We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,000
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Data Mining for DNA Viruses with Breast Cancer and its Limitation

Ju-Hsin Tsai
Central Taiwan University of Science and Technology, and Surgical Department, Shian-De General Hospital, No. 420. Yichang Rd., Taiping City, Taichung County 411, Taiwan

1. Introduction

Breast cancer is a multistep disease, and infection with a DNA virus could play a role in one or more of the steps in this pathogenic process [Labecque et al., 1995]. In addition, it has been hypothesized that familial breast cancer and sporadic breast cancer are caused by different mechanisms. More recently, the differences between familial and sporadic breast cancers have been shown to be compatible with Knudson’s ‘two - hit’ hypothesis [Knudson, 1971. Richardson, 1997], which suggests that at least two mutations are required before a cell becomes malignant. The reason that women with familial predisposition to breast cancer are likely to develop it at a younger age and are also more likely to develop bilateral disease is because they have inherited one of the two genetic defects (such as mutation of p53) that are required for breast cancer. These women require only one ‘hit’ to get breast cancer, whereas women with non-familial breast cancer start with no major mutations and thus need two ‘hit’. This observation is consistent with the hypothesis that breast cancer is caused in part by a virus. One of the ‘hit’ required for development of breast cancer may be infection with a
breast cancer virus. There are a few reports about the relationship between fibroadenoma and virus infection [Kleer et al, 2002. Lau et al, 2003], but they only investigated EBV and fibroadenoma. As far as we know, we are the first to report about relationships among multiple viruses and fibroadenoma [Tsai et al, 2005]. Thus, the question arises whether or not breast tumors (either benign – fibroadenoma – or malignant – breast cancer) are influenced by infection with oncogenic viruses.

2. Materials and methods

In the current study, we explored possible relationships among DNA viruses with breast cancer, fibroadenoma, and normal mammary tissue with 106 data points (tissue samples), including 62 specimens of non-familial invasive ductal breast cancer from women and 32 mammary fibroadenomas and 12 normal mammary tissues from women cared for at Chung-Shan Medical University Hospital, with tissues collected as previously described [3]. DNA extraction, Polymerase Chain Reaction (PCR) assay, and Southern Hybridization as described previously [Tsai et al, 2005] were applied here. Genome regions, primers, and thermal cycler programs for identification of each virus (e.g., HSV-1, EBV, CMV, HPV, and HHV-8) were listed in the previous report [Tsai et al, 2005].

Using PCR and Southern hybridization, 69 breast cancer and 44 non-breast cancer specimens were screened for the presence of, β-globin, the internal control. However, five breast cancer tissue samples had negative results for β-globin, and the two breast cancer specimens from patients with familial histories of breast cancer were excluded from the study. All 44 non-breast cancer specimens were positive for β-globin. Among the 62 breast cancer samples, 8 (12.90%) were positive for HSV-1, 28 (45.16%) for EBV, 47 (75.81%) for CMV, 8 (12.90%) for HPV, and 28 (45.16%) for HHV-8. In the non-breast cancer control groups, 8/12 (66.67%) were CMV-positive normal samples, whereas the results for fibroadenoma samples (total, 32) were 20 (62.50%) HSV-1-positive, 16 (50.00%) EBV-positive, 20 (62.50%) CMV-positive, 2 (6.25%) HPV-positive, and 28 (87.50%) HHV-8-positive.

We submitted a data mining approach to the current research that included artificial neural networks (ANNs) and agglomerative hierarchical clustering techniques (AHCTs). With the proposed data mining approach (named ANN-AHCT hereafter), the different combinations of DNA viruses possible in breast cancer, fibroadenoma, and normal mammary tissue were classified by ANNs; then, AHCTs clustered the common characteristic during the same classification.

2.1 Artificial neural networks (ANNs) model

ANNs are composed of processing elements (nodes or neurons) and their connections. The nodes are interconnected layer-wise among themselves. Each node in each successive layer receives the inner product of synaptic weights with the outputs of the nodes in the previous layer. The operation of single node is shown in Fig. 1. ANNs have been shown to be effective for addressing complex nonlinear problems. The two types of learning networks are supervised and unsupervised. For a supervised learning network, a set of training input vectors with a corresponding set of target vectors is trained to adjust weights in the ANN. For an unsupervised learning network, a set of input vectors is proposed; however, no target vectors are specified. In this study, a supervised learning network was thought to be more suitable for the classification problem. Several well-known supervised
learning ANNs are the back-propagation (BP), learning vector quantization, and counter propagation network. The BP model is used most extensively and can provide better solutions for many applications [Lippmann, 1987. Dayhoff, 1990]. Therefore, the BP model was selected for the current study.

A BP neural network consists of three or more layers, including an input layer, one or more hidden layers, and an output layer. Fig. 2 illustrates a basic BP neural network with three layers. BP neural network learning works on a gradient-descent algorithm [Funahashi, 1989]. The BP neural network initially receives the input vector and directly passes it into the hidden layer(s). Each element of the hidden layer(s) is used to calculate an activation value by summing up the weighted input, and the sum of the weighted input will be transformed into an activity level by using a transfer function. Each element of the output layer is then used to calculate an activation value by summing up the weighted inputs attributed to the hidden layer. Next, a transfer function is used to calculate the network output. The actual network output is then compared with the target value. The BP neural network algorithm refers to the propagation of errors of nodes from the output layer to nodes in the hidden layer(s). These errors are used to update the network weights. The amount of weights to be added to or subtracted from the previous weight is governed by the delta rule. After the knowledge representation is determined, the BP neural network will be trained to attempt the classification behavior. The number of hidden layers and the number of nodes in each hidden layer are determined during the training phase. In this study, a fully connected feedforward neural network was used, and its network parameters and stopping criterion were set.

Fig. 1. Node operation

To be able to attempt the classification behavior, a learning rule needs to be used in the BP neural network. In the case of a multi-layer perception, this rule should also be able to adapt the weights of all connections in order to model a nonlinear function. The learning rule used most frequently for this purpose is the BP rule. It acts through the following two steps. First, the generalized difference $D^*_i(t)$ is calculated by

$$D^*_i(t) = (A^*_i(t) - A_i(t)) \ast A_i(t)(1 - A_i(t)),$$

where A^*_i is the desired activation of output unit i, and $A_i(t)$ is the generated activation of this unit. In order to obtain the generalized difference the calculated difference $A^*_i(t) - A_i(t)$ is multiplied by the simplified derivative of the activation function $A_i(t)^*(1 - A_i(t))$. Second, the generalized differences of the units in the output layer are propagated back through the weighted connections to the units of the hidden layer(s). The generalized difference

www.intechopen.com
collected from a hidden unit is multiplied by the simplified derivative of the unit’s activation function in order to obtain the generalized difference of the hidden unit

\[D_j^*(t) = \sum_{i=1}^{n} (W_{ij}(t) \ast D_i^*(t)) \ast A_j(t) \ast (1 - A_j(t)). \]

(2)

Using the generalized difference \(D^*(t) \), the weights are adjusted by

\[W_{ij}(t + 1) = W_{ij}(t) + C \ast D_i^*(t) \ast A_j(t). \]

(3)

The adaptation size of the weight \(W_{ij}(t) \) of the connection used to send information from unit \(j \) to unit \(i \) is influenced by the existing weight \(W_{ij}(t) \), the learning rate \(C \), the generalized difference \(D_i^*(t) \), and the actual activation \(A_j(t) \) of unit \(j \). To reduce the probability of weight change oscillation, a weight momentum term is added to adjust the weight. The weight momentum term is constructed by previous adjustment of the weight \(D^*W_{ij}(t) \) and a constant value \(B \), so

\[W_{ij}(t + 1) = W_{ij}(t) + C \ast D_i^*(t) \ast A_j(t) + B \ast D \ast W_{ij}(t). \]

(4)

Fig. 2. A back-propagation (BP) neural network

If more hidden layers are implemented, the BP rule will use the generalized differences of the hidden units of the BP neural network to get the hidden units of the hidden layer closer to the input layer. To test the network, test set data are assigned to the networks, and then the output is evaluated. The network should be able to interpolate and, possibly, extrapolate.

In this study, through the above-mentioned principle for construction of a BP model, we collected training and testing patterns by randomly selecting data from the total number of 106 (specimens, or data points) to correlate the presence of DNA viruses with breast cancer, fibroadenoma, and normal mammary tissue to develop a BP model that could obtain underlying relationships. The BP model can be constructed without requiring any assumptions concerning the functional form of the relationship among the DNA viruses with breast cancer, fibroadenoma, or normal mammary tissue. The developed BP model can classify the behavior of all possible combinations of DNA viruses. Then, all possible DNA virus combinations in the developed classification model would be presented and the estimated probability of breast tumor (benign or malignant) would be computed.
2.2 Agglomerative hierarchical clustering techniques (AHCTs)

AHCTs are a statistical method that serially fuses n individuals into groups in order to obtain partitions. When AHCTs have placed two individuals into the same group, the two individuals cannot subsequently appear in different groups, that is, the AHCT procedure is irreversible. AHCTs’ main objective is to organize data in order to form clusters that contain all individuals. In this project, AHCTs were applied to cluster DNA viruses that belong to the same classification based on the ANN’s classification behavior. The decision-maker’s duty is to seek the ‘best’ fitting number of clusters needed to decide how to organize data. The AHCT procedure is as follows [Salton,1989]:

\[P_n, P_{n-1}, ..., P_1 \]

represents a series of partitions of data. The first, \(P_n \), includes n single member clusters, and the last, \(P_1 \), includes a single group that contains all n individuals. The basic operation to form \(P_n, P_{n-1}, ..., P_1 \) is similar.

STEP 0: Each cluster \(C_1, C_2, ..., C_n \) includes a single individual.

STEP 1: To find the nearest pair of distinct clusters, say \(C_i \) and \(C_j \), then to merge \(C_i \) and \(C_j \), and to delete \(C_j \), decrease the number of clusters by one.

STEP 2: If the number of clusters equals one then stop, or else return to **STEP 1**.

Three inter-group measures of AHCTs differ primarily in the distances between or similarity of two clusters.

One is single linkage clustering (5), another is complete linkage clustering (Eq. 6), and the other is average linkage clustering (Eq. 7) [Bunke & Shearer,1998. Wallis et al,2001].

\[
 d_{AB} = \min_{i \in A \atop i \in B} (d_{ij})
\]

(5)

\[
 d_{AB} = \max_{i \in A \atop i \in B} (d_{ij})
\]

(6)

where \(d_{AB} \) is the distance between two clusters A and B, and \(d_{ij} \) is the distance between individuals \(i \) and \(j \). (This could be a Euclidean distance or one of a variety of other distance measures.)

\[
 d_{AB} = \frac{1}{n_A n_B} \sum_{i \in A} \sum_{i \in B} d_{ij},
\]

(7)

where \(n_A \) and \(n_B \) are the number of individuals in clusters A and B.

The average linkage cluster is the same as single linkage or complete linkage. However, the cluster criterion of the average linkage cluster is the average distance from all individuals in one cluster to all individuals in another. Unlike single linkage clustering and complete linkage clustering, average linkage clustering does not depend on extreme values to partition all members of the cluster. The other merit for using the average linkage approach is to form clusters with small within-cluster variation. Average linkage clustering also tends to be biased toward production of clusters with approximately the same variance. So, the authors of the current work considered the average linkage cluster’s advantages and the steps of computing Eq. (7) to further cluster the DNA viruses in the ANN-AHCT approach.
2.3 The proposed ANN-AHCT approach
In order to obtain the relationship among combinations of DNA viruses with breast cancer, fibroadenoma, and normal mammary tissue, an effective and feasible data mining method, the ANN-AHCT approach, was proposed. It includes two phases that are summarized in Fig. 3, which shows the structure of the ANN-AHCT approach flow chart.

Fig. 3. The flow chart ANN-AHCT approach.
Phase I. Using the BP model to classify all combinations of DNA viruses.

To define the knowledge representation, network parameters and stopping criterion is most important to obtain the best classification BP model. The knowledge representation defines the relationship among the DNA viruses with breast cancer, fibroadenoma, and normal mammary tissue. The number of input nodes is equal to the number of DNA viruses (five, HSV-1, EBV, CMV, HPV, HHV-8); the input values are the value of (positive, negative) DNA viruses. In addition, the number of output nodes is three (breast cancer, fibroadenoma, and normal mammary tissue); the output values are the code. This means that if breast cancer is present, the code is 1, otherwise, the code is 0; similarly, if fibroadenoma is present, the code is 1, otherwise, the code is 0; if normal mammary tissue is present, the code is 1, otherwise, the code is 0. In addition, the network parameter-learning rate and moment will be set to assist the trained network to attempt convergence and stabilization in classification behavior.

The stopping criterion is set to lower the root mean square error (RMSE) in the training and testing processes. In this study, in order to obtain the appropriate BP model, the iteration was set to 10,000 and the learning rate was set to dynamically auto-adjust from 0.01 to 0.3 for rapid effective learning and stable behavior as observed by mildly varying values of RMSE. Table 1 lists these appropriate BP architectures and their momentums.

In order to obtain the best BP model from Table 1, selection of the best classification model is done through selecting the lowest RMSE of training and testing or the highest classification correction rate. The architecture (input nodes-hidden nodes-output nodes) 5-2-3 was selected to obtain a better performance. In order to obtain the relationship among each different combination of DNA viruses with breast cancer, fibroadenoma, and normal mammary tissue, the total number 32 (2 * 2 * 2 * 2 * 2, the combination of DNA viruses) was inputted into the architecture 5-2-3, and then the classification of breast tumor and occurrence probability could be obtained. Placement of all DNA virus combinations into Tables 2–5 depended on the possible occurrence probability of breast cancer, fibroadenoma, and normal mammary tissue.

In Table 2, 10 DNA virus combinations would result in the highest probability of fibroadenoma; in Table 3, 15 DNA virus combinations would result in the highest probability of breast cancer; and in Table 4, 4 DNA virus combinations would result in a higher probability of breast cancer than of normal mammary tissue, a value that was also higher than the probability of fibroadenoma. In Table 5, 3 DNA virus combinations resulted in a higher probability of breast cancer or fibroadenoma, that is, a breast tumor.

Phase II. Using average linkage clustering to obtain different clusters during each classification.

In order to obtain the common combination for each classification, further clustering of each classification was necessary. This study used average linkage clustering to obtain different clusters in each classification. In Tables 2 and 3, the results of average linkage clustering were computed and depicted the possible cluster results shown in Tables 6 and 7. To decide the best number of clusters in Table 6, a medical expert in breast tumors at the Chung-Shan Medical University Hospital suggested that three clusters would be best. The first cluster is labeled 10 and 12. The second cluster is labeled 26, 28, 30, and 32. The third cluster is labeled 18, 20, and 24. The label 27 was clustered in the three clusters with difficulty. In addition, to decide the best number of clusters in Table 7, the medical expert suggested that four clusters would be best. The first cluster is labeled 2, 4, 6, and 8. The second cluster is labeled 9 and 11. The third cluster is labeled 13, 15, 29, and 31. The fourth cluster is labeled 17, 19, 21, and 23.
The label 14 was clustered in the four clusters with difficulty. In Table 3, where the combination included only four situations, it was not necessary to further cluster. Similarly, in Table 5, the combination included only three situations, so it was not necessary to further cluster.

Using used Kendall’s tau-b test to examine the correlation between number of virus infections and survivals in breast cancer patients. The results suggest that the number of infecting viruses is related to the overall and relapse-free survivals of breast cancer patients (correlation coefficient=-0.275; P=0.021). In order to further investigate the relationship between viral factors and overall and relapse-free survivals in our sample of breast cancer patients, univariate log-rank analysis was used. Both overall and relapse-free survival rates were significantly different (P=0.001 and P=0.000, respectively; Table 9) comparing V0, V1, V2, V3 and V4 subgroups (zero, one, two, three and four virus infections, respectively).

<table>
<thead>
<tr>
<th>Architecture (nodes)</th>
<th>Momentum</th>
<th>RMSE</th>
<th>Correction rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training</td>
<td>Testing</td>
<td></td>
</tr>
<tr>
<td>5-1-3</td>
<td>0.52</td>
<td>0.02358</td>
<td>0.02334</td>
</tr>
<tr>
<td>5-2-3</td>
<td>0.45</td>
<td>0.02227</td>
<td>0.02241</td>
</tr>
<tr>
<td>5-3-3</td>
<td>0.63</td>
<td>0.02587</td>
<td>0.02432</td>
</tr>
<tr>
<td>5-4-3</td>
<td>0.43</td>
<td>0.02627</td>
<td>0.02258</td>
</tr>
<tr>
<td>5-5-3</td>
<td>0.60</td>
<td>0.02428</td>
<td>0.02518</td>
</tr>
<tr>
<td>5-6-3</td>
<td>0.55</td>
<td>0.02344</td>
<td>0.02488</td>
</tr>
</tbody>
</table>

Iteration 10,000.

Learning rate 0.01–0.

Table 1. Network options for current study

<table>
<thead>
<tr>
<th>Label</th>
<th>HSV-1</th>
<th>EBV</th>
<th>CMV</th>
<th>HPV</th>
<th>HHV-8</th>
<th>Breast cancer</th>
<th>Normal mammary tissue</th>
<th>Fibroadenoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0.10</td>
<td>0.00</td>
<td>0.90</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>0.02</td>
<td>0.00</td>
<td>0.98</td>
</tr>
<tr>
<td>26</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>28</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>30</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>32</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>18</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0.01</td>
<td>0.00</td>
<td>0.99</td>
</tr>
<tr>
<td>20</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>24</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0.16</td>
<td>0.00</td>
<td>0.84</td>
</tr>
<tr>
<td>27</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>0.28</td>
<td>0.00</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Table 2. DNA virus combinations for fibroadenoma

www.intechopen.com
Table 3. DNA virus combinations for breast cancer

<table>
<thead>
<tr>
<th>Label</th>
<th>HSV-1</th>
<th>EBV</th>
<th>CMV</th>
<th>HPV</th>
<th>HHV-8 Breast cancer</th>
<th>Normal mammary tissue</th>
<th>Fibroadenoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0.96</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>0.90</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>29</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>0.97</td>
<td>0.00</td>
</tr>
<tr>
<td>31</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0.92</td>
<td>0.00</td>
</tr>
<tr>
<td>17</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.98</td>
<td>0.00</td>
</tr>
<tr>
<td>19</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>0.98</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>23</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0.79</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 4. DNA virus combinations and probability for breast cancer

<table>
<thead>
<tr>
<th>Label</th>
<th>HSV-1</th>
<th>EBV</th>
<th>CMV</th>
<th>HPV</th>
<th>HHV-8 Breast cancer</th>
<th>Normal mammary tissue</th>
<th>Fibroadenoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.59</td>
<td>0.28</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>0.69</td>
<td>0.21</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>0.50</td>
<td>0.36</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0.61</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table 5. DNA virus combinations and probability of breast cancer or fibroadenoma

<table>
<thead>
<tr>
<th>Cluster (total)</th>
<th>[Label]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{24, 20, 18, 32, 30, 28, 26, 12, 10}</td>
</tr>
<tr>
<td>2</td>
<td>{24, 20, 18} {32, 30, 28, 26, 12, 10}</td>
</tr>
<tr>
<td>3</td>
<td>{24, 20, 18} {32, 30, 28, 26} {12, 10}</td>
</tr>
</tbody>
</table>

Table 6. Possible total number of clusters for fibroadenoma
Table 7. Possible total number of clusters for breast cancer

Moreover, as shown in Table 9, significant differences were also demonstrated in comparisons of the respective survival rates for the virus infection subgroups: V(0,1), V2, V3 and V4; V(0, 1), V2, V(3, 4), V(0, 1), V(2, 3), V4, and, V(0, 1) and V(2, 3, 4) (P<0.005 or <0.001) (n, n+1, indicates virus number). Except for the V0 vs. V1 vs. V2 vs. V3 vs. V4 variable, only when V(0,1) was grouped for comparison with other multiply virus-infected subgroups, however, were the overall and relapse-free survivals significantly different. These results suggest that the number of virus infections is related to the overall and relapse-free survivals in our sample of breast cancer patients, moreover, the overall and relapse-free survivals of multiply (more than two) virus-infected breast cancer patients group is significantly different from the no virus- or one virus-infected group.

3. Discussion

Previous studies have provided direct evidence that viruses exist in human breast tumors and suggest that viruses are one risk factor for breast tumors [Tsai et al,2005. Pogo et al,1997. Brower, 2004]. However, some of these studies are disputed [Gopalkrishna et al,1996. McCall et al,2001]. From the sample data, this study detected DNA of the five viruses HSV-1, HPV, CMV, EBV, and HHV-8 in some tissue samples from patients with breast cancer or fibroadenoma or women with normal mammary tissue. Only CMV was detected in some normal mammary tissue samples. In contrast, breast cancer and fibro-adenoma had a much higher frequency for the presence of DNA belonging to two or more viruses (76.90% and 100.00%, respectively) than the presence of DNA from one virus (23.10% and 0.00%, respectively). This suggests that multiple viral infection is closely associated with benign or malignant breast tumors. Lawson et al. speculated that EBV may enhance the action of the human homologue of the mouse mammary tumor virus (HHMMTV) because it is known that some viruses remain dormant unless activity is promoted by the activity of another virus [Mckeating et al,1990. Biegelke, Geballe,1991]. Therefore, different viruses have different oncogenic potencies in mammary gland tissue.

In Table 2 showing data from this study, both the HSV-1 and HHV-8 positive group (clusters 2 and 3) with or without EBV infection nearly always had the pathological diagnosis of fibroadenoma (nearly 99.00%). The first cluster of Table 2 has the same result, but with the conditions HSV-1(-), EBV(+), CMV(-), HHV-8(+). In Table 8, the individual effect of HSV-1 and HHV-8 is seen between fibroadenoma and breast cancer. The HSV-1(+) group shows OR (Odds Ratio) = 0.09, 95%CI (Confidence Interval) = 0.03–0.25, P (P-value) < 0.001. The HHV-8(+) group shows OR = 0.12, 95%CI = 0.04–0.38, P < 0.001. The individual effect of HSV-1 and HHV-8 between fibroadenoma and breast cancer shows that both HSV-1 and HHV-8 positive groups appear to show a strongly protective effect against the progression from fibroadenoma to breast cancer. When the combination
HSV-1(-), HHV-8(+) is compared with HSV-1(+), HHV-8(+) for fibroadenoma and breast cancer cases, OR = 20.83, 95%CI = 4.88--88.87, P < 0.001. There is a similar difference between cluster 1 of Table 2 and cluster 1 of Table 3: Apart from the combination HSV-1(-), HHV-8(+), the other condition found to be present was EBV(+), CMV(-), which was associated with a roughly 99.00% probability of fibroadenoma. In our previous report [Tsai et al., 2005], when we took the comparative results of the mammary fibroadenoma group with normal tissues into account (data not shown), EBV was closely related to fibroadenoma (P < 0.01). Kleer et al. suggested that EBV was associated with fibroadenoma in an immunosuppressed population, with infection localized specifically to epithelial cells. Gandhi et al. suggested that the replication of CMV in the absence of an effective immune response is central to pathogenesis of disease. Therefore, complications such as tumor formation are primarily seen in individuals whose immune systems are immature or are suppressed by drug treatment or coinfection with other pathogens. In this study, EBV appears to be related closely to fibroadenomas in non-immunosuppressed women. In this classification, the prerequisite was CMV(+) or CMV(-). When HSV-1(-), HHV-8(+) accompanied EBV(-) (cluster 1 of Table 3), there was a greater than 96.00% probability of breast cancer.

DNA viruses have been recognized as oncogenic in humans, and viral DNA sequences have been found in breast tumors [Tsai et al., 2005. Kleer et al., 2002]. Different viruses have different carcinogenicity, as has been shown in models of mouse mammary cancer induced by 7,12-dimethylbenz(a)anthrance (DMBA). Qing et al. gave the classical dosage (1mg DMBA give once a week for six weeks) intragastrically to female SENCAR mice, with resulting high toxicity; the major tumor type was lymphoma. Lowering the dose to 60 mcg/day produced less toxicity; in terms of tumor type, there was a 75% incidence of lymphoma and a 30% incidence of mammary carcinoma. However, 20mcg DMBA given five times per week for six weeks resulted in a 65–70% incidence of mammary carcinoma. It is known that some viruses remain dormant unless activity is promoted by the presence of another virus [Mckeating et al., 1990. Biegalk et al., 1991]. In contrast, some virus activity may be diminished by the presence of another virus. This may be the basis for the different result between HSV-1(-), HHV-8(+) with EBV(+) or EBV(-), CMV(-).

In Table 3, cluster 2 shows HSV-1(-), EBV(+), CMV(-), HHV-8(-). In Table 8, comparing HSV-1(-), HHV-8(-) to HSV-1(+), HHV-8(+) yields OR = 48.33, 95%CI = 9.75--239.65, P < 0.001, showing that the combined effect of HSV-1 and HHV-8 is more likely to be breast cancer than fibroadenoma. In this cluster, other prerequisites were EBV(+), CMV(-).

Labecque et al. and Bonnet et al., who detected the presence of EBV by PCR, found the virus more frequently in malignant tumors than in non-malignant tumors. Disputes surrounding some of these studies [Gopalkrishna et al., 1996. Chu et al., 1998] may be due to the focus on the relationship of a single virus with breast cancer. In Table 3, cluster 3 shows EBV(+), CMV(+), HHV-8(-) events. Late expose-to a common virus, such as human CMV [Richardson, 1997], or delayed exposure to EBV [Yasu et al., 2001] has been suggested as a risk factor of breast cancer. In Table 6, the individual effect of HHV-8(+) suggests a strongly protective effect on progression from fibroadenoma to breast cancer (OR = 0.12, 95%CI = 0.04--0.38, P < 0.001). These pre-requisites resulted in a nearly 97.00% probability of breast cancer. Cluster 4 of Table 3 shows that HSV-1(+), EBV(-), HHV-8(-) was a prerequisite. In Table 8, which compares HSV-1(+), HHV-8(-) to HSV-1(+), HHV-8(+) there is OR = 25.00, 95%CI = 5.92--105.58, P < 0.001 for the combined effect of HSV-1 and HHV-8 with the greater likelihood of breast cancer than fibroadenoma. Beside these factors, EBV as a negative condition showed a nearly 98.00% possibility of breast cancer. Bonnet et al.,
who detected EBV by PCR, found EBV was detected more frequently in breast tumors that were hormone-receptor negative (P = 0.01). However, it may still be necessary in the study of breast tumors to investigate hormonal influences. Moore et al. indicated that a virus was oncogenic in the estrogen milieu of female mice of a strain with genetic susceptibility to mammary tumors.

There is experimental evidence that insulin, glucocorticoids, estrogen, and progestins synergize with MMTV in genetically susceptible female mice to cause mammary cancer [McGrath et al, 1978]. However, insulin and glucocorticoids are physiologically required in certain amounts and consistently over time. Therefore, there is particular importance in estrogen and progesterone and their correlation to breast cancer [McGrath et al, 1978].

Mastopathia cystica (fibrocystic disease, mammary dysplasia) was induced by DMBA in neonatally androgenized female Sprague-Dawley rats [Yoshida, 1994]. In these androgenized rats, no corpora lutea were found in the ovaries. The rat mastopathia cystica condition varied widely, with two kinds of macroscopically detectable tumor-forming lesions (solid and cystic). The development of rat mastopathia cystica was dependent on estrogen [Yoshida, 1994]. Although mammary carcinoma occurred more frequently in neonatally non-androgenized rats than did fibroadenoma [Yoshida, 1994]. Yoshida et al, 1980], it seems even mammary tissues induced by the same carcinogen require a specific hormonal state to result in a benign or malignant condition.

In Table 4, the prerequisite was negative status for HSV-1, EBV, and HHV-8. For the three combinations either CMV or HPV, neither CMV nor HPV, or both CMV and HPV in the absence of any of the first three viruses, carcinogenic potency was not linked absolutely to a malignant or benign tumor. Different studies of HPV in breast cancer present conflicting results [Gopalkrishna et al, 1996. Morimoto et al, 1999]. Yu et al. [Morimoto et al, 1999], who detected HPV-33 by PCR, suggested that it may be involved in human breast cancer. However, the positive rate of HPV-33 in China was 43.75% (14/32), while in Japan it was only 8.33% (1/12). Richardson et al. hypothesized that some breast cancers might be caused by late exposure to a common virus such as CMV. According Richardson’s hypothesis, in breast cancer exposure to the virus could be a “hit,” while other “hits” [Knudson, 1971] could be genetic susceptibility (such as an inherited mutation of p53) or uninterrupted exposure to a combination of estrogen and progesterone. Therefore, absent an enhancing factor (HSV-1, EBV, HHV-8), the incidence of breast cancer in this group was only 60.00%.

In Table 5, there is no prerequisite: Random virus infection in the mammary tissue produces an incidence of either breast cancer or fibroadenoma in women of 21 years of age (50.00%). However, despite lack of specificity in resulting pathology, viruses are clearly a tumorigenesis factor in the mammary gland. Endogenous estrogens are central to the etiology of breast cancer [Adami et al, 1998] because in the absence of estrogens breast cancer does not occur. A recent prospective study of Japanese women indicated that levels of serum estrogens were positively correlated with risk of breast cancer. In humans, there are strong associations between dietary pattern and level of circulating estrogen, with energy-rich diets correlated with high circulating estrogen levels [Kabuto et al, 1998]. Well-conducted case-control and ecological studies in populations with a low risk of breast cancer such as those in China, Japan, and Indonesia, have shown that the risk of breast cancer is up to seven times higher in women who consume the highest level of fats and energy within those populations [Goldin et al, 1986. Hirayama, 1978]. Chen and Liaw [2002], who conducted an ecological study of dietary fat intake and mortality rates from breast cancer and colorectal cancer in Taiwan, found a positive correlation between fat and both breast cancer and colorectal cancer. Lawson et al. [2001] hypothesized that viruses such
as HPV and EBV act as cofactors with diet, estrogen, and other hormones in initiation and promotion of some types of breast cancer in genetically susceptible women. Triple negative breast cancers have more aggressive clinical course than other forms of breast cancer and the incidence was 10-15% [Sorlie et al., 2000 and 2003. Iwase and Yamamoto, 2008]. In the current study, the viral prerequisites for breast carcinogenesis almost showed the single virus-infected events and the incidence was two folds (27.3%) of previous studies (data not shown). In the author unpublished data showed that the overall and relapse-free survivals of multiple (more than two) virus-infected breast cancer patients group is significantly better than the no virus or one virus infected group. It suggest that current method only detect the aggressive factors of the viral prerequisites for breast carcinogenesis.

Table 8. Odds ratios and P-values from sample data (breast cancer and fibroadenoma)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall survival</th>
<th>Relapse-free survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0 vs. V1 vs. V2 vs. V3 vs. V4</td>
<td>0.001*</td>
<td><0.001*</td>
</tr>
<tr>
<td>V0 vs. V(1, 2) vs. V(3, 4)</td>
<td>0.359</td>
<td>0.189</td>
</tr>
<tr>
<td>V0 vs. V(1, 2, 3) vs. V4</td>
<td>0.645</td>
<td>0.598</td>
</tr>
<tr>
<td>V0 vs. V(1, 2, 3, 4)</td>
<td>0.515</td>
<td>0.979</td>
</tr>
<tr>
<td>V(0,1) vs. V2 vs. V3 vs. V4</td>
<td>0.013*</td>
<td><0.001*</td>
</tr>
<tr>
<td>V(0, 1) vs. V2 vs. V(3, 4)</td>
<td>0.005*</td>
<td><0.001*</td>
</tr>
<tr>
<td>V(0, 1) vs. V(2, 3) vs. V4</td>
<td>0.005*</td>
<td><0.001*</td>
</tr>
<tr>
<td>V(0, 1) vs. V(2, 3, 4)</td>
<td>0.001*</td>
<td><0.001*</td>
</tr>
<tr>
<td>V(0, 1, 2) vs. V3 vs. V4</td>
<td>0.543</td>
<td>0.187</td>
</tr>
<tr>
<td>V(0, 1, 2) vs. V(3, 4)</td>
<td>0.288</td>
<td>0.078</td>
</tr>
<tr>
<td>V(0, 1, 2, 3) vs. V4</td>
<td>0.539</td>
<td>0.312</td>
</tr>
</tbody>
</table>

Table 9. Results of log-rank analysis for overall and relapse-free survival
4. Conclusion

In previous research on the relationships among DNA viruses and breast cancer, fibroadenoma, and normal mammary tissue, only statistical analysis was used. However, when using statistical methods to classify DNA viruses and predict their probability in breast cancer, fibroadenoma, and normal mammary tissue, the assumption of statistics is necessary. Thus, statistics may become inappropriate to deal with problems of prediction, classification, and cluster in this study setting. In order to overcome this difficulty, our approach used an ANN and AHCTs to achieve the research objective. Our findings suggest that in Taiwan, at least, the viral prerequisites of HSV-1(-); EBV(-); HHV-8(+) have a role in breast carcinogenesis. HSV-1(+) and HHV-8(+) have a strongly protective effect on progression from fibroadenoma to breast cancer. ANN and AHCTs seem to be a contributory method for detecting aggressive viral factors but not the better one. However, it is likely that infection by multiple viruses is important in development of either benign or malignant breast tumors. Further investigation is required to clarify which oncogenic viruses have protective effects and to clarify correlation of viral factors and hormone status with development of benign and malignant breast tumors.

5. References

J. S. Lawson, D. Tran, W. D. Rawlinson, From Bittner to Barr: a viral, diet and hormone breast cancer aetiology hypothesis, Breast Cancer Res. 3 (2001) 81–85.

This book intends to bring together the most recent advances and applications of data mining research in the promising areas of medicine and biology from around the world. It consists of seventeen chapters, twelve related to medical research and five focused on the biological domain, which describe interesting applications, motivating progress and worthwhile results. We hope that the readers will benefit from this book and consider it as an excellent way to keep pace with the vast and diverse advances of new research efforts.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
