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1. Introduction

An interactor matrix introduced by Wolovich & Falb (1976) has an important role in the
design of model reference adaptive control systems (MRACS) for a class of multi-input
multi-output (MIMO) plants. In the early stage of the research, the interactor was supposed
to be diagonal matrix and thus there were no unknown parameters (Goodwin et al., 1980).
But, there exist many plants which require non-diagonal interactors (Chan & Goodwin,
1982). And the design of MIMO MRACS with non-diagonal interactors had been discussed,
where all elements of the interactor are assumed to be known (Elliott & Wolovich, 1982;
Goodwin & Long, 1980). However, this assumption is not adequate for adaptive control
systems since the parameters of the interactor depend on the unknown parameters of the
plant, i.e., the parameter values and the relative degree of each element of the plant must be
used to determine the interactor. Furthermore, even we know all of these information, the
structure of the interactor is not determined uniquely.

In order to remove the assumption, the MRACS design has been proposed where the degree
of diagonal elements and the upper bound of the highest degree of the lower triangular
interactor matrix are assumed to be known (Elliott & Wolovich, 1984; Dugard et al., 1984).
Under these assumptions, off-diagonal elements of the lower triangular interactor are
estimated, and the method seemed suitable for adaptive controller design. However, it is not
reasonable to assume the diagonal degrees in MRACS since the determination of the
degrees depends on the relative degree and parameter values of each element of a transfer
matrix of a given plant. From this view point, an interactor in generic sense was considered
under the assumption that the relative degrees of all elements of the transfer function matrix
are known (Kase & Tamura, 1990; Mutoh & Ortega, 1993). The method covers almost of all
classes of MIMO plants having the same numbers of inputs and outputs generally. But there
still exist some rare plants.

By the way, there exists an idea of the certainty equivalence principle for the indirect
MRACS design, i.e., estimate the unknown parameters of a plant first, then design the
controllers on-line, using those estimated parameters. However, the design was seemed
very difficult especially for MIMO plants, since large amount of calculation is needed to
solve so-called Diophantine equation, beside the derivation of the interactor. In other words,
there did not exist a suitable method to solve the Diophantine equation or to derive the
interactor matrix. In this chapter, an indirect approach to MIMO MRACS will be shown. For
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this purpose, it will be presented a simple derivation of the interactor matrix and preferable
solution of the Diophantine equation. Both methods are based on the state space
representation for the (estimated) transfer function matrix of the plant. Unlike direct
calculation of polynomial matrices, it is preferable to compute via the state space
representation.

This chapter is organized as follows. In the next section, the basic controller design with
known parameters will be shown. The derivation of the interactor matrix and the solution to
the Diophantine equation will be also presented. Then, the indirect MRACS will be shown
in section 3 using the results in the previous sections. Some simulation results will be
presented in section 4 to confirm the validity of the proposed method. Concluding remarks
will be presented in section 5.

Notations (See Wolovich, 1974)
RP*™[z] : Set of pxm polynomial matrices with real coefficients.
3;[D(z)] : The i-th row degree of polynomial matrix D(z).
I,[D(z)] :The row leading coefficient matrix of D(z).

I C CB 0 0
) I CA CAB CB - 0
SV (z)= , O,=| . | T,=| . : L.

2Vl CA” CA"B CAV"'B ... CB

2. Design for Plant with Known Parameters

2.1 Problem Statement
Assume that a plant to be controlled is given by

y(t) = N(z)D ! (2)u(t) = D (2)N(z)u(t) (1)

where D(z), N(z), D(z), N(z)e R™™[z] such that

I
u [ ] 21 #
D(Z)=D0+ZD1+"'+Z Dy:DO Dl D/l =DSI (Z),
zH]
I
(2)
| | |
N(Z):N0+ZN1+"'+Z N/I-lzNO Nl N,U =NSI (Z),
ZH71]
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Dy
~ ~ ~ ~ D T ~
D(z)=D0+zD1+---+szv=[I zl - ZVI] D_1 :{S}/(z)} D,
D,

~ n . B T
N(z)=No+zN1+“'+ZV_1Nv-1=[I zZl e Zv_ll] G :{va_l(z)} N,

B, %,
p=[D, D; - D#], N=[N, N; - N,u—l]/ D= D:1 N-= 1\{1
5V ﬁv—l

Without loss of generality, assume that D(z) is column proper and D(z) is row proper. The

purpose of control is to generate the uniformly bounded input signals u(t) which cause the

output signals y() of the transfer function matrix G(z)=N(z)D™}(z)to follow the reference

output signals y,,(t) asymptotically. For this purpose, the following assumptions are made:

1. det N(z) is a Hurwitz polynomial.

2. y,(t+1), y,(t+2),...,y,,(t+w) are available at the time instant t, where w is the
degree of the interactor for G(z) , which will be discussed later.

The control input to achieve the above objective is given by

X(Z) )y X )+ L)y (1) ©)

u(t)=
where X(z), Y(z)e R"™"[z] satisfy the following Diophantine equation:

X(2)D(2)+Y(2)N(z) =2""H{D(2) - LZ)N(2)} @
and L(z)e R™""[z] satisfies the following relation:

lim L(2)G(2) = I. ®)

L(z)y,,(t) in eqn.(3) is available from assumption 2. L(z) is known as an interactor matrix.
Substituting eqn.(3) to eqn.(1),
y(H)=N()" ' D(z) - X(2)D(2) - YN 2 L@y, (1) ©
“NEE LENG) L@y

Thus from assumption 1, the purpose will be achieved if
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1. det L(z) is a Hurwitz polynomial, and
2. The degrees of X(z)and Y(z) are, at most, v—2andv -1 respectively.
In the following subsections, simple calculation methods of L(z), X(z)and Y(z) satisfying

the above constraints will be shown.

2.2 A Simple Derivation of Interactor (Kase & Mutoh, 2008)
Consider the problem to find an interactor L(z) for a given mxm non-singular transfer

function matrix G(z) . In the direct MRACS, an interactor with lower triangular structure is

useful to insure the global stability of the overall system. But, in this chapter, the interactor
is not assumed to have any special form.
Let (A, B,C) denote a realization of G(z) . Then, using the Markov parameters, G(z) can be

expressed by
G(z)=z"'CB+2z2CAB+2z°CA?B+--- (7)
If we set L(z) by
zI
2 2’1 1
L(z)=zLy +2°Ly ++2“Ly, =[L; L, - L,l|". |=LzSP ™ (2). 8)
z%]
Then,
zl
2T -1 -2 342
L(z)G(z)=[L; L, - Lyll". |z 'CB+z2CAB+2zCA?B+--)
z¥]
CB+z 'CAB+z"2CA®B+---
1 2CB+CAB+2z"'CA?B+---
2z 'CB+zY2CAB+---+CAY 'B+---
CAB CB 0 - 07 zu
CA’B CAB CB - 0 I
= : : - : ©)
: : . : zI
CAYB CA“'B .. CAB CB|
2071
If eqn.(5) holds, then
LTy 1 =Jw-1, Jw-1 ::ll Omxm(w—l)J (10)
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must hold. Conversely, the identity interactor L(z) can be obtained by solving this equation

and the solvability of this is guaranteed if and only if
T
rank { w_l} =rankT,_q, (11)
w-1

and define the integer w by the least integer satisfying the above equation. Thus, using

Moore-Penrose pseudo-inverse T,,_; of Ty,_1, L can be calculated if and only if
L=y 1Ty - (12)

All of L that satisfy eqn.(11) are coefficient matrices of the identity interactor, which form a
subset of coefficient matrices of the interactor defined by Mutoh & Ortega (1993). In the
paper, a certain calculating algorithm was used to obtain L and to assign stable zeros of the
interactor as well. But, for the identity interactor, as shown above, it is quite natural to solve
eqn.(11) using Moore-Penrose pseudo-inverse, because J,_; is a fixed matrix and the

pseudo-inverse can be calculated easily using some standard softwares in these days. Then,
since we need a stable interactor in control design problems, the remaining problem is to

check the location of zeros of the identity interactor given by eqn.(12). For T,,_;, the

following Lemma holds.
Lemma 1. For the integer k>w—1, the following equation holds:

. M,
Tk - + (13)
Z; -T{ 10,_1ABM,

where
M, =[L 0] z :[Okmxm Tk+—1], 0x = O isem(k—w+1). (14)

Proof. Let

T Z{Mk}, P, e RIkmx(k+1)m (15)

Since Ty is the pseudo-inverse of Ty,
T T =(T,T;)"

Substituting the above equation into eqn.(15),

CB 0
M, +| ™kmp _\mT pIrl. 16
{OkAB} k {Tk_l 2 [ 2 k}Tk (16)

By post-multiplying the above equation by M} and then using eqn.(10), it follows that

CB T Omka T T
|: }MkMk +{T PkMk :Mk' (17)
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From the existence of P,

(L ~TeaTize)| | ¢ |- OfLL" |=0

holds. Using the singular value decomposition, T;_; can be written as

21 O 1
Tk—lzuk—l{ 0 O}Vk‘l

for some unitary matrices Uj;_; and V_; . Since eqn.(10) implies

L, Ly - L, 0]Tiq1=0,

-2
post-multiplying the above equation by V;_; {20 8}%{_1 gives

L, Ly - Ly ok](TkT—l)T:Q

Thus,

= (L ~Te 1Ty JO, ABLLT

(18)

(19)

(20)

(21)

(22)

is obtained from eqns.(18) and (19). Using a free parameter matrix Z; e R"em(k+1) - he

general solution of eqn.(17) is given by

T(xsT |
P, =Z; - T 1T 1Z M (Mk ) ~ T, 10 M.

(23)

Finally, by choosing Z; as in eqn.(14), eqn.(13) is obtained from eqns.(21) and (23). It is easy

to verify that the above TkJr satisfies the rest of conditions for the pseudo-inverse, i.e.

T
(Tk+Tk) =TTy, LT =T, T'TI =T

Therefore the Lemma has been proved. VVV

www.intechopen.com

(24)



A Design of Discrete-Time Indirect Multivariable MRACS with Structural Estimation of Interactor 287

In MRACS case, it can not be assumed to know the exact value of w in eqn.(11). Lemma 1
shows that non-zero parameters in the interactor are not changed, if the upper bound of w
is known. This is a nice property of the proposed method for MRACS. The following
Theorem shows that all zeros of the interactor by proposed method lie at the origin. So, the
stability of the interactor is clear although it does not have a lower triangular form.
Moreover, the proposed interactor is optimal for the LQ cost with singular weightings. See
Kase et al. (2004) for the proof.

Theorem 1.  If the interactor is given by

L(z)=J 1Ty 128771 (2), (25)

then the following properties hold:

P1  L(z)L(z)=LLT,

CB
CArB
P2 o=, (26)
CAF“'B
P3  CA¥ =0

where L' is the pseudo-inverse of L, and

L(z)=LT Y=z +2215 +- 4271, Ap=A-BLO, ;A.

2.3 A Solution of Diophantine Equation (Kase, 1999; 2008)
There are many methods to solve eqn.(4). In this subsection, a method using state space
parameters is presented. First, the following lemma holds.

Lemma 2. Let P(z), N(z), D(z)e R"™"[z], where D(z) is non-singular. Then, there exist

polynomial matrices Q(z), R(z)e R™"[z] such that

P(2)N(z) = Q(2)D(z)+ R(2), -
R(z)D™}(z) is strictly proper.

Furthermore, let (A,B,C) denote any realization of N(Z)D_l(z).Then, Q(z) and
R(z)D7}(z) are given by the following equations:

Q(Z)=P{0mxﬁﬂ 517\ (2)

Trq (28)

R(z)D”'(z)=POf(zI - A)~'B

where f denotes the degree of P(z)=F+zP +oetzf P;, andP is defined by
P=|p, P - Pl
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Proof.  Since
I
Aol (4 -2 -3
P(z)N(z)D""(z)=P| . |z CB+z “CAB+z "CAB+:-

21

2 'CB+ 2z 2CAB+ 2z °CAB +---
CB+ 2z 'CAB+2z 2CAB+---

|2/ 7'CB+2/2CAB+---+CA/ B+ 27 'CATB + -

[0 0 0] 2 ICB+2z2CAB+--- |
CB 0 0 2 'CAB+2"?CA?B+---
=P| CAB CB -+ 0| . [+P| z7'CA?B+2z7%CA%B+---
: . . : Zf_lI
[cAT™lB cAJ?B - CB] 27 'CATB+z72CAT B+
O

=P {7 (2)+27'POB+272PO;AB+2 PO ;A?B+--

| Ty

the results can be obtained. @VVV

Theorem 2. Let (A,B,C) denote any realization of N (z)D_l(z) . Then, there exist X(z)
and Y(z) which satisfy

1) Diophantine equation (4).

2) X(z)/ 2" Lis strictly proper.

3) Y(z)/z" L isproper.
If and only if the following relation holds:

YO, ; =-LO,, ;A" (29)

where Y isdefinedby Y=[Y, Y; - Y,_;] for Y(2)=Yy+2Yy +--+2""1Y, ;.
Proof.  If eqn.(4) holds, then from Lemma 2,

YOv—l = _[Omxmv L]Ov+w—1 = _Low—lAv-

Conversely, if eqn.(29) holds, multiply the both sides of eqn.(29) by Z;llz_iAi_lB, it
follows that
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N@EDYNz) | T 0 |
. zZN(z)D7(2) CB
YO, | Yz 'ATIB=Y|| 2 N@D () |- CAB+2CB
i=1 : :
) v-2 v-3 v-1
_z"_lN(z)D_l(z)_ | CA" “B+zCA" "B+--+z" CB|

0
=Y(NED (@)=Y " Isi ()
L Tv—2
= _[Omxmv L]Ov+w—1 ZZ_iAi_lB
i=1
ND Y 2) | T 0 7
zN(z)D71(2) CB

= _[()mxmv L] zzN(z)D_l @ |- CAB + zCB

_Zv+w_1N(Z)D_1 (Z)_

|CA"?B+2zCA"B+--+2""""1CB|

CAY'B ... CAB
=" L(Z)N@Z)D (2)+2"H+L : LSV 2(2).
CA"*“~2B ... CA"B
Defining X(z) by

CA""B ... CAB

X(z)=-L

0
s%‘%)—x{ m;mwz-“}s%‘z(z),
-

CAV*%=2p ... CA“B

v-1

then the Diophantine equation (4) can be obtained. It is clear that X(z)/:z and

Y(z)/ 21 are proper from the above discussion. =~ VVV

It is worth noting that Theorem 2 holds for any realization of N(z)D™(z) . So, this method is

easy to apply for the indirect adaptive control.

3. Indirect Adaptive Controller Design

Using some suitable parameter estimation algorithm, such as the least squares algorithm,
obtain the estimated values of D and N . Then, obtain the observability canonical

realization A(t), é(t) and é(t) from these estimated values. After that, the control input is

generated by calculating I:(z,t), )A((z, t) and f/(z,t) recursively. Before the discussions of

the adaptive controller design, the following assumptions are imposed:
1. The upper bound degree w of the interactor is known.
2. y,{t+1), v, (t+2),...,y,(t+w) are available at the time instant t.
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3. det N (z) is a Hurwitz polynomial.

4. 871-[[3(2)]=V1- is known and I}[IND(Z)] is a lower triangular with ones in the diagonal
positions.

5. A(t), é(t) and é(t) converge to their true values.

6. A lower bound of the minimum singular decomposition value &,;, of T_1 is known.

In the adaptive controller design, it will be carried out by the recursive calculation of the

previous section. That is, based on the A(t), 1§(t) and é(t) , set

€ ~CHB() o w0
o = COA® | ¢ C(t)A:(t)B(t) C(t):B(t) - o
C(HA" (1) é(t)Aw._zé(t) é(t)ﬁ*é(t) . é(t)ﬁ(t)
Then, solve o
LT 1(H) =Tz (30)

using pseudo-inverse of f"w_l (t) . Assume that f’w_l(t) is given by

) O}V%_lax

fw_la):ﬁw_l(t)[

0 (31)
Spa®=diaglu (), b, ... 4O hH)>0
for some unitary matrices l:lw_l(t) and \}w_l(t) Jf
Ai(8) < Emin (32)
for some integers i, then modify
j‘i (t) = &min (33)
and calculate f’%_l(t) by
. - > 0l-
T%—l(t)sz—l(t)|: 7’6 ! O}U%q(f)- (34)
Next, solve
Y(+)O,_1(t) = ~L(t)Oz_1 () A" (t). (35)

A

Note that év_l(t) always has full column rank since (C(t), A(t)) is in the observability

canonical form. So eqn.(35) is easy to solve. In general, év_l(t) is a tall matrix. For the

solution to eqn.(35), the method employing the pseudo-inverse is effective for the plant with
measurement noise (Kase & Mutoh, 2000). It may be also useful for the improvement of the
transit response of MRACS.
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Finally, calculate f((t) by

X Y |:Om><m(v—1):| ~ ~
BH==Y(®) - —L()V(¢) (36)
where

C(HA"MB() - C(HAMB(®)
V(t)= : : . (37)
CHAZO2(1B(t) - C(HA"2(1)B(t)

Then, using I:(t), X (t) and ]?(t) , the adaptive control input is given by

wt=1) 7 [ we ] [uwt+D)
u(t)=X(t) : +Y(t) : +L : ) (38)
u(t—-v+1) y(t-v+1) Y (t+w)

The global stability of the over-all system may be proved under the assumption 5. However,
the details are under studying.

4. Numerical Examples

Consider the following plant:

a 1
G(Z) —| Zz +1O.1 z +10.2

| z+b z+1.2

r -1
12240.32+0.02 0 a(z+02) z+0.1
0 22+ (b+12)z+12b| | z+12  z+b

Although the plant seems simple enough, there exist three variations of the interactor
depend on the values ofa and b.

[Casel] a=1.5,0=09
In this case, the interactor of the plant is

[Case2] a=1,b=09
In this case, the interactor of the plant is

10z-4 -10z-4

-10z+5 10z+5
L(z)= z[ } .
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[Case3] a=1,b=11
In this case, the interactor of the plant is

1022 -3.62+28 —10z%>—-6.42z+2.8
L(z)= 5 5 .
—10z“+3.82-24 10z°+6.2z-24

For the above three cases, the interactor can be obtained by solving I:(t)"f"z(t) = jz . Using the

above i(t) , lA/(t) can be obtained by solving

c CA%(#)
. PRy

Since C -matrix does not depend on ¢ in this example and (C, A) is observable independent
ont, (51 (t) always has column-full rank and thus the above equation has a solution.

Finally, X (t) can be calculated by

0 CA(HB(t)
con_ o 0] - Ao
X(t)= Y{CB(t)} L(t) Czikg)(t)l?(t) .
CA”(t)B(t)
The reference signal vector was given by
NG o sinzt /15

The least square algorithm with constant trace was used to estimate the parameters where
the initial values of the covariance matrix is 10°, and Emin =0.02 . Fig.1, 3 and 5 show the

tracking errors of the proposed indirect MRACS for Case 1-3 respectively. Fig.2, 4 and 6
show the tracking errors of the proposed indirect MRACS for Case 1-3 without modification
respectively. The results show the effectiveness of the proposed method.

5. Conclusion

In this chapter, an indirect MIMO MRACS with structural estimation of the interactor was
proposed. By using indirect method, unreasonable assumptions such as assuming the
diagonal degrees of interactor can be avoided. Since the controller parameters are calculated
based on the observability canonical realization of the estimated values, the proposed
method is suitable for on-line calculations. In the proposed method, the degree of the
controllers do not depend on the estimated structure of the interactor. The global stability of
the overall system is under studying.
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0.4

o 10 20 30 40 50

Figure 1. Output tracking error of the proposed MRACS (Case 1; with modifications)
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Figure 2. Output tracking error of the proposed MRACS (Case 1; without modifications)
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Figure 3. Output tracking error of the proposed MRACS (Case 2; with modifications)
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Figure 4. Output tracking error of the proposed MRACS (Case 2; without modifications)
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Figure 5. Output tracking error of the proposed MRACS (Case 3; with modifications)
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Figure 6. Output tracking error of the proposed MRACS (Case 3; without modifications)
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