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1. Introduction 

A ubiquitous era has arisen based on achievements from the development of science and 
technology over the previous 1,000 years, and especially the past 150 years. Among the 
numerous accomplishments in human history, four fundamental technologies have laid the 
foundation for today’s pervasive computing environment. 
The electromagnetic wave theory, established by James Maxwell in 1864, predicted the 
existence of waves of oscillating electric and magnetic fields that travel through empty space 
at a velocity of 310,740,000 m/s. His quantitative connection between light and 
electromagnetism is considered one of the great triumphs of 19th century physics. Twenty 
years later, through experimentation, Heinrich Hertz proved that transverse free space 
electromagnetic waves can travel over some distance, and in 1888, he demonstrated that the 
velocity of radio waves was equal to the velocity of light. However, Hertz did not realize the 
practical importance of his experiments. He stated that, “It’s of no use whatsoever … this is 
just an experiment that proves Maestro Maxwell was right – we just have these mysterious 
electromagnetic waves that we cannot see with the naked eye. But they are there.” His 
discoveries were later utilized in wireless telegraphy by Guglielmo Marconi, and they 
formed a part of the new “radio communication age”. 
The second fundamental technology is spread-spectrum telecommunications, whose 
multiple access capability allows a large volume of users to communicate simultaneously on 
the same frequency band, as long as they use different spreading codes. This has been 
developed since the 1940s and used in military communication systems since the 1950s. 
Realization of spread-spectrum technology requires a large computational capacity and 
leads to a bulky size and weight. Since the initial commercial use of spread spectrum 
telecommunications began in the 1980s, it is now widely used in many familiar systems 
today, such as GPS, Wi-Fi, Bluetooth, and mobile phones. This was made possible by the 
invention of computing machines and integrated circuits, the third and fourth tremendous 
triumphs. 
The first automatic computing machine, known as ENIAC, was built using 18,000 vacuum 
tubes, 1,500 relays, 70,000 resistors, and 10,000 condensers. It performed 35,000 additions per O
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second and cost US$487,000 (Nohzawa, 2003). The latest CPU, the Yorkfield XE, contains 820 
million transistors on 2 × 107 mm² dies and features a 1333 MT/s FSB and a clock speed of 3 
GHz (Intel Corp., 2007). 
Since the first integrated circuit (IC), which contained a single transistor and several 
resistors on an 11 × 1.6 mm2 germanium chip, was fabricated by Jack Kilby in 1958, 
advanced 45 nm semiconductor technology makes it possible to condense an entire 
complicated spread-spectrum telecommunication system into a magic box as small as a 
mobile phone. 
Today, we are interconnected through wired and wireless networks, and surrounded by an 

invisible pervasive computing environment. This makes “information at your fingertips” 

and “commerce at light speed” possible. We are already acclimatized to enjoy everything 

worldwide conveniently, wherever we are. We enjoy online shopping and share information 

with friends from the other side of the Earth in an instant. 

However, this is a double-edged sword. Our daily lifestyle has changed dramatically. While 

we may benefit from the advantages of today’s society, at the same time, we face many 

unprecedented problems in the health domain, which have emerged with all of these 

changes. 

One of the greatest concerns is the ascent of chronic illness that has occurred concurrently 
with the accompanying lifestyle changes. Figure 1 shows the change in mortality among 
different diseases from acute to chronic over the past 100 years in Japan. There has not been 
a large change in conventional causes of death, such as contingency, caducity, and 
pneumonia. Acute infectious diseases, such as tuberculosis, have disappeared completely 
since the 1980s. However, death due to chronic conditions is increasing. The leading causes 
of death are the three “C” top killer diseases: cerebral, cardiovascular, and cancer (malignant 
neoplasm), which account for 60 per cent of total deaths. 
 

 

Fig. 1. Change in mortality of different diseases over the previous century in Japan. 
(Adapted from the Japanese Ministry of Health, Labour, and Welfare). 
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Rapid changes in both societal environment and daily lifestyle are responsible for most of 
these chronic illnesses. Treatment of chronic conditions is now recognized as a problem of 
all society and no longer just a private issue. To elevate all citizens’ awareness of the 
importance of health promotion and disease prevention in response to the steep increase in 
long-term healthcare requirements, it is indispensable to be involved in every aspect and to 
take creative action. A variety of innovative strategies and activities are now being explored 
nationwide in Japan at three levels: macro (administration), meso (community, organization, 
and company), and micro (personal) levels. 
At the macro level, a 12-year health promotion campaign, known as “Healthy Japan 21” 
(Japan Health Promotion and Fitness Foundation, 2000), has been advocated nationwide 
since 2000 and is financially supported by the Japanese Ministry of Health, Labour, and 
Welfare. Furthermore, a “health promotion law” (Japanese Ministry of Health, Labour and 
Welfare, 2002) was issued by the Japanese parliament. This reconfirmed that the national 
goal of medical insurance reconstruction was health promotion and disease prevention, and 
it defined individual responsibility and coordination among citizens, community, and 
government organizations. 
At the meso level, industrial organizations and research institutions have developed many 
Internet-based systems and related devices for daily healthcare. Professional organizations 
and academic associations have established a series of educational programs and 
accreditation systems for professional healthcare promoters. Citizen communities have 
boosted health promotion campaigns through various service options. 
At the micro level, more and more people are aware of the importance of health promotion 
and chronic prevention, and are becoming more active in participating in daily personal 
healthcare practices. They spend a lot of time and money on exercise, diet, and regular 
medical examinations to keep their biochemical indices as good as possible. 
This trend turns out that in the US only, the healthcare domain is now growing up into a 
giant industrial territory worthy of about US$2 trillion annually (MarketResearch.com. 
2008). In terms of building a better healthcare environment, and as one of the initiatives in 
the arena of human welfare in long-term chronic treatment, we are confronting the 
challenges of providing effective means for vital sign monitoring technologies suitable for 
daily use, and large-scale data mining and a comprehensive interpretation of their 
physiological interconnection. These solutions are being developed across the world. Many 
companies are already engaged in and placing priority on, providing a total solution to 
these ever-increasing demands. 
The “Health Data Bank” ASP service platform was released as a multifaceted aid for the 
health management of corporate employee medical exam results (NTT Data Corp., 2002). 
The service supplies healthcare personnel with a set of tools for effective employee health 
guidance and counselling, and takes into account factors such as an employee’s current 
physical condition, as well as living habits and environment, and age-related changes in 
longitudinal management in accumulated individual data. Individual corporate employees 
can browse their personal data through Internet channels, and view records of their check-
ups, as well as graphs detailing historical changes in their health condition, thus facilitating 
improved personal health management. 
Companies and research institutes in the European Union have launched several 
multinational projects to develop wearable and portable healthcare systems for personalized 
care. The “MyHeart” project is a framework for personal healthcare applications led by 
Philips, which aims to develop on-body sensors/electronics and appropriate services to help 
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fight cardiovascular disease through prevention and early diagnosis. It can monitor vital 
signs and physical movement via wearable textile technology, process the measured data, 
and provide the user with recommendations (Philips Electronics, 2004). After the 
completion of the “MyHeart” program, a continuation “HeartCycle” project began in March 
2008. Many new sensors and key technologies, such as a cuff-less blood pressure sensor, a 
wearable SpO2 sensor, an inductive impedance sensor, an electronic acupuncture system, a 
contactless ECG, arrays of electret foils, a motion-compensation system for ECG, and a cardiac 
performance monitor (from bioimpedance) will be developed and built into the system. A 
patient’s condition will be monitored using a combination of unobtrusive sensors built into the 
patient’s clothing or bed sheets and home appliances, such as weighing scales and blood 
pressure meters. Data mining and decision support approaches will be developed to analyse 
the acquired data, to predict the short-term and long-term effects of lifestyle and medication, 
and to obtain an objective indicator of patient compliance (Philips Electronics, 2008). 
“MobiHealth” was a mobile healthcare project funded by the European Commission from 

2002 to 2004. Fourteen partners from hospitals and medical service providers, universities, 

mobile network operators, mobile application service providers, mobile infrastructure, and 

hardware suppliers across five European countries participated in the project. It allowed 

patients to be fully mobile while undergoing health monitoring without much discomfort in 

daily activities. The patients wore a lightweight unit with multiple sensors connected via a 

Body Area Network (BAN) for monitoring ECG, respiration, activity/movement/position, 

and a plethysmogram over short or long periods with no need to stay in hospital (European 

Commission, 2002). 

The “AMON” system was designed to monitor and evaluate human vital signs, such as 
heart rate, two-lead ECG, blood pressure, oxygen blood saturation, skin perspiration, and 
body temperature using a wrist-mounted wearable device. The device gathers the data and 
transmits it to a remote telemedicine centre for further analysis and emergency care, using a 
GSM/UMTS cellular infrastructure (Anliker et al., 2004; European Commission, 2001). 
“HealthVault” aims to build a universal hub of a network to connect personal health devices 

and other services that can be used to help store, and manage personal medical information 

in a single central site on the Web (Microsoft Corp., 2008). It will provide a seamless 

connection interface scheme for various home health and wellness monitoring devices, such 

as sport watches, blood glucose monitors, and blood pressure monitors marketed by 

medical equipment manufacturers worldwide. 

On the other hand, many explorative studies on fundamental technology for vital signs 
monitoring have been conducted in the academic world and in research institutes. Much 
innovative instrumentation suitable in daily life has emerged and is gradually being 
commercialized. 
Since the first accurate recording of an ECG reported by Willem Einthoven in 1895, and its 
development as a clinical tool, variants, such as Holter ECG, event ECG, and ECG mapping 
are now well known and have found a variety of applications in clinical practice. 
Measurement of ECG is now available from various scenarios. Whenever a person sits on a 
chair (Lim et al., 2006) or on a toilet (Togawa et al., 1989), sleeps in a bed (Kawarada et al., 
2000; Ishijima, 1993), sits in a bathtub (Mizukami et al., 1989; Tamura et al., 1997), or even takes 
a shower (Fujii et al., 2002), his/her heart beat can be monitored, with the person unaware. 
The smart dress, “Wealthy outfit”, weaves electronics and fabrics together to detect the 
wearer’s vital signs, and transmits the data wirelessly to a computer. The built-in sensors 
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gather information on the wearer’s posture and movement, ECG, and body temperature. 
Despite having nine electrodes and conductive leads woven into it, the suit looks and feels 
completely normal (Rossi et al., 2008; Marculescu et al., 2003). 
The wellness mobile phone, “SH706iw”, manufactured by the Sharp Corp. (Japan), has been 
released by NTT DoCoMo Corp. (Japan) in September 2008. It will have all the standard 
features of a mobile phone but will also act as a pedometer, a body fat meter, a pulse rate, 
and a breath gas monitor. Moreover, a built-in game-like application will support daily 
health management for fun and amusement (Sharp Corp., 2008; DoCoMo Corp., 2008). 
According to an investigation report from the World Health Organization (WHO, 2002), 
most current healthcare systems still have some common issues that need to be addressed. 
(a) The difference between acute and chronic care is not sufficiently emphasized. The overall 
concept in system development has not shifted enough towards chronic conditions, and has 
not evolved to meet this changing demand. (b) Despite the importance of patients’ health 
behaviour and adherence to improvement for chronic conditions, patients are not provided 
with a simple way to involve themselves in self-management and to have essential 
information to handle their condition to the best extent possible. (c) Patients are often 
followed up sporadically, and are seldom provided with a long-term management plan for 
chronic conditions to ensure the best outcomes. 
Indeed, they are large obstacles in front of us that need to be cleared. We consider these 
issues a long-term difficult challenge to governments, communities, and individuals alike. 
We deem two main aspects should be paid primary attention. The first aspect is that vital-
sign monitoring for chronic conditions requiring different philosophy and strategy tends to 
be ignored. Long-term chronic care is mostly oriented to untrained users in the home 
environment. However, many devices are far from being “plug and play”, and require 
tedious involvement in daily operation. The second aspect is the lack of interconnection 
between multifarious physiological data within existing medical systems, as medication is 
usually decided by interpretation based on fragmented data and standards based on acute 
and emergent symptoms, and is often provided without the benefit of complete long-term 
physiological data. 
To meet current needs, and to tackle the two problems above, our studies focus on 
developing a series of wearable/invisible vital-sign measurement technologies to facilitate 
data collection in the daily environment in perpetuity, and on applying data mining 
algorithms to conduct comprehensive interpretation of multifarious long-term data fusion, 
and ultimately to build a scalable healthcare integrated platform, SHIP, for various 
applicable domains, wherever vital signs are conducive. 

2. Methods and results 

Our studies included developing a series of instrumental technologies and data mining 
mathematical algorithms to construct finally a versatile platform, SHIP, integrated with 
wired and wireless network technologies. The following paragraphs describe an overall 
vision of SHIP and introduce three related constitutional technologies that we have been 
developing since 2002 (Chen et al., 2004). 

2.1 SHIP 
SHIP was conceived to provide three functions: (a) detection (monitoring multifarious vital 
signs by wearable/invisible means, (b) analysis (comprehensive interpretation of long-term 
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physiological data using data mining mathematics), and (c) service (providing customizable 
services to various human activity fields by a combination of multiple key technologies). 
As shown in Fig. 2, SHIP was constructed in a three-layer model which was supported by 
five pillars and many bricks. 
 

 

Fig. 2. Systemic architecture of the scalable healthcare integrated platform is founded on 
bricks, and supported by five pillars in a three layers structure. A variety of application 
domains can be created using the SHIP. 

The first layer consists of a series of bricks for physiological data detection in three orders. 
Each brick in the first order can be considered as being a wearable/invisible measurement 
method, which can be used either indoors or outdoors, either awake or asleep. While each 
brick in the second and third orders indicates a data mining approach to derive information 
from the other bricks. The direct measurement signals are denoted as first-order vital signs. 
Second-order vital signs, such as heart rate, are derived from the first-order parameters. 
Third-order signs originate from the first- and second-order parameters. 
Some of direct measurement objects are: pressure, voice, gas, temperature, ECG, 

acceleration, plethysmogram, and urine. The second-order vital signs are derived from the 

first-order vital signs, such as the QRS width and heart rate from ECG, the pulse rate and 

breathing rate from the pressure (Chen et al., 2005), posture and body movement from 

acceleration (Zhang et al., 2007), and pulse wave transit time from the ECG and 

plethysmogram. The third-order vital signs are derived from both the second-order and the 

first-order vital signs. For example, the variability in heart rate is derived from the heart rate 

profile. The female menstrual cycle is estimated from the body temperature (Chen et al., 

2008a), and the variation in blood pressure is estimated from the pulse wave transit time 

(Chen et al., 2000). Changes in these parameters are indicators of specific ailments, such as 

arrhythmia from the variability in heart rate, somnipathy from body movements and sleep 

stage, and respiration obstruction from SpO2. We combined the directly measured and 

derived parameters to treat related illnesses such as cardiovascular disease, obesity, and 

respiratory obstruction. 
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Data mining mathematics for data analysis resides in the second layer. Most of statistical 
approaches and data warehouse technologies are applicable to conduct a comprehensive 
exploitation of the large volume of long-term accumulated physiological data. Innovative 
findings and understanding from this layer will be one of five pillars to support various 
application domains. 
The third layer consists of three pillars and is responsible for data communication and 
management through wireless and wired networking technology. Bluetooth telemetry 
technology is adopted as one pillar to support short-range wireless communication of data 
between sensor devices and home units or mobile phones. Mobile telephony and the 
Internet are two other pillars and used for wide-range data telecommunication and 
management. 
SHIP has four characteristic features. (a) Its ubiquity makes it possible to detect and collect 
vital signs either asleep (unconscious status) or awake (conscious status), and either 
outdoors or indoors through wearable/invisible measurements and wired or wireless 
networks. (b) Its scalability allows users to customize their special package to meet 
individual needs, and also service providers to match different requests from 
medical/clinical use, industries, government agencies, and academic organizations through 
a variety of partnership options. (c) Its hot-line connectivity is realized by either mobile 
telephony or Internet (indoors or outdoors) and guarantees that any emergent event can be 
captured and responded to in real time. (d) Its interoperability is provided through a data 
warehouse that is configured in two formats. An exclusive format maintains security and 
enables high-speed data transmission within SHIP, and an externally accessible format 
ensures that SHIP is open to other allied systems through the HL7 standard (Health Level 
Seven Inc., 1997) to provide a seamless interface that is compatible with other existing 
medical information systems. 
SHIP is intended to create a flexible platform for the exchange, management, and 
integration of long-term data collected from a wide spectrum of users, and to provide 
various evidence-based services to diverse domains. Subjects in target services are not only 
elderly and active seniors in healthcare but also subjects such as pharmaceutical houses for 
therapeutic effect tracing, insurance companies involved in risk assessment and claim 
transactions, transportation system drivers, fire fighters, and policemen involved in public 
security. 
The layer and brick model in the SHIP architecture makes it possible to integrate many 
elementary achievements from ourselves and co-workers. Three different types of 
fundamental instrumentation (invisible/wearable/ubiquitous) and the results of data 
mining from our studies are introduced in the following sections. 

2.2 Invisible sleep monitor 
Invisible measurement means that a sensor unit can be deployed in an unoccupied area and 
is unobtrusive and concealable. Monitoring of vital signs can be performed in an invisible 
way, such that a user is unaware of its existence and does not have to take care that the 
device is present at all. 
A schematic illustration of invisible sleep monitoring is shown in Fig. 3. There is a sensor 
plate and a bedside unit in the system configuration. A sensor unit is placed beneath a 
pillow, which is stuffed with numerous fragments of soft comfortable materials formed 
from synthetic resins. Two incompressible polyvinyl tubes, 30 cm in length and 4 mm in 
diameter, are filled with air-free water preloaded to an internal pressure of 3 kPa and set in 
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parallel at a distance of 11 cm from each other. A micro tactile switch (B3SN, Omron Co. 
Ltd) is fixed along the central line between the two parallel tubes. The two tubes above and 
the micro switch are sandwiched between two acrylic boards, both 3 mm thick. One end of 
each tube is hermetically sealed and the other end is connected to a liquid pressure sensor 
head (AP-12S, Keyence Co. Ltd). The inner pressure in each tube includes static and 
dynamic components, and changes in accordance with respiratory motion and cardiac 
beating. The static pressure component responds to the weight of the user’s head, and acts 
as a load to turn on a micro tactile switch. The dynamic component reflects the weight 
fluctuation of the user’s head due to breathing movements and pulsatile blood flow from 
the external carotid arteries around the head. Pressure signals beneath the near-neck and 
far-neck occiput regions are amplified and band-pass filtered (0.16–5 Hz), and the static 
component is removed from the signal. Only the dynamic component is digitized at a 
sampling rate of 100 Hz and transmitted to a remote database server through an Internet 
connection. The tactile switch is pressed to turn on a DC power supply via a delay switch 
(4387A-2BE, Artisan Controls Corp.) when the user lies down to sleep and places his/her 
head on the pillow. 

 

Fig. 3. Schematic illustration of the invisible monitoring of vital signs during sleep. A sensor 
plate is placed beneath a pillow. Signals reflecting pressure changes under the pillow are 
detected, digitized, and transmitted to a database server via the Internet by a bedside unit. 

A 60 s fragment of raw signal measured under the near-neck occiput region during sleep is 
shown in Fig. 4(a). The breathing rate (BR), heart rate (HR), and body movements can be 
detected from the raw data measurements. 
The BR and HR are detected by wavelet transformation on a dyadic grid plane using a 
multiresolution procedure, which is implemented by a recursive à trous algorithm. The 
Cohen–Daubechies–Fauraue (CDF) (9, 7) biorthogonal wavelet is the basis function used to 
design the decomposition and reconstruction filters (Daubechies, 1992). The raw measured 
signal is decomposed into an approximation and multiple detailed components through a 
cascade of filter banks (Mallat & Zhong, 1992; Shensa, 1992). Further mathematical theories 
can be found in Daubechies, 1992 and Akay, 1998. Implementation details are given in Chen 
et al., 2005, and Zhu et al., 2006. 
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The wavelet transformation (WT) of a signal, )(tx , is defined as follows: 
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where g0 and g1 are the filter coefficients of G0 and G1, respectively. The terms )(ˆ nx  
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reconstructed. It should be pointed out that the sampling rate of the j2  scale approximation 
and detail is j

s 2/f , where fs is the sampling rate of the raw signal. 

Because the 26 scale approximation waveform is close to a human breathing rhythm, while 
the detail waveforms of both the 24 and 25 scales contain peaks similar to those of human 
heartbeats, the 26 scale approximation component, A6, is used to reconstruct the waveform 
for obtaining the BR, and the D4 and D5 detail components at the 24 and 25 scales are 
combined into a single synthesized waveform and then reconstructed to detect the HR. 
Figure 4(b) shows the reconstructed waveforms for HR detection, and Fig. 4(c) shows the 
reconstructed waveforms for BR detection. 
During a night’s sleep, over a period of 4–8 h, a regular pulsation due to either the heart 
beating or breathing is not always detectable. Body movements may greatly distort the 
pressure variation signal pattern. In such a time slot, either the BR or the HR, and 
sometimes even both, are barely detectable. Instead, body movements are detected using 
a statistical method in such time slots. If a very large change, whose absolute value is four 
times larger than the standard deviation of the preceding detected movement-free raw 
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signal, is detected in the incoming signal, the preceding and succeeding 2.5 s periods from 
the movement detection point are treated as being body movement periods and not used 
to estimate the BR and HR. Detection of the BR is more sensitive to body movements than 
detection of the HR is. 
 

 

Fig. 4. A body movement-free sample and the detected BR and HR beat-by-beat. (a) The raw 
pressure signal data measured under the near-neck occiput region. (b) The pulse-related 
waveform reconstructed from the D4 and D5 components. (c) The breath-related waveform 
reconstructed from the A6 component. The open circles indicate the detected characteristic 
points for BR/HR determination. 

Figure 5(a) shows a 60 s segment of a raw signal, which includes body movement during 

unstable sleep. When the pressure signal is distorted by a body movement, the periods 

detected that are from two reconstructed waveforms (HR-related and BR-related) are not 

always identical in both time and length. Because HR detection is usually more robust than 

BR detection, body movement detection from reconstructed BR-related waveforms is longer 

than that from HR-related waveforms. The final body movement outcome is an OR 

operation of both results. In the case shown in Fig. 5, the body movement period in terms of 

HR-related waveform detection is counted as 15.4 s, while that in terms of BR is 35.9 s. The 

final body movement outputs as 37.8 s from the OR operation of both results in the time 

domain. 

Figure 6 shows a profile of the BR and the HR obtained from measurements over a single 

night. The vertical axis denotes the BR/HR in units of breaths per minute or beats per 

minute (bpm). The black dots and vertical bars, terminated at the upper and lower ends by 

short horizontal lines, show the mean values and standard deviation on a beat-by-beat basis 

for the HR and a breath-by-breath basis for the BR for each minute. Discontinuities in the 

estimation of the BR/HR are denoted by the vertical bars occurring sporadically over time, 

and their widths denote periods of body movement. The broader vertical bars correspond to 

longer body movement periods. 
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Fig. 5. An example of body movement in which both the BR and the HR are not fully 
detectable in a given period with different spans. The horizontal arrows indicate the body 
movement period in seconds. (a) Measured pressure signal distorted by body movements. 
(b) Reconstructed waveform and detected HR, as well as the detected body movement 
period. (c) Reconstructed waveform and detected BR as well as the detected body 
movement period. 

 

Fig. 6. Two profiles of the BR/HR obtained from measurements over a single night. The 
solid dots and vertical bars, terminated at the upper and lower ends by short horizontal 
lines, show the mean values and standard deviation within a period of one minute. The 
body movement periods are indicated by the variable-width vertical bars. 
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Figure 7 shows the complete profiles of the BR and HR during sleep over a period of 180 
nights. The data were collected from a healthy female volunteer in her thirties at her own 
house over a period of seven months, under an informed agreement for the use of the data 
for research purposes. During this period, data over about 30 d were not measured. 
Therefore, data from a period of 180 d were recorded. The data are plotted on a day-by-day 
basis. The vertical axis represents the BR/HR in units of bpm. The symbols and vertical 
bars, terminated at the upper and lower ends by short horizontal lines, show the mean 
values and standard deviation of the detected HR (o) and the BR (*) in the corresponding 
night. The bold line is derived by filtering the mean values of the HR using a five-point 
Hanning window. The dashed line is an empirical estimate to indicate the possible trend of 
the average day base heart rate during those nights when data were not measured. 
Surprisingly, it is observed that the profile of the mean heart rate probably reveals a periodic 
property that corresponds to the female monthly menstrual cycle. 
 

 

Fig. 7. Two complete profiles of the BR/HR over 180 nights. Data are plotted on a day-by-
day basis. The symbols and vertical bars, terminated at the upper and lower ends by short 
horizontal lines, show the mean values and standard deviation of the detected HR (o) and 
the BR (*) in the corresponding night. 

The devised system is completely invisible to the user during measurements. “Plug is all” is 
one of its significant characteristics in securing perpetuity in data collection. All a user has to 
do is just to plug in an AC power cable and a LAN cable. A user can even forget the existence 
of the device and perform no other operation once it is installed beneath a pillow on a bed. 
This property will substantially enhance its feasibility and usability in the home environment. 
A subtle variation in pressure under the pillow is detected as a first-order signal. The 
BR/HR and body movements are derived as second-order parameters. Sleep stage 
estimation, assessment of sleep quality, and biphasic menstrual cycle properties are third-
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order parameters. In the end, a comprehensive interpretation of the multiple parameters 
obtained and a fully automatic operation property would increase its applicability in sleep 
lab studies, and also for screening patients who do not need a full sleep diagnosis at an early 
stage. 

2.3 Wearable monitor for body temperature 
Body temperature is one of the most important barometers indicating human health status. 
Moreover, the basal body temperature (BBT) is usually used for women to help estimate 
ovulation and to manage menstruation. However, a reliable evaluation of the menstrual 
cycle based on the BBT requires measurement of a woman’s temperature under constant 
conditions for long periods. It is indeed a tedious task for a woman to measure her oral or 
armpit temperature under similar conditions when she wakes up every morning over a long 
period, because it usually takes an average of 5 min to measure temperature orally, or 10 
min under the armpit. Moreover, the traditional method for evaluating ovulation or 
menstrual cycle dynamics in clinical practice is often based on a physician’s empirical 
observations on serial measurements of BBT. It has been pointed out that the BBT failed to 
demonstrate ovulation in approximately 20% of ovulation cycles among 30 normally 
menstruating women (Moghissi, 1980). To improve user accessibility and the accuracy of the 
application of the BBT, we have developed a tiny wearable device for cutaneous 
temperature measurements and a Hidden Markov Model (HMM) based a statistical 
approach to estimate the biphasic properties of body temperature during the menstrual 
cycle using a series of cutaneous temperature data measured during sleep. 
The wearable monitor can be attached to a woman’s underwear or brassiere when asleep to 
measure the cutaneous temperature around the abdominal area or between the breasts, as 
shown in Fig. 8. 

 

Fig. 8. A small, light wearable device (size = 41 × 84 × 17 mm3, weight = 59 g) for cutaneous 
temperature measurements during sleep (QOL Co. Ltd., 2008). 
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The device is programmed to measure temperature over 10 min intervals from midnight to 6 
am. At most, 37 data points can be collected during the six hours. Outliers above 40 °C or 
below 32 °C are ignored. The collected temperature data are encoded in a two-dimensional bar 
code, known as “Quick Response” code (QR code) (Denso Wave Inc., 2000) and depicted on 
an LCD display. As shown in Fig. 9, the user uses the camera built into a mobile phone to 
capture the QR code image (a) on the device display (shown in the circle on the left-hand side 
of Fig. 9). Once the QR code is captured into the mobile phone (b), the original temperature 
data (c) are recovered from the captured image and transmitted to a database server via the 
mobile network for data storage and physiological interpretation through data mining. 

 

Fig. 9. A procedure for temperature data collection using a wearable sensor and a mobile 
phone. (a) A QR code image. (b) A QR code captured by a camera built into a mobile phone. 
(c) Original data recovered from the image captured by a mobile phone (QOL Co. Ltd., 
2008). 

The temperature data measured during sleep over a six-month period are shown in Fig. 
10(a). The nightly data are plotted in the vertical direction and have a range of 32 to 40 °C. 
The purpose of data mining in this study was to estimate the biphasic properties in the 
temperature profile during the menstrual cycle from cutaneous temperature measurements. 
As shown in Fig. 11, the biphasic properties of the menstrual cycle can be modelled as a 
discrete Hidden Markov Model (HMM) with two hidden phases. The measured 
temperature data are considered to be observations being generated by the Markov process 
from an unknown phase: either a low-temperature (LT) phase or a high-temperature (HT) 
phase, according to the probability distribution. The probability bL(k) is indicative that the 
value k is generated from the hidden LT phase. The probability bH(k) is indicative that the 
value k is generated from the hidden HT phase. The probability aii is indicative of a hidden 
phase transition between LT and HT phases. 
Figure 10(b) shows the results after pre-processing to removing outliers from the raw data 
and eliminating any discontinuities from non-data-collection days. Figure 10(c) shows the 
HMM estimation output using the pre-processed data from Fig. 10(b) as the input. Figure 
10(d) shows the estimation of the biphasic properties after post-processing. The 
superimposed black symbols “*” denote the menstrual periods recorded by the user. A 
transition from the HT phase to the LT phase denotes a menstrual period, while the reverse 
transition denotes ovulation. 
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Fig. 10. Estimation procedure of a biphasic temperature profile. (a) Raw temperature data 
measured over a period of six months. (b) Pre-processed results. (c) Biphasic estimation 
based on an HMM approach. (d) Post-processed results. The symbol “*” denotes a 
menstrual period recorded by the user. 

 

 

Fig. 11. A discrete hidden Markov model with two hidden phases for estimating biphasic 
property in a menstrual cycle from cutaneous temperature measurements. 

The biphasic properties shown in Fig. 10(c) were estimated by finding an optimal HMM 
parameter set that determines the hidden phase from which each datum arises. This is based 
on a given series of measured temperature data, as shown in Fig. 10(b). The parameter set 

λ(A,B,π) is assigned randomly in the initial condition and optimized through the forward–
backward iterative procedure until P(O|λ) converges to a stable maximum value or until 
the absolute logarithm of the previous and current difference in P(O|λ) is not greater than δ. 

a 

b 

c 

d 
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The algorithm for calculating the forward variable, α, the backward variable, β, and the 
forward–backward variable, γ, are shown in equations (2-3-1) to (2-3-3). 
The forward variable, αt(i), denotes the probability of phase, qi, at time, t, based on a partial 
observation sequence, O1,O2,…,Ot, until time t, and can be calculated using the following 
steps for a given set of λ(A,B,π). 

( ) ( )λα |,,...,, 21 ittrt qiOOOPi ==  

( ) ( ) 1,1,11 =≤≤= tNiObi iiπα
 

 ( ) ( ) ( )1 1
1

, 1 , 1, 2,..., 1
N

t t ij j t
i

j i a b O j N t Tα α+ +
=

⎡ ⎤= ≤ ≤ = −⎢ ⎥⎣ ⎦
∑   (2-3-1) 

The backward variable, βt(i), denotes the probability of phase, qi, at time, t, based on a partial 
observation sequence, Ot+1,Ot+2,…,OT, from time t+1 to T, and can be calculated using the 
following steps for a given set of λ(A,B,π). 

( ) ( )λβ ,|,...,, 21 itTttrt qiOOOPi == ++  

( ) TtNiiT =≤≤= ,1,1β  

 ( ) ( ) ( )1 1
1

, 1 , 1, 2,...,1
N

t ij j t t
j

i a b O j i N t T Tβ β+ +
=

= ≤ ≤ = − −∑  (2-3-2) 

To find the optimal sequence of hidden phases for a given observation sequence, O, and a 
given model, λ(A,B,π), there are multiple possible optimality criteria. 
Choosing the phases, qt, that are individually most likely at each time, t, i.e., maximizing 

P(qt = i|O,λ), is equivalent to finding the single best phase sequence (path), i.e., maximizing 
P(Q|O,λ) or P(Q,O|λ). The forward–backward algorithm is applied to find the optimal 
sequence of phases, qt, at each time, t, i.e., to maximize γt(i) = P(qt = i|O,λ) for a given 
observation sequence, O, and a given set of λ(A,B,π). 
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 (2-3-3) 

The most likely phase, qt* at time t can be found as: 
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 ( )*

1

arg max , 1
t t

i N

q i t Tγ
≤ ≤

= ≤ ≤⎡ ⎤⎣ ⎦ . (2-3-4) 

As there are no existing analytical methods for optimizing λ(A,B,π), P(O|λ) or P(O,I|λ) is 
usually maximized (i.e., ( )[ ]λλ

λ
|maxarg*

OP=  or ( )[ ]λλ
λ

|,maxarg
*

QOP= ) using gradient 

techniques and an expectation-maximization method. In this study, the Baum–Welch 
method was used because of its numerical stability and linear convergence (Rabiner, 1989). 

To update λ(A,B,π) using the Baum–Welch re-estimation algorithm, we defined a variable, 
 ξt(i,j), to express the probability of a datum being in phase i at time t and phase j at time t+1, 
given the model and the observation sequence: 

 ( ) ( ) ( )
( )

1

1

, , |
, , | ,

|

t t

t t t

P q i q j O
i j P q i q j O

P O

λ
ξ λ

λ
+

+

= =
= = = = .  (2-3-5) 

From the definitions of the forward and backward variables, ξt(i,j) and γt(i), can be related 

as: 

 ( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1

1 1
1 1

,
|

t ij j t t t ij j t t

t N N

t ij j t t
i j

i a b o j i a b o j
i j

P O i a b o j

α β α β
ξ

λ α β

+ + + +

+ +
= =

= =
∑∑

,  (2-3-6) 

 ( ) ( ) ( ) ( )1
1 1

| , , | , ,
N N

t t t t t
j j

i P q i O P q i q j O i jγ λ λ ξ+
= =

= = = = = =∑ ∑ ,  (2-3-7) 

where ( )∑
−

=

1

1

T

t

t iγ  denotes the expected number of transitions from phase i in O. The term 

( )∑
−

=

1

1

,
T

t

t jiξ  denotes the expected number of transitions from phase i to phase j in O. 

Therefore, λ(A,B,π) can be updated using equations (2-3-8) to (2-3-10) as follows. 
As πi is the initial probability and denotes the expected frequency (number of times) in 

phase i at time t = 1 as πi = γ1(i), it can be calculated using the forward and backward 

variables. 

 
( ) ( )

( ) ( )
( ) ( )

( )
1 1 1 1

1 1
1 1

i N N

T
i i

i i i i

i i i

α β α β
π

α β α
= =

= =
∑ ∑

 , (2-3-8) 

The transition probability from phase i to phase j, aij, can be calculated from the expected 

number of transitions from phase i to phase j divided by the expected number of transitions 

from phase i. 

 
( )

( )

( ) ( ) ( )

( ) ( )

1 1

1 1
1 1

1 1

1 1

,
T T
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ij T T
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= =

− −
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∑ ∑

∑ ∑
,  (2-3-9) 
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The term bj(k) is the expected number of times in phase j and the observed symbol ok divided 
by the expected number of times in phase j, and it can be calculated using: 

 ( )
( )

( )

1
. .

1

t k

T

t
t
s t O o

j T

t
t

j

b k

j

γ

γ

=
=

=

=

∑

∑
.  (2-3-10) 

The initial input quantities are the known data N, M, T, and O and the randomly initialized 
λ(A,B,π). Once α, β, and γ are calculated using equations (2-3-1) to (2-3-3), then λ(A,B,π) is 
updated using equations (2-3-8) to (2-3-10), based on the newly obtained values of α, β, and 
γ. The search for the optimal parameter set, λopt, is terminated when P(O|λ) converges to a 
stable maximum value or when the absolute logarithm of the previous and current 

difference in P(O|λ) is equal to or smaller than δ. Thus, the most likely phase from which a 
datum is observed can be estimated using equation (2-3-4). A sample result estimated using 
the HMM algorithm is shown in Fig. 10(c). 
The algorithmic performance is evaluated by comparing the user’s own record of their 
menstrual periods with the algorithmically estimated result. When a transition line 
coincides with a self-declared menstrual period, then it is counted as a “true positive”. If a 
transition line does not coincide with a self-declared menstrual period, then it is counted as 
either a “false negative” or a “false positive”. 
Figure 12 shows a poor sample with two different estimation errors. One is a false negative 
estimation occurring around November 14, where there was a menstrual period but it was 
not detected. Another is a false positive error, occurring around July 17, where an HT to LT 
transition was detected but there was no actual menstrual period. 

 
Fig. 12. A poor sample of biphasic profile estimation, where two menstrual periods 
occurring around July 17 and November 14 were not detected correctly by the algorithm. 
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To evaluate the algorithmic performance in finding the biphasic properties of the 

temperature data during menstrual cycles, both sensitivity and positive predictability are 

introduced. The sensitivity (Sens) denotes an algorithm’s ability to estimate correctly the 

biphasic properties that coincide with the user’s records of menstrual periods. This value is 

calculated using equation (2-3-11). When Sens has a value close to 1.0, then it means that 

there is less underestimation. 

 
TP

Sens
TP FN

=
+

, (2-3-11) 

The positive predictability (PP) denotes the confidence of the positive estimation. This is 

calculated using equation (2-3-12), and when PP has a value that is close to 1.0, then it means 

that there is less overestimation: 

 
TP

PP
TP FP

=
+

, (2-3-12) 

 

where TP denotes a true positive where the algorithmic estimation and the user’s records 

coincide. FN is a false negative, and it counts the number of undetected menstrual periods. 

FP is a false positive, and it counts the number of detected HT to LT transitions where no 

actual menstrual period occurred. 

In this study, a tiny wearable thermometer and an HMM-based data mining approach were 

developed and validated using data collected over a period of six months from 30 female 

volunteers. For a total of 190 self-declared menstrual cycles, the number of estimated cycles 

was TP = 169, the number of undetected cycles was FN = 15, and the number of falsely 

detected cycles was FP = 6. Therefore, by applying equations (2-3-11) and (2-3-12), the 

sensitivity was 91.8% and the positive predictability was 96.6%. 

The device automatically collected the cutaneous temperature around the abdominal area or 

between the breasts without much discomfort during sleep. This met the requirement for 

perpetuity in body temperature measurements due to a low disturbance to daily life. The 

algorithm estimated the biphasic cyclic properties of the temperature profiles during 

menstrual cycles based on a series of long-term temperature data, with no need for any 

experimental or subjective involvement. This provides a promising approach for managing 

female premenstrual syndromes and birth control. 

2.4 Ubiquitous monitoring based on a mobile phone 
The voice is the sound made by the vibration of the vocal cords, caused by air passing 

through the larynx and bringing the cords closer together. Voice production is a complex 

process that starts with muscle movement and involves: phonation (voice), respiration 

(breathing process), and articulation (throat, palate, tongue, lips, and teeth). These muscle 

movements are initiated, coordinated, and controlled by the brain, and monitored through 

hearing and touch. A variety of changes in voice, such as pitch, intensity, and fundamental 

frequency, can take place when any of the above factors change, and will be one of the first 

and most important symptoms of mental depression, or some physical diseases, such as 

cancer, Parkinson’s disease, epilepsy, stroke, and Alzheimer’s disease, which means that 
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early detection significantly increases the effectiveness of any treatment (France & Kramer, 

2001; O’Shaughnessy, 1999; Mathieson, 2001). 

Recently, many studies have been conducted to identify pathological voices by applying 
various classifiers to acoustic features, such as cepstral coefficients and pitch dynamics using 
Gaussian mixtures in a Hidden Markov Model (HMM) classifier. These have obtained a 
99.44% correct classification rate for discrimination of normal and pathological speech using 
the sustained phoneme “a” from over 700 subjects (Dibazar et al., 2002). In contrast to 
sustained vowel research, the effectiveness of acoustic features extracted from continuous 
speech has also been evaluated. A joint time–frequency approach for classifying 
pathological voices using continuous speech signals was proposed to obviate the need for 
segmentation of voiced, unvoiced, and silence periods. The speech signals were 
decomposed using an adaptive time–frequency transform algorithm, and several features, 
such as the octave max, octave mean, energy ratio, length ratio, and frequency ratio were 
extracted from the decomposition parameters and analysed using statistical pattern 
classification techniques. Experiments with a database consisting of continuous speech 
samples from 51 normal and 161 pathological talkers yielded a classification accuracy of 
93.4% (Umapathy et al., 2005). 
On the other hand, mobile phones are a pervasive tool, and not only are they able to be used 

in voice communication but also they are an effective voice collector in daily conversation. 

This study aims to develop a ubiquitous tool for identifying various pathological voices 

using mobile phones and support vector machine (SVM) mathematics through the 

classification of voice features. 

A. Voice data and acoustic features 
The voice data used in this study were excerpted from the Disordered Voice Database 

Model 4337 v2.7.0 (Key Elemetrics Corp., 2004). Because parts of the recordings and clinical 

information were incomplete, we only chose 214 subjects aged from 13 to 82 years (mean ± 

STD = 45 ± 16 years) whose records were fully contained. The selected dataset included 33 

healthy subjects (14 males and 19 females) and 181 patients (86 males and 95 females) who 

suffered from various voice disorders, such as polypoid degeneration, adductor spasmodic 

dysphonia, vocal fold anomalies, hyperfunction, and erythema, totalling more than 40 types 

of abnormality. The 25 acoustic features are listed in Table 1. They were calculated using the 

voice data, which were sampled from the vowel “a” pronunciation by each subject. The 

calculation method for each feature can be found in detail in the CDROM (Key Elemetrics 

Corp., 2004). 

B. SVM principle 
As a related supervised learning method used for classification and regression, SVM is a 

generalized linear classifier, but it differs from other methods because of its largest margin 

and its simplest form among several others. The optimal separation hyperplane was 

determined to maximize the generalization ability of the SVM. However, because most real-

world problems are not linearly separable, the SVM introduced kernel tricks to deal with the 

linearly inseparable problems. Therefore, in theory, a linearly inseparable problem in the 

original data space can be completely transformed into a linearly separable problem in high-

dimensional feature space. 
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No Feature Meaning No Feature Meaning 

1 APQ 
Amplitude perturbation 

quotient 
14 PPQ 

Pitch period perturbation 
quotient 

2 ATRI 
Amplitude tremor 

intensity index 
15 RAP Relative average perturbation 

3 DSH 
Degree of subharmonic 

components 
16 sAPQ 

Smoothed amplitude 
perturbation quotient 

4 Fatr 
Amplitude-tremor 

frequency 
17 Shdb Shimmer in dB 

5 Fftr Fo-tremor frequency 18 Shim Shimmer per cent 

6 Fhi 
Highest fundamental 

frequency 
19 SPI Soft phonation index 

7 Flo 
Lowest fundamental 

frequency 
20 sPPQ 

Smoothed pitch period 
perturbation quotient 

8 Fo 
Average fundamental 

frequency 
21 STD STD of fundamental frequency 

9 FTRI 
Frequency tremor 

intensity index 
22 To Average pitch period 

10 Jita Absolute jitter 23 vAm Coeff. of amplitude variation 

11 Jitt Jitter per cent 24 vFo 
Coeff. of fundamental 

frequency variation 

12 NHR Noise-to-harmonic ratio 25 VTI Voice turbulence index 

13 PFR 
Phonatory fundamental 

freq. range 
   

Table 1. Abbreviations of acoustic features and their physical meanings. 

 

Fig. 13. Principle of the SVM. A separating hyperplane in high-dimensional feature space 
and a maximum margin boundary between two data sets. (a) A non-linear classification 
problem in an original lower-dimensional feature space is transformed into a linear 
classification problem in a higher-dimensional feature space through a non-linear vector 
function, or a kernel trick. (b) An optimal hyperplane to separate two classes of data in high-
dimensional space with the largest geometric margin. 

As shown in Fig. 13, suppose we have an original dataset, {xi,yi}, xi∈Rd, yi∈{–1,1}, i = 1,…,M. 

A separating hyperplane separates the positive from the negative subdataset. The points, xi, 

which lie on the hyperplane satisfy 0=+⋅ bixw , where w is normal to the hyperplane, 

(a) 
(b) 
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w/b  is the perpendicular distance from the origin to the hyperplane, and w  is the 

Euclidean norm of w. Let d+ and d– be the shortest distances from the separating hyperplane 

to the closest positive data point and the closest negative data point, respectively. The 

margin of a separating hyperplane is defined as d++d–. In the linearly separable case, all the 

data points satisfy the following constraints. 

 1+≥+⋅ bi wx  for yi = +1  (2-4-1) 

 1−≤+⋅ bi wx  for yi = –1 (2-4-2) 

These can be combined into one set of inequalities. 

 ( ) 01≥−+⋅ by ii wx  ∀I (2-4-3) 

Clearly, the data points, which lie in the hyperplane H1, 1=+⋅ bixw , lie at a perpendicular 

distance w/1 b−  from the origin. Similarly, the data points that lie in the hyperplane H2, 

1−=+⋅ bixw , lie at a perpendicular distance w/1 b−−  from the origin. Hence, the margin 

is simply w/2 . Therefore, we can find an optimal separating hyperplane that has the 

largest margin by minimizing 2
w , subject to the constraints in equation (2-4-3). 

The data points that lie on hyperplanes H1 or H2 are called support vectors. Their removal 

would change the solution found. This problem can now be solved through a Lagrangian 

formulation by introducing non-negative Lagrangian multipliers, αi, i = 1,…,M, for each of 

the inequality constraints (2-4-3). The Lagrangian takes the form: 

 ( )2

1 1

1
w x w .

2

M M

P i i i i
i i

L y bα α
= =

≡ − ⋅ + +∑ ∑  (2-4-4) 

By taking the gradient of LP with respect to w, b vanishes, giving the outcome: 

 
1

w x
M

i i i
i

yα
=

= ∑ ,  (2-4-5) 

 
1

0
M

i i
i

yα
=

=∑ , αi ≥ 0, i = 1,…,M. (2-4-6) 

Substituting equations (2-4-5) and (2-4-6) into equation (2-4-4) gives: 

 
1 1, 1

1
x x

2

M M

P i i j i j i j
i i j

L y yα α α
= = =

= − ⋅∑ ∑ .  (2-4-7) 

Maximizing equation (2-4-7) under the constraints in equation (2-4-6) is a concave quadratic 
programming problem. If the dataset is linearly separable, then the global optimal solution, 
αi, i = 1,…,M, can be found. Then, the boundary decision function is given by: 

 ( )x x x
S

i i i
i i

D y bα
∈

= ⋅ +∑ , (2-4-8) 
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where, iS is the set of support vector indexes, and b is given by: 

 
iiyb xw ⋅−= , i∈iS. (2-4-9) 

To tackle linearly inseparable problems, the SVM is extended by incorporating slack 

variables and kernel tricks. The non-negative slack variables determine the trade-off 

between maximization of the margin and minimization of the classification error. The kernel 

tricks use a non-linear vector function, g(x), to map the original dataset into a higher-

dimensional space. Therefore, the linear decision function in the new feature space can be 

given by: 

 
( ) ( )

( ) ( ) ( ),
S S

i i i i i i
i i i i

D b

y b y H bα α
∈ ∈

= ⋅ +

= ⋅ + = +∑ ∑
x w g x

g x g x x x
, (2-4-10) 

where H(xi, x) is the Mercer kernel. The advantage of using the kernel trick is that the high-
dimensional feature space can be treated implicitly by calculating H(xi, x) instead of 

g(xi)⋅g(x). 
Twenty-five acoustic features were calculated from each subject’s voice data, and 214 data 

segments from 214 individuals were labelled as “–1” for a healthy voice and “1” for a 

pathological voice. There are two major steps in voice classification. Firstly, a principal 

component analysis (PCA) was used to reduce the original feature dimensions as much as 

possible by ignoring correlated features while retaining the most significant information in 

the new dataset. Secondly, a transformed subdataset in the new coordinate system was 

applied to the SVM to elucidate the identification boundary for healthy and pathological 

voices. Two kernels, Gaussian and polynomial, with different parameter combinations, were 

evaluated, as shown in Figs 14 and 15. The black contours refer to the identification 

boundaries, the white contours to the margins, and the symbols on the white contours to the 

support vectors. 
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Fig. 14. Identification boundary, margin, and support vectors obtained using the Gaussian 
kernel with different slack variables ξ (left = 10 and right = +∞). 
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Fig. 15. Identification boundary, margin, and support vectors obtained using the polynomial 
kernel with d = 2 and different slack variables ξ (left = 10 and right = +∞). 

In this study, 25 acoustic features derived from a single vowel sound “a” were used to 
identify pathological and healthy voices. The accuracy under different combinations of 
features was tested using a fivefold cross-validation method. The results show that the STD, 
Fatr, and NHR were the most sensitive features in detecting pathological changes. 
Moreover, the length of the voice sample, the number of voice segments, and the total 
number of detected pitch periods affected the identification accuracy. The highest accuracy 
in detecting pathological voices from healthy voices was 97.0% (Peng et al., 2007a; Peng et 
al., 2007b). 
Not only its mathematical elegance but also the practical advantage of simplicity means the 
SVM approach is promising for implementing in any portable device. A mobile phone’s 
built-in microphone works perfectly as a “one-stone-kills-two-birds” solution for identifying 
subtle distinctions in voices ubiquitously without any inexpediency during daily 
conversation. 

3. Discussion 

Life is not just a biochemical process but rather is a symphony of many rhythms on the 

micro and macro levels from the milliseconds of single-neuron activity to monthly 

procreation, and yearly developmental aging. However, intrinsic biorhythms are gradually 

stupefying in modern lifestyles because of artificial lighting and controlled environments. A 

healthy life is considered a state or process of complete physical, mental, and social well-

being, and not merely the absence of disease or infirmity (WHO, 1948). Even though 

research that may unravel the interplay between depression and other diseases has barely 

begun, there is a strong statistical link between the incidence of depression and several other 

diseases, including cancer, Parkinson’s disease, epilepsy, stroke, and Alzheimer’s disease. 

More and more doctors and patients recognize that mental state and physical well-being are 

intimately connected (Wisneski & Anderson 2005). 

Because many currently used vital signs, such as blood pressure, ECG, and metabolized 
chemicals, are so important in life processes, the body must exert itself through the feedback 
regulatory mechanisms of the autonomic nervous system and the immune system to avoid 
disorders. In the case where these parameters are detected out of range, it is actually a sign 
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that the body has become intolerant, and this is indicated by its exhaustion in maintaining 
proper biological functions. By then, it is already too late for us to take action. We should 
look for more sensitive symptoms that can reflect any small changes in the early stages of 
the development of ailments. Extrinsic extremities, such as capillary vessels and peripheral 
tissues, are less important in body functioning, and these areas are the first candidates to be 
deserted to guarantee that vital organs and tissues do not malfunction. Traditional Chinese 
Medicine (TCM) diagnoses by observing the colour of skin and the tones of sound by skilful 
means of inquiry, smell, and touch to acquire insight into pathological changes in a patient 
(Qu, 2007). 
Much effort is being conducted towards chronic illness prevention and early warning. It has 
been found that the correlation between the blood sugar level and the acetone in a patient’s 
breath is significant in the diagnosis of diabetes (Zhang et al., 2000). More barometers, such 
as the colour and texture of the skin, nails, palms, and tongue, are worthy of further 
investigation. 
Application of these new approaches in treating chronic conditions requires advanced 
sensory technology feasible for daily monitoring, and a flexible platform for users, 
physicians, and allied health workers to manage the long-term data, as well as data mining 
mathematics suitable for the comprehensive interpretation of multiple data fusion. 
Innovative sensory instrumentation technologies are indispensable for monitoring a wide 
range of physiological data in the environment of everyday living, because most users are 
not trained professionally, and as perpetual monitoring is preferable in chronic conditions, 
the sensory device should have some key advantages, such as zero administration, easy 
manipulation, automatic fault recovery, and the absence of unpleasantness or disturbance to 
everyday living. Fortunately, changes in long-term physiological data are much more 
important than the absolute values in long-term application, measurement resolution is 
prior to the accuracy, and this partly relieves the requirements to sensory instrumentation. 
Studies in this direction in several of our projects have been conducted using three main 
models of sensory technologies and real data validation in their field tests. 
Invisible instrumentation – e.g., the sleep monitor – requires no user intervention at all 
during monitoring. This “plug is all” property makes it possible for a user to plug in several 
cables, such as a power supply and LAN, and the system then works automatically. Users 
do not have to remember how to use the machine and notice what it is doing behind them. 
A wearable device – e.g., the women’s temperature monitor – is worn as if a part of the 
underwear or brassiere with little discomfort. The feedback from the participants in our 
feasibility study indicated that taking a magic-like QR-code picture is much more enjoyable 
than taking an oral or armpit BBT measurement after morning arousal from sleep. Many of 
the participants found “play and fun” in this routine activity. 
Ubiquitous monitoring technology based on a mobile phone has been developed for carry-
on usage, at any time or place, without any need for attention. Indeed, a mobile phone is a 
marvellously powerful portable machine that has many built-in sensors, such as a 
microphone for sound, a camera for pictures, and a touch panel for pressure measurement, 
applicable for detecting vital signs. An additional built-in gas sensor would make it possible 
for a mobile phone to monitor breath gases. 
As more and more innovative vital signs are detected in the environment of everyday living 
from a large number of the population and are accumulated over a longer period, a flexible 
data warehouse for facilitating the large volume of data is necessary. SHIP was devised as a 
scalable and customizable platform to make it possible to integrate a broad spectrum of 
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physiological data, and also to perform multiple data fusion through comprehensive data 
mining to provide versatile services in diversified application domains. 
By mining the long-term physiological data accumulated from the large-scale population, 
more physiological insights related to physical and mental ailments will be discovered from 
changes in the biorhythms in the long-term profiles, which are important for chronic 
conditions but is unable to be derived from fragmentary data collected over the short term. 
Biological rhythms are found in a wide range of frequencies from seconds to years, and in 
different biological levels from the entire body to individual cells. Much research has been 
conducted on different scales, such as circadian, diurnal, monthly, and seasonal rhythms. 
Many rhythmic events are already well known. Sudden death due to cardiovascular disease 
happens mostly in the early morning. A high risk of stroke and silent cerebral infarct are 
related to the morning surge of blood pressure that occurs on waking. One of the most 
prominent biorhythms is the heartbeat, which is currently used to obtain insight into many 
cardiovascular-related diseases (Malik et al., 1996). There is growing evidence indicating 
that a marked diurnal variation exists in the onset of cardiovascular events, with a peak 
incidence of myocardial infarction, sudden cardiac death, and ischemic and hemorrhagic 
stroke occurring in the morning (from 6 am to noon), after a nadir in these events during the 
night (Kario et al., 2003). 
On the other hand, the “Medical Classic of Emperor Huang” (Wikipedia, 2008), one of the 
TCM representative masterpieces published more than 2,000 years ago, divided a day into 
12 time slots. Each time slot is two hours long and is responsible for alternating metabolic 
oscillations in different visceral organs. Each visceral organ has its optimal on-duty and off-
duty time slot. During the period 5–7 am, the cardiovascular system is on duty and is most 
active. This leads to an increase in the burden on the heart and induces a morning surge in 
blood pressure. Even worse, patients suffering from cardiovascular disease are subject to 
sudden death. Such rhythmic concepts are close to current understanding (Qu, 2007). 
In contrast, a dualism that considered mind and body to be separate prevailed until René 
Déscartes in the 17th century. Oriental medicine treats the body and mind as a whole and 
aims to enhance holistic balance and visceral organic harmony through enhancing self-
healing functions by offering a series of therapies, such as herbal medicine, meditation, 
acupuncture, and osteopathy in the early stage of illness development, or “un-illness 
status”. 
The term “un-illness status” is used in the “Medical Classic of Emperor Huang”. The 
proposed prescriptions, such as shadow boxing and rhythmic gymnastics, are still effective 
for the present management of most lifestyle-related chronic diseases, such as hypertension, 
hyperlipidaemia, diabetes, obesity, hyperuricaemia, arteriosclerosis, osteoporosis, hepatitis, 
asymptomatic stroke, potential heart attack, and fatty liver. The Japan Mibyou System 
Association (JMSA) was founded in 2005, and it defined “mibyou” (un-illness) as a situation 
between health and disease (JMSA, 2006). JMSA’s mission is committed to the better control 
of un-illness situations and to improving human wellness. JMSA established an official 
accreditation system for health promoters that aim to provide wholesome and secure care to 
all citizens. 
A “challenge to 100 years of age” project in the county community of Nishi-Aizu in central 
Japan has been mobilized since 1994 with governmental financial support of 2 billion 
Japanese yen (Nishi-Aizu, 2003). The fundamental goal is to increase healthy longevity by 
providing a total solution package to villagers. They built an ICT infrastructure, improved 
the soil, enhanced the nutritional balance, and initiated a health promotion campaign. 
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Homecare devices were distributed to 687 families among a total of 2,819 families. These 
devices can measure blood pressure, ECG, photoelectric plethysmograms, body temperature 
and weight, and can receive answers to queries. These endeavours increased the villagers’ 
longevity from 73.1 years (80.0 years for females) in 1985 to 77.6 years (84.1 years for 
females) in 2000 and decreased the mortality from stomach cancer from 138.9% (125.4% for 
females) in 1988 to 91.7% (66.7% for females) in 2002. 
In their “China study”, Campbell et al. described a monumental survey of diet and death 
rates from cancer in more than 2,400 Chinese counties, and its significance and implications 
for nutrition and health. They showed that by changing their behaviour based on nutritional 
balance and lifestyle, patients can dramatically reduce their risk of cancer, diabetes, heart 
disease, and obesity (Campbell & Campbell, 2005). 
Both oriental and occidental professional societies have now converged to a common 
understanding that many chronic problems can be avoided through practicing a total solution 
package, including nutritional balance, rhythmic lifestyle, duly exercise, and mental wellness. 
With an increasing global penetration of mobile telephony and a mature ICT infrastructure, 
as illustrated in Fig. 16, a future SHIP must be built by integrating modern approaches, such 
as network technology, wearable/invisible sensory instrumentation, and data mining 
mathematics, with ancient wisdom from both oriental and occidental philosophy. An overall 
strategy and tactics for healthcare and allied applications can then be provided. Many new 
areas and industries, such as public transportation security, fire fighting and police, senior 
health insurance, professional athlete training, home-based care, and the tracking of the 
effects of pharmaceuticals will blossom. 
 

 

Fig. 16. Conceptual illustration of a future SHIP showing its constitutional fundamentals 
and application domains. This will be built by merging oriental holistic philosophy and 
occidental accurate treatment and the latest achievements in network technology, 
wearable/invisible measurements, and data mining mathematics. The SHIP will be applied 
in the chronic illness prevention domain, and also in a variety of applications, wherever 
vital signs are helpful. 
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4. Conclusions 

In a series of R&D projects, our initiative endeavour was focused on SHIP architecture 

design and system integration. We have developed several sensory technologies for vital-

sign monitoring in environments of everyday living, and data mining algorithms for the 

interpretation of comprehensive large-scale data. However, much new knowledge remains 

to be discovered from long-term data mining. The open architecture of SHIP makes it 

possible to integrate diversified vital signs and data mining algorithms, either from ours or 

from cooperative partners. 

We also realize that radical societal change demands an active paradigm shift from acute 

disease treatment based in hospitals towards preventative care in lifelong activities, and in 

addition, individuals and also organizations and communities must be involved in daily 

efforts. We are optimistic in our belief that the global epidemic of chronic diseases can be 

relieved or controlled by using the latest research achievements, and by advocating healthy 

living behaviour, such as a positive attitude, sound nutritional balance, and regular physical 

exercise. 
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