptive controller based on a novel type of update law with deadzone will be adopted to 
stabilize the system, which provides yet another view point for the adaptive estimation and 
control problem for the semi-parametric model. Finally, we give some concluding remarks 
in Section 5. 

 
2. Semi-parametric Adaptive Estimation: Principles and Examples 
 

2.1 One Semi-parametric System Model 

Consider the following semi-parametric model 
 

kkkk fz εφφθ τ ++= )(                                              (2.1) 

 
where θ   Θ denotes unknown parameter vector, f(·)  F denotes unknown function and 

kk Δ∈ε denote external noise disturbance. Here Θ, F and ∆k represent a priori knowledge 

on possible θ , )( kf φ  and kε , respectively. In this model, let 

 
 

then Eq. (2.1) becomes Eq. (1.1). Because each term of right hand side of Eq. (2.1) involves 

uncertainty, it is difficult to estimate θ , )( kf φ  and kε  simultaneously. 

Adaptive estimation problem can be formulated as follows: Given a priori knowledge on θ, 
f(·) and kε , how to estimate θ and f(·) according to a series of data { nkz kk ,,2,1;, L=φ } 

Or in other words, given a priori knowledge on θ and vk, how to estimate θ and vk according 

to a series of data { nkz kk ,,2,1;, L=φ }. 

Now we list some examples of a priori knowledge to show various forms of adaptive 
estimation problem. 
 
Example 2.1 As to the unknown parameter θ, here are some commonly-seen examples of a priori 
knowledge: 

� There is no any a priori knowledge on θ  except for its dimension. This means that θ can be 
arbitrary and we do not know its upper bound or lower bound. 

� The upper and lower bounds of θ are known, i.e. θθθ ≤≤ , where θ  and θ  are constant vector 

and the relationship “≤” means element-wise “less or equal”. 
� The distance between θ and a nominal θ0 is bounded by a known constant, i.e. ||θ − θ0 || ≤ rθ, 
where rθ  ≥ 0 is a known constant and θ0 is the center of set Θ. 
� The unknown parameter lies in a known countable or finite set of values, that is to say, θ  { θ1, θ2, 
θ 3, · · · }. 
Example 2.2 As to the unknown function f(·), here are some possible examples of a priori knowledge: 
� f(x) = 0 for all x. This case means that there is no unmodeled dynamics. 
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� Function f is bounded by other known functions, that is to say, )()()( xfxfxf ≤≤ for any x. 

� The distance between f and a nominal f0 is bounded by a known constant, i.e. ||f − f0|| ≤ rf , 
where rf  ≥ 0 is a known constant and f0 can be regarded as the center of a ball F in a metric functional 
space with norm || · ||. 
� The unknown function lies in a known countable or finite set of functions, that is to say, f  {f1, f2, 
f3, · · · }. 

� Function f is Lipschitz, i.e. ||)()( 2121 xxLxfxf −≤−  for some constant L > 0. 

� Function f is monotone (increasing or decreasing) with respect to its arguments. 
� Function f is convex (or concave). 
� Function f is even (or odd). 

Example 2.3 As to the unknown noise term kε , here are some possible examples of a priori 

knowledge: 

� Sequence kε = 0. This case means that no noise/disturbance exists. 

� Sequence kε  is bounded in a known range, that is to say, εεε ≤≤ k  for any k. One special case 

is εε −= . 

� Sequence kε is bounded by a diminishing sequence, e.g, 
k

k

1
|| ≤ε  for any k . This case means 

that the noise disturbance converges to zero with a certain rate. Other typical rate sequences include 

}
1

{
2k

, }{ kδ  ( 10 << δ ), and so on. 

� Sequence kε is bounded by other known sequences, that is to say,  for any k. 

This case generalizes the above 
cases. 

� Sequence kε is in a known finite set of values, that is to say, },,,{ 21 Nk eee L∈ε . This case 

may happen in digital systems where all signals can only take values in a finite set. 

� Sequence kε is oscillatory with specific patterns, e.g. kε > 0 if k is even and kε < 0 if k is odd. 

� Sequence kε has some statistical properties, for example, 0=kEe , 
22 σ=kEe ;; for another 

example, sequence { kε } is i.i.d. taken from a probability distribution e.g. )1,0(Uk ≈ε . 

 
Parameter estimation problems (without non-parametric part) involving statistical 
properties of noise disturbance are studied extensively in statistics, system identification 
and traditional adaptive control. However, we shall remark that other non-statistic 
descriptions on a priori knowledge is more useful in practice yet seldom addressed in 
existing literature. In fact, in practical problems, usually the probability distribution of the 
noise/disturbance (if any) is not known and many cases cannot be described by any 
probability distribution since noise/disturbance in practical systems may come from many 
different types of sources. Without any a priori knowledge in mind, one frequently-used way 
to handle the noise is to simply assume the noise is Gaussian white noise, which is 
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reasonable in a certain sense. But in practice, from the point of view of engineering, we can 
usually conclude the noise/disturbance is bounded in a certain range. This chapter will 
focus on uncertainties with non-statistical a priori knowledge. Without loss of generality, in 

this section we often regard kkk fv εφ += )(  as a whole part, and correspondingly, a priori 

knowledge on kv , (e.g. kkk vvv ≤≤ ), should be provided for the study. 

 
2.2 An Example Problem 
 

Now we take a simple example to show that it may not be appropriate to apply traditional 
identification algorithms blindly so as to get the estimate of unknown parameter. 
Consider the following system 
 

kkkk kfz εφθφ ++= ),(                                                (2.2) 

 

where θ, f(·) and kε  are unknown parameter, unknown function and unmeasurable noise, 

respectively. For this model, suppose that we have the following a priori knowledge on the 
system: 
� No a priori knowledge on θ is known. 

� At any step k, the term  is of form . Here  is an 
unknown sequence satisfying 0 ≤  ≤ 1. 

� Noise kε  is diminishing with . 

And in this example, our problem is how to use the data generated from model (2.2) so as to 
get a good estimate of true value of parameter θ. In our experiment, the data is generated by 
the following settings (k = 1, 2, · · · , 50): 
 

5=θ , 
10

k
k =φ , )|sinexp(|),( kk kkf φφ = , )5.0(

1
−= kk

k
αε  

 

where }{ kα  are i.i.d. taken from uniform distribution U(0, 1). Here we have N = 50 groups 

of data . 
Since model (2.2) involves various uncertainties, we rewrite it into the following form of 
linear regression  
 

                                                          (2.3) 
 
by letting 
 

kkk kfv εφ += ),( . 

 
From the a priori knowledge for model (2.2), we can obtain the following a priori knowledge 
for the term vk 
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where 
 

 
 

Since model (2.3) has the form of linear regression, we can use try traditional identification 
algorithms to estimate θ. Fig. 1 illustrates the parameter estimates for this problem by using 
standard LS algorithm, which clearly show that LS algorithm cannot give good parameter 
estimate in this example because the final parameter estimation error 

68284.5ˆ~
≈−= θθθ k  is very large. 

 

 
Fig. 1. The dotted line illustrates the parameter estimates obtained by standard least-squares 
algorithm. The straight line denotes the true parameter. 

 
One may then argue that why LS algorithm fails here is just because the term kv  is in fact 

biased and we indeed do not utilize the a priori knowledge on vk. Therefore, we may try a 
modified LS algorithm for this problem: let 
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then we can conclude that kkk wy += φθ τ
and ],[ kkk ddw −∈ , where ],[ kk dd− is a 

symmetric interval for every k. Then, intuitively, we can apply LS algorithm to data 

{ ),( kk zφ , k = 1, 2, · · · ,N}. The curve of parameter estimates obtained by this modified LS 

algorithm is plotted in Fig. 2. Since the modified LS algorithm has removed the bias in the a 
priori knowledge, one may expect the modified LS algorithm may give better parameter 
estimates, which can be verified from Fig. 2 since the final parameter estimation error 

83314.1ˆ~
−≈−= θθθ NN . In this example, although the modified LS algorithm can 

work better than the standard LS algorithm, the modified LS algorithm in fact does not help 
much in solving our problem since the estimation error is still very large comparing with the 
true value of the unknown parameter. 
 

 
Fig. 2. The dotted line illustrates the parameter estimates obtained by modified least-squares 
algorithm. The straight line denotes the true parameter. 
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From this example, we do not aim to conclude that traditional identification algorithms 
developed in linear regression are not good, however, we want to emphasize the following 
particular point: Although traditional identification algorithms (such as LS algorithm) are very 
powerful and useful in practice, generally it is not wise to apply them blindly when the matching 
conditions, which guarantee the convergence of those algorithms, cannot be verified or asserted a 
priori. This particular point is in fact one main reason why the so-called minimum-variance 
self tuning regulator, developed in the area of adaptive control based on the LS algorithm, 
attracted several leading scholars to analyze its closed-loop stability throughout past 
decades from the early stage of adaptive control. 
To solve this example and many similar examples with a priori knowledge, we will propose 
new ideas to estimate the parametric uncertainties and the non-parametric uncertainties. 

 
2.3 Information-Concentration Estimator 

We have seen that there exist various forms of a priori knowledge on system model. With the 
a priori knowledge, how can we estimate the parametric part and the non-parametric part? 
Now we introduce the so-called information-concentration estimator. The basic idea of this 
estimator is, the a priori knowledge at each time step can be regarded as some constraints of 
the unknown parameter or function, hence the growing data can provide more and more 
information (constraints) on the true parameter or function, which enable us to reduce the 
uncertainties step by step. We explain this general idea by the simple model 
 

                                                         (2.4) 
 

with a priori knowledge that 
kk

d VR ∈⊆Θ∈ υθ , . Then, at k-th step (k ≥1), with the 

current data k, 
kk z,φ we can define the so-called information set Ik at step k: 

 

                                            (2.5) 
 

For convenience, let I0 = Θ. Then we can define the so-called concentrated information set Ck at 
step k as follows 
 

                                                             (2.6) 
 

which can be recursively written as 
 

                                                   (2.7) 
 

with initial set C0 = Θ. Eq. (2.7) with Eq. (2.5) is called information-concentration estimator 

(short for IC estimator) throughout this chapter, and any value in the set kC  can be taken as 

one possible estimate of unknown parameter θ  at time step k . The IC estimator differs 

from existing parameter identification in the sense that the IC estimator is in fact a set-
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valued estimator rather than a real-valued estimator. In practical applications, generally 

kC is a domain in 
dR , and naturally we can take the center point of  kC  as kθ̂ . 

Remark 2.1 The definition of information set varies with system model. In general cases, it can be 

extended to the set of possible instances of θ  (and/or f ) which do not contradict with the data at 

step k. We will see an example involving unknown f in next section. 
From the definition of the IC estimator, the following proposition can be obtained without 
difficulty: 
 
Proposition 2.1 Information-concentration estimator has the following properties: 
 

(i) Monotonicity: L⊇⊇⊇ 210 CCC  

 

(ii) Convergence: Sequence {Ck} has a limit set k
k
CC

∞

=∞ ∩=
1

; 

 

(iii) If the system model and the a priori knowledge are correct, then  must be a non-empty set 
with property θ   and any element of  can match the data and the model; 

 

(iv) If ∅=∞C , then the data  },{ kk zφ  cannot be generated by the system model used by the IC 

estimator under the specified a priori knowledge. 

 
Proposition 2.1 tells us the following particular points of the IC estimator: property (i) 
implies that the IC estimator will provide more and more exact estimation; property (ii) 
means that the there exists a limitation in the accuracy of estimation; property (iii) means 

that true parameter lies in every 
kC  if the system model and a priori knowledge are correct; 

and property (iv) means that the IC estimator provides also a method to validate the system 
model and the a priori knowledge. Now we discuss the IC estimator for model (2.4) in more 
details. In the following discussions, we only consider a typical a priori knowledge on 

kkk vvv ≤≤  are two known sequences of vectors (or scalars). 

 
2.3.1 Scalar case: d = 1 

By Eq. (2.5), we have 
 

 
 
Solving the inequality in Ik, we obtain that 
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and consequently, if 0≠kφ , then we have 

 

 
 
where 
 

 
 
Here sign(x) denotes the sign of x: sign(x) = 1, 0,−1 for positive number, zero, and negative 
number, respectively. Then, by Eq. (2.7), we can explicitly obtain that 
 

 
 

where  and  can be recursively obtained by 
 

 
 

 
Fig. 3. The straight line may intersect the polygon V and split it into two sub-polygons, one 
of which will become new polygon V'. The polygon V' can be efficiently calculated from the 
polygon V. 
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2.3.2 Vector case: d > 1 

In case of d > 1, since θ and kφ  are vectors, we cannot directly obtain explicit solution of 

inequality 
 

                                          (2.8) 
 
Notice that Eq. (2.8) can be rewritten into two separate inequalities: 
 

 
 

we need only study linear equalities of the form cT ≤θφ . Generally speaking, the solution 

to a system of inequalities represents a polyhedral (or polygonal) domain in Rd, hence we 
need only determine the vertices of the polyhedral (or polygonal) domain. In case of d = 2, it 

is easy to graph linear equalities since every inequality cT ≤θφ represents a half-plane. In 

general case, let { }kik piv ,,2,1, L=/= υ denote the distinct vertices of the domain kC  

and kp denote the number of vertices of domain kC , then we discuss how to deduce kV  

from 1−kV . The domain kC  has two more linear constraints than the domain 1−kC  

 

 
 

with  
 

 

 
We need only add these two constraints one by one, that is to say,  
 

 
 

where  is an algorithm whose function is to add linear constraint 

cT ≤θφ  to the polygon represented by vertex set V and to return the vertex set of the new 

polygon with added constraint. 
 
Now we discuss how to implement the algorithm AddLinearConstraint. 
 

2D Case: In case of d = 2, cT ≤θφ  represents a straight line which splits the plane into two 

half-planes (see Fig. 3). In this case, we can use an efficient algorithm 
AddLinearConstraint2D which is listed in Algorithm 1. Its basic idea is to simply test each 
vertex of V to see whether to keep original vertex or generate new vertex. The time 
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complexity of Algorithm 1 is O(s), where s is the number of vertices of domain V. Note that 

it is possible that V' = Ø if the straight line L : cT ≤θφ does not intersect with the polygon 

V and any vertex iP  of polygon V does not satisfy cPi
T >φ . And the vertex number of 

polygon 'V  can in fact vary within the range from 0 to s according to the geometric 

relationship between the straight line L and the polygon V. 
 

 
 

High-dimensional Case: In case of d > 2, cT ≤θφ  represents a hyperplane which splits 

the whole space into two half-hyperplanes. 
Unlike in case of d = 2, the vertices in this case generally cannot be arranged in a certain 
natural order (such as clock-wise order). In this case, we can use an algorithm 
AddLinearConstraintND which is listed in Algorithm 2. The idea of this algorithm is to 
classify the vertices of V first according to their relationship with the hyperplane determined 

by hyperplane cT ≤θφ . 

 

Algorithm 2 AddLinearConstraintND(V, ", c): Add linear constraint cT ≤θφ  (" % Rd) to a 

polyhedron V 
 
2.3.3 Implementation issues 

In the IC estimator, the key problem is to calculate the information set Ik or the concentrated 
information set Ck at every step. From the discussions above, we can see that it is easy to 
solve this basic problem in case of d = 1. However, in case of d > 1, generally the vertex 
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number of domain kC  may grow as  ∞→k . Therefore, it may be impractical to 

implement the IC estimator in case of d > 1 since it may require growing memory as 

∞→k  To overcome this problem, noticing the fact that the domain Ck will shrink 

gradually as ∞→k  in order to get a feasible IC estimate of the unknown parameter 

vector, generally we need not use too many vertices to represent the exact concentrated 
information set Ck. That is to say, in practical implementation of IC estimator in high-
dimensional case, we can use a domain Ĉk with only a small number (say up to M) of 
vertices to approximate the exact concentrated information set Ck. With such an idea of 
approximate IC estimator, the issue of computational complexity will not hinder the 
applications of IC estimator. 

We consider two typical cases of approximate IC estimator. One typical case is that   

for any k, and the other case is that  for any k. Let  k
k
CC ˆˆ

1

∞

=∞ ∩= , then in the 

former case (called loose IC estimator, see Fig. 4), we must have 

 

 
 
which means that we will never mistakenly exclude the true parameter from the 
concentrated approximate information sets; while in the latter case (called tight IC estimator, 
see Fig. 5), we must have 
 

 
 

which means that the true parameter may be outside of ∞Ĉ however any value in ∞Ĉ can 

be served as good estimate of true parameter. 

 

 
Fig. 4. Idea of loose IC estimator: The polygon P1P2P3P4P5 can be approximated by a triangle 
Q1P4Q2. Here M = 3. 
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Fig. 5. Idea of tight IC estimator: The polygon P1P2P3P4P5 can be approximated by a triangle 
P3P4P5. Here M = 3. 

 
Now we discuss implementation details of tight IC estimator and loose IC estimator. Without 
loss of generality, we only explain the ideas in case of d = 2. Similar ideas can be applied in 
cases of d > 2 without difficulty. 
 
Tight IC estimator: To implement a tight IC estimator, one simple approach is to modify 
Algorithm 1 so as it just keeps up to M vertices in the queue Q. To get good approximation, 
in the loop of Algorithm 1, it is suggested to abandon the generated vertex 'P (in Line 12 of 
Algorithm 1) which is very close to existing vertex Pj (let j = i if δi < 0 and δi−1 > 0 or j = i − 1 
if δi > 0 and δi−1 < 0). The closeness between P´ and existing vertex Pj can be measured by 
checking the corresponding weightw . 

Loose IC estimator: To implement a loose IC estimator, one simple approach is to modify 
Algorithm 1 so as it can generate M vertices which surround all vertices in the queue Q. To 
this end, in the loop of Algorithm 1, if the generated vertex 'P  (in Line 12 of Algorithm 1) is 
very close to existing vertex Pj (let j = i if δi < 0 and δi−1 > 0 or j = i − 1 if δi > 0 and δi−1 < 0), 
we can simply append vertex Pj instead of P´ to queue Q. In this way, we can avoid 
increasing the vertex number by generating new vertices. The closeness between P´ and 
existing vertex Pj can be measured by checking the corresponding weight w. 
Besides the ideas of tight or loose IC estimator, to reduce the complexity of IC estimator, we 
can also use other flexible approaches. For example, to avoid growth in the vertex number of 
Vk as , we can approximate Vk by using a simple outline rectangle (see Fig. 6) every 
certain steps. For a polygon Vk with vertices P1, P2, · · · , Ps, we can easily obtain its outline 
rectangle by algorithm FindPolygonBounds listed in Algorithm 3. Here for convenience, the 
operators max and min for vectors are defined element-wisely, i.e. 
 

 
 

where   are two vectors in Rn.  
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Fig. 6. Idea of outline rectangle: The polygon 54321 PPPPP  can be approximated by an 

outline rectangle. In this case, 11,BB  denote the lower bound and upper bound in the x-

axis (1st component of each vertex), and  22 ,BB  denote the lower bound and upper bound 

in the y-axis (2nd component of each vertex) 

 
2.4 IC Estimator vs. LS Estimator 
 

2.4.1 Illustration of IC Estimator 

Now we go back to the example problem discussed before. For this example, kφ  and zk are 

scalars, hence we need only apply the IC estimator introduced in Section 2.3.1. Since IC 

estimator yields concentrated information set kC  at every step, we can take any value in 
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kC  as parameter estimate of true parameter. In this example, kC  is an interval at every 

step step. For comparison with other parameter estimation methods, we simply take 

)(
2

1ˆ
kkk bb +=θ , i.e. the center of interval kC , as the parameter estimate at step k. 

In Fig. 7, we plot three curves kb , kb and kθ̂ . From this figure, we can see that, for this 

particular example, with the help of a priori knowledge, the upper estimates kb  and lower 

estimates kb  given by the IC estimator converge to true parameter θ = 5 quickly, and 

consequently kθ̂  also converges to true parameter. 

 

 
Fig. 7. This figure illustrates the parameter estimates obtained by the proposed information-

concentration estimator. The upper curve and lower curve represent the upper bounds kb  

and lower bounds kb  for the parameter estimates. We use the center curve     

( )kkk bb +=
2

1θ̂  to yield the parameter estimates. 

 
We should also remark that the parameter estimates given by the IC estimator are not 
necessarily convergent as in this example. Whether the IC parameter estimates converge 
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largely depend on the accuracy of a priori knowledge and the richness of the practical data. 
Note that the IC estimator generally does not require classical richness concepts (like 
persistent excitation) which are useful in the analysis of traditional recursive identification 
algorithms. 

 
2.4.2 Advantages of IC Estimator 

We have seen practical effects of IC estimator for the simple example given above. Why can 
it perform better than the LS estimator? Roughly speaking, comparing with traditional 
identification algorithm like LS algorithm, the proposed IC estimator has the following 
advantages: 
 
1. It can make full use of a priori information and posterior information. And in the ideal 
case, no information is wasted in the iteration process of the IC estimator. This property is 
not seen in traditional identification algorithms since only partial information and certain 
stochastic a priori knowledge can be utilized in those algorithms. 
2. It does not give single parameter estimate at every step; instead, it gives a (finite or 
infinite) set of parameter estimates at every step. This property is also unique since 
traditional identification algorithms always give parameter estimates directly. 
3. It can gradually find out all (or most) possible values of true parameters; and this 
property can even help people to check the consistence between the practical data and the 
system model with a priori knowledge. This property distinguishes traditional identification 
algorithms in sense that traditional identification algorithms generally have no mechanism 
to validate the correctness of the system model. 
4. The a priori knowledge can vary from case to case, not necessarily described in the 
language of probability theory or statistics. This property enables the IC estimator to handle 
various kinds of non-statistic a priori knowledge, which cannot be dealt with by traditional 
identification algorithms. 
5. It has great flexibilities in its implementation, and its design is largely determined by the 
characteristics of a priori knowledge. The IC estimator has only one basic principle—information 
concentration! Any practical implementation approach using such a principle can be 
regarded as an IC estimator. We have discussed some implementation details for a certain 
type of IC estimator in last subsection, which have shown by examples how to design the IC 
estimator according the known a priori knowledge and how to reduce computational 
complexity in practical implementation. 
6. Its accuracy will never degrade as time goes by. Generally speaking, the more steps 
calculated, the more data involved, and the more accurate the estimates are. Generally 
speaking, traditional identification algorithms can only have similar property (called strong 
consistency) under certain matching conditions. 
7. The IC estimator can not only provide reasonably good parameter estimates but also tell 
people how accurate these estimates are. In our previous example, when we use 

( )kkk bb +=
2

1θ̂ as the parameter estimate, we know also that the absolute parameter 

estimation error  θθθ −= ˆ~   will not exceed ( )kk bb +
2

1
. In some sense, such a property 

may be conceptually similar to the so-called confidence level in statistics. 
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2.4.3 Disadvantages of IC Estimator 

Although the IC estimator has many advantages over traditional identification algorithms, it 
may have the following disadvantages: 
 
1. The proposed IC estimator is relatively difficult to incorporate stochastic a priori 
knowledge on noise term, especially unbounded random noise. In fact, in such cases 
without non-parametric uncertainties, traditional identification algorithms like LS algorithm 
may be more suitable and efficient to estimate the unknown parameter. 
2. The efficiency of IC estimator largely depends on its implementation via the 
characteristics of the a priori knowledge. Generally speaking, the IC estimator may involve a 
little more computation operations than recursive identification algorithms like LS 
algorithm. We shall remark also that this point is not always true since the numerical 
operations involved in the IC estimator are relatively simple (see algorithms listed before), 
while many traditional identification algorithms may involve costly numerical operations 
like matrix product, matrix inversion, etc. 
3. Although the IC estimator has simple and elegant properties such as monotonicity and 
convergence, due to its nature of set-valued estimator, no explicit and recursive expressions can 
be given directly for the IC parameter estimates, which may bring mathematical difficulties 
in the applications of the IC estimator. However, generally speaking, we also know that 
closed-loop analysis for adaptive control using traditional identification algorithms is not 
easy, too. 
 
Summarizing the above, we can conclude that the IC estimator provides a new approach or 
principle to estimate parametric and even non-parametric uncertainties, and we have shown 
that it is possible to design efficient IC estimator according to characteristics of a priori 
knowledge. 

 
3. Semi-parametric Adaptive Control: Example 1 
 

In this section, we will give a first example of semi-parametric adaptive control, whose 
design is essentially based on the IC estimator introduced in last section. 

 
3.1 Problem Formulation 

Consider the following system 
 

                                 (3.1) 
 

where yt, ut and wt are the output, input and noise, respectively; )()( LFf ∈⋅  is an 

unknown function (the set F(L) will be defined later) and θ  is an unknown parameter. To 

make further study, the following assumptions are used throughout this section: 

Assumption 3.1 The unknown function RRf →: belongs to the following uncertainty set 

 

                              (3.2) 
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where c is an arbitrary non-negative constant. 

Assumption 3.2 The noise sequence }{ tw is bounded, i.e. 

 

 
 
where w is an arbitrary positive constant. 

Assumption 3.3 The tracking signal }{ *

ty  is bounded, i.e. 

 

                                                   (3.3) 
where S is a positive constant. 

Assumption 3.4 In the parametric part tθφ , we have no any a priori information of the unknown 

parameter θ, but )( tt yg=φ is measurable and satisfies 

 

                                          (3.4) 
 

for any 21 xx ≠ , where M' ≤ M are two positive constants and 1≥b is a constant. 

Remark 3.1 Assumption 3.4 implies that function g(·) has linear growth rate when b = 1. Especially 
when g(x) = x, we can take M = M' = 1. Condition (3.4) need only hold for sufficiently large x1 and 
x2, however we require it holds for all x1 ≠ x2 to simplify the proof. We shall also remark that Sokolov 
[Sok03] has ever studied the adaptive estimation and control problem for a special case of model (3.1), 

where tφ  is simply taken as tay . 

Remark 3.2 Assumption 3.4 excludes the case where g(·) is a bounded function, which can be 

handled easily by previous research. In fact, in that case 11' ++ += ttt ww θφ  must be bounded, 

hence by the result of [XG00], system (3.1) is stabilizable if and only if  2
2

3
+<L . 

 
3.2 Adaptive Controller Design 

In the sequel, we shall construct a unified adaptive controller for both cases of b =1 and b >1.  
For convenience, we introduce some notations which are used in later parts. Let I = [a, b] be 

an interval, then )(
2

1
)( baIm +=
Δ

 (a+ b) denotes the center point of interval I, and    

( ) abIr −=
Δ

2

1
denotes the radius of interval I. And correspondingly, we let    

( ) [ ]δδδ +−= xxxI ,,  denote a closed interval centered at Rx∈  with radius δ ≥ 0. 

 
Estimate of Parametric Part: At time t, we can use the following information: y0, y1, · · · , yt, 

u0, u1, · · · , ut−1  and tφφφ ,,, 21 L . Define 
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                                                       (3.5) 
 
and 
 

                    (3.6) 
 
where 
 

                              (3.7) 
 
then, we can take 
 

                                     (3.8) 
 

as the estimate of parameter θ at time t and corresponding estimate error bound, 

respectively. With  and δt defined above, ttt δθθ += ˆ  and ttt δθθ −= ˆ  are the 

estimates of the upper and lower bounds of the unknown parameter θ , respectively. 

According to Eq. (3.6), obviously we can see that }{ tθ  is a non-increasing sequence and 

}{ tθ  is non-decreasing. 

Remark 3.3 Note that Eq. (3.6) makes use of a priori information on nonlinear function f(·). This 
estimator is another example of the IC estimator which demonstrates how to design the IC estimator 
according to the Lipschitz property of function f(·). With similar ideas, the IC estimator can be 
designed based on other forms of a priori information of function f(·). 

Estimate of Non-parametric Part: Since the non-parametric part )( tyf may be unbounded 

and the parametric part is also unknown, generally speaking it is not easy to estimate the 
non-parametric part directly. To resolve this problem, we choose to estimate 
 

 
 

as a whole part rather than to estimate f(yt) directly. In this way, consequently, we can 
obtain the estimate of f(yt) by removing the estimate of parametric part from the estimate of 
gt. 
Define 
 

                                                   (3.9) 
 

then, we get 
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             (3.10) 
 

Thus, intuitively, we can take 
 

                (3.11) 
 

as the estimate of tg  at time t . 

 
Design of Control ut: Let 
 

                                     (3.12) 
 

Under Assumptions 3.1-3.4, we can design the following control law 
 

                        (3.13) 
 

where D is an appropriately large constant, which will be addressed in the proof later. 
Remark 3.4 The controller designed above is different from most traditional adaptive controllers in 
its special form, information utilization and computational complexity. To reduce its computational 
complexity, the interval It given by Eq. (3.6) can be calculated recursively based on the idea in Eq. 
(3.12). 

 
3.3 Stability of Closed-loop System 

In this section, we shall investigate the closed-loop stability of system (3.1) using the 
adaptive controller given above. We only discuss the case that the parametric part is of 
linear growth rate, i.e. b = 1. For the case where the parametric part is of nonlinear growth 
rate, i.e. b > 1, though simulations show that the constructed adaptive controller can stabilize 
the system under some conditions, we have not rigorously established corresponding 
theoretical results; further investigation is needed in the future to yield deeper 
understanding. 

 
3.3.1 Main Results 

The adaptive controller constructed in last section has the following property: 

Theorem 3.1 When 2
2

3

'
,1 +<=
M

ML
b , the controller defined by Eqs. (3.5)— (3.13) can 

guarantee that the output {yt} of the closed-loop system is bounded. More precisely, we have  
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                                 (3.14) 
 

Based on Theorem 3.1, we can classify the capability and limitations of feedback mechanism 
for the system (3.1) in case of b = 1 as follows: 
Corollary 3.1 For the system (3.1) with both parametric and non-parametric uncertainties, the 
following results can be obtained in case of b = 1: 
 

(i) If 2
2

3

'
,1 +<=
M

ML
b , then there exists a feedback control law guaranteeing that the closed-

loop system is stabilized. 

(ii) When tt y=φ  (i.e. xxg =)( ), the presence of uncertain parametric part tθφ  does not reduce 

the critical value 2
2

3
+ of the feedback mechanism which is determined by the uncertainties of 

non-parametric part. 

 
Proof of Corollary 3.1: (i) This result follows from Theorem 3.1 directly. (ii) When g(x) = x, we 
can take M = M´ = 1. In this case, the sufficiency can be immediately obtained via Theorem 
3.1; on the other hand, the necessity can be obtained by the “impossibility” part of Theorem 

1 in [XG00]. In fact, if 2
2

3
+≥L , for any given control law {ut}, we need only take the 

parameter θ = 0, then by [XG00, Theorem 2.1], there exists a function f such that system (3.1) 
cannot be stabilized by the given control law.  
Remark 3.5 As we have mentioned in the introduction part, system (1.6), a special case of system 
(3.1), has been studied in [XG00]. Comparing system (3.1) and system (1.6), we can see that system 
(3.1) has also parametric uncertainty besides nonparametric uncertainty and noise disturbance. 
Hence intuitively speaking, it will be more difficult for the feedback mechanism to deal with 
uncertainties in system (3.1) than those in system (1.6). Noting that M'≤  M, we know this fact has 
been partially verified by Theorem 3.1. And Corollary 3.1 (ii) indicates that in the special case of 

tt y=φ , since the structure of parametric part is completely determined, the uncertainty in non-

parametric part becomes the main difficulty in designing controller, and the parametric uncertainty 
has no influence on the capability of the feedback mechanism, that is to say, the feedback mechanism 

can still deal with the non-parametric uncertainty characterized by the set F(L) with 2
2

3
+<L . 

Remark 3.6 Theorem 3.1 is also consistent with classic results on adaptive control for linear systems. 
In fact, when L = 0, the non-parametric part f(yt) vanishes, consequently system (3.1) becomes a 
linear-in-parameter system 
 

11 ++ ++= tttt wuy θφ                                                 (3.15) 
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where θ  is the unknown parameter, and )( tt yg=φ  can have arbitrary linear growth rate because 

by Theorem 3.1, we can see that no restrictions are imposed on the values of M  and 'M when L = 
0. Based on the knowledge from existing adaptive control theory [CG91], system (3.15) can be always 

stabilized by algorithms such as minimum-variance adaptive controller no matter how large the θ  is. 
Thus the special case of Theorem 3.1 reveals again the well-known result in a new way, where the 
adaptive controller is defined by Eq. (3.13) together with Eqs. (3.5)—(3.12). 

Corollary 3.2 If b = 1, 0,2
2

3

'
==+< wc

M

ML
, then the adaptive controller defined by Eqs. 

(3.5)— (3.13) can asymptotically stabilize the corresponding noise-free system, i.e. 
 

                                               (3.16) 

 
3.3.2 Preliminary Lemmas 

To prove Theorem 3.1, we need the following Lemmas: 
Lemma 3.1 Assume {xn} is a bounded sequence of real numbers, then we must have 
 

                                             (3.17) 
 

Proof: It is a direct conclusion of [XG00, Lemma 3.4]. It can be proved by argument of 
contradiction.  

Lemma 3.2 Assume that 0,0),2
2

3
,0( 0 ≥≥+∈ ndL . If non-negative sequence {hn, n ≥ 0} 

satisfies 
 

                      (3.18) 
 

where Rxxx ∈∀=
Δ

+ ),0,max( , then we must have 

 

                                                (3.19) 
 
Proof: See [XG00, Lemma 3.3].  

 
3.3.3 Proof of Theorem 3.1 

Proof of Theorem 3.1: We divide the proof into four steps. In Step 1, we deduce the basic 

relation between yt+1 and , and then a key inequality describing the upper bound of 

||
tit yy −  is established in Step 2. Consequently, in Step 3, we prove that 0|| →−

tit yy  
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as ∞→t  if yt is not bounded, and hence the boundedness of output sequence {yt} can be 

guaranteed. Finally, in the last step, the bound of tracking error can be further estimated 
based on the stability result obtained in Step 3. 
Step 1: Let 
 

                       (3.20) 
 

then, by definition of ut and Eq. (3.13), obviously we get 
 

                          (3.21) 
 

Now we discuss 
#

1+ty . By Eq. (3.11) and Eq. (3.1), we get 

 
 
 
 

(3.22) 
 
 
 
 
 
 

In case of 
tit φφ = , i.e. yt = yit , obviously we get 

 

                           (3.23) 
 
otherwise, we get 
 

                  (3.24) 
 

where 
 

      
 

Obviously jiij DD = . In the latter case, i.e. when 
tit φφ ≠ , for any tJji ∈),( , noting that 
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                       (3.25) 
 

we obtain that 
 

                      (3.26) 
 
Therefore 
 

            (3.27) 
 

where 
 

                                      (3.28) 
 

Step 2: Since 2
2

3

'
+<

M

ML
, there exists a constant 0>ε such that 2

2

3

'
+<+ ε

M

ML
.  

 
Let 
 

                           (3.29) 
 
and consequently 
 

                    (3.30) 
 

By the definitions of  tb , tb  and tB , we obtain that 

 

           (3.31) 
 

By the definition of ti , obviously we get 
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                          (3.32) 
 

Step 3: Based on Assumption 3.4, for any fixed 0>ε , we can take constants D andD´ such 

that  
ε

φφ )2(4
|| ' cwM
Dji

+
>>−  when Dyy

tit >− || . Now we are ready to show that for 

any s > 0, there always exists t > s such that Dyy
tit >− ||  . 

 

In fact, suppose that it is not true, then there must exist s > 0 such that Dyy
tit >− || for 

any t > s, correspondingly itt φφ − > D´. Consequently, by the definition of D, for 

sufficiently large t and j < t, we obtain that 
 

                                      (3.33) 
 

together with the definition of tθ̂ , we know that for any s < i < j < t, 

 

                           (3.34) 
 

hence for jiitjs =<< , , we get 

 

                        (3.35) 
 

Now we consider 
jt ijit DD ,, − . 

Let 
ninn Dd ,= , then, by the definition of Di,j , noting that Dyyyy

jijij >−≥− |||| for 

any j > s, we obtain that 
 

                          (3.36) 
 

so we can conclude that {dn, n > s} is bounded. Then, by Lemma 3.1, we conclude that 
 

                                       (3.37) 
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Consequently there exists s´ > s such that for any t > s´, we can always find a corresponding 
j=j(t) satisfying 
 

                                            (3.38) 
 

Summarizing the above, for any t > s´, by taking j = j(t), we get 
 
  
 
 

                            (3.39) 
 
 
 
 
Therefore 
 

              (3.40) 
 

Since |yt − yit | > D, we know that 
 

                                                (3.41) 
 

From Eq. (3.39) together with the result in Step 2, we obtain that 
 

              (3.42) 
 

Thus noting (3.40), we obtain the following key inequality: 
 

                            (3.43) 
 
where 
 

                    (3.44) 
 

Considering the arbitrariness of t > s´, together with Lemma 3.2, we obtain that 
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                                                           (3.45) 
 

and consequently { || tB } must be bounded. By applying Lemma 3.1 again, we conclude 

that 
 

                                           (3.46) 
 
which contradicts the former assumption! 
Step 4: According to the results in Step 3, for any s > 0, there always exists t > s such that 

Dyy
tit ≤− || . Then, we can easily obtain that { |

~
| tθ } is bounded, say 

'|
~

| Lt ≤θ . 

Considering that 
 

                 (3.47) 
 

we can conclude that 
 

                    (3.48) 
 

where . 
The proof below is similar to that in [XG00]. Let 
 

                   (3.49) 
 

Because of the result obtained above, we conclude that for any n ≥ 1, tn is well-defined and tn 

< ∞. Let 
ntn yv = , then obviously {vn} is bounded. Then, by applying Lemma 3.1, we get 

 

                                                       (3.50) 
 

as ∞→n . Thus for any 0>ε , there exists an integer n0 such that for any n > n0, 

  

                                                    (3.51) 
  

So 
 

               (3.52) 
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By taking ε  sufficiently small, we obtain that 

 

                     (3.53) 
 

for any n > n0. 
Thus based on definition of tn, we conclude that tn+1 = tn + 1! Therefore for any 

0n
tt ≥ , 

 

                                                        (3.54) 
 

which means that the sequence {yt} is bounded. 

Finally, by applying Lemma 3.1 again, for sufficiently large t, ε≤− ||
tit yy consequently 

 

                        (3.55) 
 
Because of arbitrariness of ε , Theorem 3.1 is true.  

 
3.4 Simulation Study 

In this section, two simulation examples will be given to illustrate the effects of the adaptive 
controller designed above. In both simulations, the tracking signal is taken as 

10
sin10* t

y t =  and the noise sequence is i.i.d. randomly taken from uniform distribution 

U(0, 1). The simulation results for two examples are depicted in Figure 8 and Figure 9, 

respectively. In each figure, the output sequence  and the reference sequence  are 

plotted in the top-left subfigure; the tracking error sequence 
*

ttt yye −=
Δ

 is plotted in the 

bottom-left subfigure; the control sequence tu  is plotted in the top-right subfigure; and the 

parameter θ together with its upper and lower estimated bounds is plotted in the bottom-
right subfigure. 
Simulation Example 1: This example is for case of b = 1, and the unknown plant is 
 

                     (3.56) 
 

with  xxgL =+<= )(,2
2

3
9.2  (i.e. 1',1 === MMb ) 

 
and 
 

                                  (3.57) 
 

For this example, we can verify that 
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           (3.58) 
 

consequently |||)()(| yxLyfxf −<− , i.e. )()( LFf ∈⋅ .. 

Simulation Example 2: This example is for case of b > 1, and the unknown plant is 
 

                  (3.59) 
 

with  9.2=L , 
2)( xxg =  (i.e. 2=b , 1' == MM ), and 

 

                                                (3.60) 
 

For this example, we can verify that  2|||)()(| +−<− yxLyfxf , i.e. )()( LFf ∈⋅ . 

From the simulation results, we can see that in both examples, the adaptive controller can 
track the reference signal successfully. The simulation study verified our theoretical result 
and indicate that under some conditions, the adaptive control law constructed in this paper 
can deal with both parametric and non-parametric uncertainties, even in some cases when 
the parametric part is of nonlinear growth rate. In case of b = 1, the stabilizability criteria 
have been completely characterized by a simple algebraic condition; however, in case of b > 
1, it is very difficult to give complete theoretical characterization. Note that usually more 
accurate estimate of parameter can be obtained in case of b > 1 than in case of b = 1, 
however, worse transient performance may be encountered. 
 

 
Fig. 8. Simulation example 1: (g(x) = x, b = 1,M = M´ = 1) 
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Fig. 9. Simulation example 2: (g(x) = x2, b = 2,M = M´ = 1) 

 
4. Semi-parametric Adaptive Control: Example 2 
 

In this section, we shall give another example of adaptive estimation and control for a semi-
parametric model. Although the system considered in this section is similar to the model 
considered in last section, there are several particular points in this example: 
 
� The controller gain in this model is also unknown with a priori knowledge on its sign and 
its lower bound. 

� The system is noise-free, and correspondingly the asymptotic tracking is rigorously 
established in this example. 

� The algorithm in this example has a form of gradient algorithm, however, it partially 
makes use of a priori knowledge on the non-parametric part. 

� Due to the limitation of this algorithm and technical difficulties, unlike the algorithm in 
last section, we can only establish stability of the closed-loop system under condition 

5.00 << L  for the parametric part, which is much stronger than the condition 

2
2

3
0 +<≤ L

. 

 
This example is given here only for the purpose of demonstrating that there exist other 
possible ways to make use of a priori knowledge on the parametric uncertainties and non-
parametric uncertainties. By comparing the examples in this section and last section, the 
readers may get a deeper understanding to adaptive estimation and control problems for 
semi-parametric models. 
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4.1 Problem Formulation 
 

We consider the following system model 
 

                                 (4.1) 
  

where 
1Ryk ∈  and 

1Ruk ∈  are output and control signals, respectively. Here 
1R∈θ is 

the unknown parameter, 
1Rb∈ is the unknown controller gain, )(⋅Φ is a known function, 

and f(·) is the unknown function. We have the following a priori knowledge on the real 
system: 
 
Assumption 4.1 The nonparametric uncertain function f(·) is Lipschitz, i.e., 

RxxxxLxfxf ∈∀−≤− 212121 ,||,||||)()(|| , where L < 0.5. The known function )(⋅Φ is also a 

Lipschitz function with Lipschitz constant L. 
 
Assumption 4.2 The sign of unknown controller gain b is known. Without loss of generality, we 

assume that 0>≥ bb  where b is a known constant. 

 

Assumption 4.3 The reference signal 
*

ky is a known bounded deterministic signal. 

The control objective is to design the control law ku  such that the output signal yk 

asymptotically tracks a bounded reference trajectory 
*

ky  and all the closed-loop signals are 

guaranteed to be bounded. 

 
4.2 Adaptive Control Design 

To design the adaptive controller, the following notations will be used throughtout this 
section: 
 

                                        (4.2) 
 

Obviously, at time step k, with the history information {yj , j ≤ k} and the a priori knowledge, 

the index kl  and the tracking error ke  are available. Later we will see important roles of 

kl and ke in the controller design. 

 

Estimation of parametric part: The estimates of the parameter θ  and the controller gain b at 

time step k are denoted by  and , respectively. We design the following adaptive 
update law to update the parameter estimates recursively: 
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where 10 << γ  and the coefficient ka  is defined by a time-varying deadzone: 

 

                    (4.4) 
 
Estimation of non-parametric part: As in last section, we do not estimate the non-
parametric part directly. Instead, we try to estimate  the parametric  part  and  non-
parametric part  as a  whole part 
 

                                         (4.5) 
 

Noticing of the system model (4.1), we know that 
 

                                                  (4.6) 
 

consequently, from Eqs. (4.5) and (4.6), it is easy to derive 
 
  
 

                       (4.7) 
 
 
 

Since function f(·) is unknown and parameters θ  and b are unknown, we simply estimate 
#

ky  by the following eqution 

 

                 (4.8) 
 

where  and  are regarded as true parameters, and the unknown term 

)()(
klk yfyf −  in Eq. (4.7) is simply dropped off. 
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Adaptive control law: By Eq. (4.6), according to the certainty equivallence principle, we can 
design the following adaptive control law 
 

                                              (4.9) 
 

Where kb̂  and 
#ˆ
ky are given by Eqs. (4.3) and (4.7). The closed-loop stability will be given 

later. 

 
4.3 Asymptotic Tracking Performance 
 

4.3.1 Main Results 

Theorem 4.1 In the closed-loop system (4.1) with control law (4.9) and parameters adaptation law 
(4.3), under Assumptions 4.1—4.3, all the signals in the closed-loop system are bounded and further 

the tracking error 
ke  will converge to zero. 

 
4.3.2 Preliminaries 

Definition 4.1 Let kx  and ky  ( 0≥k ) be two discrete-time scalar or vector signals. 

 

� We denote ][ kk yOx = , if there exist positive constants m1 and m2 such that 
1|||| mxk ≤  

2||||max my jkj +≤
, 

0kk >∀  and k0 is the initial time step. 

 

� We denote ][ kk yox = , if there exists a sequence kα  satisfying 0lim →∞→ kk α  such that 

1|||| mxk ≤  
2||||max my jkj +≤
, 

0kk >∀ . 

� We denote kk yx ~  if they satisfy ][ kk yOx =  and ][ kk xOy = . 

 
Lemma 4.1 Consider the following parameter update law 
 

                                                 (4.10) 
 

                                               (4.11) 
 

                   (4.12) 
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where R∈θ  is an unknown scalar, kθ̂  is its estimate at time step k , Ǎ is the lower bound of θ, 

and Rk ∈η is any  sequence. Then, μθ ≥kˆ  is guaranteed and the following properties hold: 

 

 
 

where θθθ −= '' ˆ~
kk  and θθθ −= kk

ˆ~
. 

Proof: According to Eqs. (4.10) and (4.11), it is obvious that μθ ≥kˆ always hold. From Eq. 

(4.12), we see that |||)(Proj| ˆ kk ηηθ = , hence 22

ˆ )(Proj kk ηη
θ

= . Further, we have 

 

 
 

From (4.10), we see that kk θθ ˆˆ ' =  if μθ >'ˆ
k  such that 

22' ~~
kk θθ =  when μθ >'ˆ

k . Noticing 

that when μθ ≤'ˆ
k , we have θμ ≤ , so that 

 

                       (4.13) 
 

Therefore, we always have 
22' ~~
kk θθ ≥ . This completes the proof.  

 

Lemma 4.2 Given a bounded sequence 
m

k RX ∈ . Define 

 

 
 

Then, we have 
 

 
 
Proof: This lemma is an extension of Lemma 3.1. Its proof can be found in [Ma06].  
 

Lemma 4.3 (Key Technical Lemma)Let }{ ts  be a sequence of real numbers and { }tσ  be a sequence 

of vectors such that 
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Assume that 
 

           
 

where 0,0 21 >> αα . Then |||| tσ is bounded. 

 
Proof: This lemma can be found in [AW89, GS84].  

 
4.3.3 Proof of Theorem 4.1 

Define parameter estimate errors   and . From Eqs. (4.7) and (4.8), 
we have 
 

         (4.14) 
 

Then, we can derive the following error dynamics: 
 
  
 
 
(4.15) 
 
 
 

 
According to Assumption 4.1, we have 
 

                          (4.16) 
 

where λ  can be any constant satisfying . 

 
From the error dynamics Eq. (4.15), we have 
 

(4.17) 
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Choose Lyapunov function candidate as 
 

                                                        (4.18) 
 

From the adaptation laws (4.3), we obtain that 
 

(4.19) 
 
 

                                                            (4.20)                          
 
 

          
                                                                                                                                                                         (4.21) 
                                                                                                                                                                         

 
Together with the error dynamics Eq. (4.17), we can derive that the difference of Vk 

 

                          (4.22) 
 

Noting that 0 < ( < 1 and taking summation on both hand sides of Eq. (4.22), we obtain 
 

 
 
Which implies 

 

                                                 (4.23) 
 

and the boundedness of  and . Considering , we have 
 

 
 

where and C2 are some constants. From the definition of deadzone in Eq. (4.4), we have 

. 
 
Therefore, we have 
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       (4.24) 
 
 
 
 
Therefore, we have 
 

             (4.25) 
 

Note that ǌ < 0.5, we have 
 

           (4.26) 
 

holds for all ǌ < ǌ*, where C3 is some finite number. Note that inequality Eq. (4.26) means 

that ][1 kkk eaOy =− . Further we have 

 

 
 

Therefore, we can apply the Key Technical Lemma (Lemma 4.3) to Eq. (4.23) and obtain that 
 

                                                     (4.27) 
 

which guarantees the boundedness of yk from Eq. (4.26) and thus, the boundedness of 
output yk, tracking error ek. Therefore, applying Lemma 4.2 yields 
 

                                             (4.28) 
 

Next, we will show that 0lim →∞→ kkk eα  leads to 0lim →∞→ kk e . From the 

definition of deadzone in Eq. (4.4), we have )1,0[∈ka . Let us define the following sets: 

 

                             (4.29) 
 

which results in ∅=∩ ++
21 ZZ  and 

+++ =∪ ZZZ 21 . The following three cases need to 

be considered. In every case, we only need to discuss the case where k belongs to an infinite 
set. 
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Case i). 
+

1Z  is an infinite set and 
+
2Z  is a finite set. Let us discuss 

+∈ 1Zk  . From the 

definition in Eq. (4.29), it follows that ak = 0. Hence it is clear from the definition of deadzone 

(4.4) that ||||0
11 −

−≤≤ − klkk yye λ   which means 0lim →∞→ kk e  according to Eq. (4.28). 

Case ii). 
+

1Z  is a finite set and 
+
2Z  is an infinite set. Let us discuss 

+∈ 2Zk  . From the 

definition   in  (4.29),  it   follows  that   ak ≠ 0.  Hence  it  is  clear   from   deadzone   (4.4)  that 

|||||| 11 −− −+=
klkkkk yyeae λ  which means 0lim =∞→ kk e  due to Eqs. (4.27) and (4.28). 

Case iii). 
+

1Z  and 
+
2Z  are infinite sets. If 

+∈ 1Zk  then ak = 0. Following Case i) gives 

0lim =∞→ kk e . Otherwise, ak ≠ 0, it follows from Case ii) that 0lim =∞→ kk e . 

Based on the discussions for the above three cases, we can conclude that 0lim =∞→ kkk ea  

implies that 0lim =∞→ kk e . This completes the proof.  

 
5. Conclusion 
 

In this chapter, we have formulated and discussed the adaptive estimation and control 
problems for a class of semi-parametric models with both parametric uncertainty and non-
parametric uncertainty. For a typical semi-parametric system model, we have discussed new 
ideas and principles in how to estimate the unknown parameters and non-parametric part 
by making full use of a priori knowledge, and for a typical type of a priori knowledge on the 
non-parametric part, we have proposed novel information-concentration estimator so as to 
deal with both kinds of uncertainties in the system, and some implementation issues in 
various cases have been discussed with applicable algorithm descriptions. Furthermore, we 
have applied the ideas of adaptive estimation for semi-parametric model into two examples 
of adaptive control problem for two typical semi-parametric control systems, and discussed 
in details how to establish the closed-loop stability of the whole system with semi-
parametric adaptive estimator and controller. Our discussions have demonstrated that the 
topic in this chapter is very challenging yet important due to its wide 
background. Especially, for the closed-loop analysis problem of semi-parametric adaptive 
control, the examples given in this chapter illustrate different methods to overcome the 
difficulties. 
In the first example of semi-parametric adaptive control, we have investigated a simple first-
order nonlinear system with both non-parametric uncertainties and parametric 
uncertainties, which is largely motivated by the recent-year exploration of the capability and 
limitations of the feedback mechanism. For this model, based on the principle of the 
proposed IC estimator, we have constructed a unified adaptive controller which can be used 
in both cases of b = 1 and b > 1. When the parametric part is of linear growth rate (b = 1), we 
have proved the closed-loop stability under some assumptions and a simple algebraic 

condition 2
2

3

´
+<

M

ML
, which reveals essential connections with the known magic 
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number 2
2

3
+=L discovered in recent work [XG00] on the study of feedback 

mechanism capability.  
In the second example of semi-parametric adaptive control, we further assume that the 
control gain is also unknown, yet the system is noise-free, and we have designed an 
adaptive controller based on gradient-like estimation algorithm with time-varying deadzone 
according to the a priori knowledge on the non-parametric part and the unknown controller 
gain. In this example, although we cannot establish perfect results revealing the magic 

number 2
2

3
+  as in the first example, we can still establish good results of asymptotic 

tracking performance under some mild conditions. This example has demonstrated yet 
another method to deal with uncertainties in semi-parametric model. 
Finally, we shall remark that the discussed topic in this chapter is still in its infant stage, and 
many more chanlenging problems can be investigated in the future. These problems may 
root in wide practical background where the system model is only partially known a priori, 
that is to say, the major part of the system can be parameterized and the other part is 
unknown and non-parameterized with only limited a priori knowledge. Solving such 
problems can definitely improve our understanding to the whole feedback mechanism and 
help us gain more insights on the capability of adaptive control, especially non-traditional 
adaptive control methods which were not extensively addresed and studied in previous 
study. Therefore, we expect more theoretical study in this new topic, i.e. semi-parametric 
adaptive estimation and control. 
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