We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,900 Open access books available
116,000 International authors and editors
120M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 3

Ligand-Protected Gold Clusters

Sakiat Hossain, Lakshmi V. Nair, Junta Inoue, Yuki Koyama, Wataru Kurashige and Yuichi Negishi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.73441

Abstract

Small gold clusters with diameters less than or equal to 2 nm (below approximately 200 atoms) possess geometric and electronic structures different from bulk gold. When these gold clusters are protected by ligands, these clusters can be treated as chemical compounds. This review focuses on gold clusters protected by chalcogenate (thiolate, selenolate, or telluroolate) ligands and describes the methods by which these clusters are synthesized as well as their geometric/electronic structures and physical and chemical properties. Recent findings regarding ligand exchange reactions, which may be used to impart functionality to these compounds, are also described.

Keywords: gold clusters, chalcogenate, geometric and electronic structures, physical and chemical properties, ligand exchange reactions

1. Introduction

Small gold clusters with diameters less than or equal to 2 nm (below approximately 200 atoms) possess geometric and electronic structures different from those of bulk gold [1]. The geometric structure often consists of an atomic arrangement, such as an icosahedral structure, that differs from the close-packed structure of bulk gold, as a result of reducing the surface energy. In addition, a discrete electronic structure appears rather than the continuous structure observed in the bulk element. Owing to these characteristics, small gold clusters exhibit fundamental properties and functionalities different from those of bulk gold. In addition, when these gold clusters are protected by ligands, it is possible to treat them as chemical compounds. In early
studies, beginning in the 1960s, phosphine was employed as a protective ligand [2–16]. Representative phosphine (PR3)-protected gold clusters (Au(n)PR3m) include [Au11(PPh3)8Cl2]+, [Au13(PMe2Ph)8Cl2]+, [Au39(PPh3)14Cl6]2+ and Au55(PPh3)12Cl6 (Figure 1(a)). Unfortunately, these clusters have been found to be unstable in solution, which restricts their practical applications. In contrast, thiolate (SR)-protected gold clusters (Au(n)(SR)m), first synthesized by Brust et al. in 1994 (Figure 1(b)) [17], are highly stable both in solution and in the solid state, because the SR ligands form strong bonds with gold atoms. These Au(n)(SR)m clusters exhibit various physical and chemical properties not shown by bulk gold, such as photoluminescence and catalytic activity. For these reasons, SR ligands have become the most common choice for use with gold clusters [18–40]. Recently, the synthesis of gold clusters protected by other chalcogenates (selenolate (SeR) or tellurolate (TeR); Figure 1(c)) [41–51], by alkynes [52–54], or by two kinds of ligand (Figure 1(d)) [55–59] has also been reported. In this chapter, we focus on gold clusters protected by chalcogenates (Au(n)(XR)m, XR = SR, SeR, or TeR) and describe the synthetic procedures, geometric/electronic structures, and physical and chemical properties of these compounds. Moreover, the physical and chemical properties of these gold clusters are greatly affected by the type of functional group of the protecting ligand. The ligand exchange

Figure 1. The crystal structures of (a) Au11(PR3)8, (b) Au13(SR)8, (c) Au39(SeR)14 and (d) Au55(SeR)12. H atoms are omitted for clarity. In [Au39(PPh3)14Cl6]2+, C atoms are also not shown (these figures were adapted from Refs. [2, 10, 11, 29, 30, 34, 47, 48, 59]).
reaction is a very powerful means for introducing the different ligands into the pre-synthesized cluster. Although this type of reaction was discovered nearly 20 years ago [60–65], the associated mechanism was not fully understood at that time. Recently, tremendous progress has been made in terms of the precise synthesis and evaluation of metal clusters, and details of these reactions have been elucidated [66, 67]. Recent findings regarding these reactions are therefore also included herein.

2. Synthesis of \(\text{Au}_n(\text{XR})_m \) clusters

The method used most frequently to synthesize \(\text{Au}_n(\text{XR})_m \) clusters is based on the chemical reduction of gold ions in the presence of ligands in solution (Figure 2). In this approach, a gold salt and the ligand are mixed in solution to form Au-ligand complexes that are subsequently treated with a reducing agent (normally NaBH₄). \(\text{Au}_n(\text{XR})_m \) clusters are formed by the aggregation
of the resulting gold atoms in conjunction with surface protection by the ligands [18]. In the first report published by Brust et al., dodecanethiolate was used as the ligand [17]. Because a gold salt and dodecanethiolate are soluble in different solvents, Brust transferred the gold salt from an aqueous phase to a ligand-containing toluene phase using a phase-transfer reagent (representing a two-phase system; Figure 2). In contrast, in more recent research, tetrahydrofuran (THF) has often been used as the solvent because it could dissolve both gold salt and ligand [68]. This removes the need for phase transfer of the gold salt and thereby simplifies the synthesis to a one-phase system (Figure 2). Similarly, when a hydrophilic thiol is used as the ligand, gold clusters can be synthesized in a one-phase system [69–71].

The product obtained from this technique is typically a mixture of Au$_n$(XR)$_m$ clusters having various numbers of constituent atoms. Because the physical and chemical properties of the clusters are greatly affected by the number of atoms, separation by size or conversion to stable clusters by exposure to severe conditions is required to obtain Au$_n$(XR)$_m$ clusters with well-defined physical properties and functions (Figure 2) [18, 72]. Polyacrylamide gel electrophoresis [69–72], high-performance liquid chromatography [72–77], and solvent extraction are the most frequently applied techniques for size separation. It is also common to use an etching reaction for size convergence [72, 78–82]. In addition to these techniques, the ligand exchange method, in which the ligands of a specific Au$_n$(XR)$_m$ cluster are replaced with other ligands, is an effective means of generating Au$_n$(XR)$_m$ clusters with a specific chemical composition (Figure 2) [83]. Recent results associated with such ligand exchange reactions are discussed in Section 6.

3. Geometrical structures of Au$_n$(XR)$_m$ clusters

Until 2007, it was believed that Au$_n$(SR)$_m$ clusters possess a geometrical structure in which an Au core is covered with thiolate ligands (Figure 3(a)) [84]. Since then, single-crystal X-ray

Figure 3. The geometrical structures of Au$_{38}$(SR)$_{24}$ (a) predicted by theoretical calculations in 1999 and (b) determined by single-crystal X-ray structural analysis in 2010. The R groups have been omitted for clarity (these figures were adapted from Refs. [30, 84]).
structural analysis has revealed that several \(\text{Au}_n(\text{SR})_m \) clusters consist of an Au core covered with multiple \(\text{S(R)}(\text{Au}) \text{S(R)} \) staples (Figure 3(b)) \([30, 85–88]\). Based on the geometrical structures determined for \(\text{Au}_n(\text{SR})_m \) clusters to date, it can be assumed that almost all small \(\text{Au}_n(\text{SR})_m \) clusters have this type of core-shell structure. Single-crystal X-ray structural analysis has also demonstrated that small \(\text{Au}_n(\text{SeR})_m \) clusters have core-shell structures similar to those of small \(\text{Au}_n(\text{SR})_m \) clusters (Figure 1(c)) \([47, 48]\). The geometrical structure of \(\text{Au}_n(\text{TeR})_m \) clusters has not yet been determined experimentally, although theoretical calculations \([45, 89]\) have shown that these clusters are also likely to have a similar core-shell structure.

4. Electronic structures of \(\text{Au}_n(\text{XR})_m \) clusters

Unlike bulk gold, small \(\text{Au}_n(\text{SR})_m \) clusters have discrete electronic structures. As a result, multiple peak structures can be observed in the optical absorption spectra of these clusters. As an example, \(\text{Au}_n(\text{SC}_{12}\text{H}_{25})_m \) clusters show multiple peak structures across the entire visible range in their optical absorption spectra up to the size of \(\text{Au}_{144}(\text{SC}_{12}\text{H}_{25})_{60} \) (Figure 4) \([75]\). Such fine peak structures are not observed in the spectra of larger clusters, although peaks that can be attributed to surface plasmon resonance absorption have been identified at approximately

![Figure 4. Optical absorption spectra of films composed of \(\text{Au}_n(\text{SC}_{12}\text{H}_{25})_m \) clusters \((n = 38–520)\) at various temperatures \((25–290 \text{ K})\) (this figure was adapted from Ref. [75]).](image)
520 nm in their optical absorption spectra (Figure 4). Thus, the electronic structures of Au_{187}(SC_{12}H_{25})_{68} and larger clusters tend to resemble that of bulk gold (Figure 5) [75].

At present, the relationship between cluster size and electronic structure is not well understood for Au_{n}(SeR)_{m} and Au_{n}(TeR)_{m} clusters, because only a small number of such compounds have been studied to date. However, the researches regarding Au_{25}(SeR)_{18} and Au_{38}(SeR)_{24} clusters have demonstrated that changing the ligands from SR to SeR reduces the HOMO-LUMO gap of the clusters [42, 43] and that this effect becomes more pronounced in the case of clusters containing TeR in the ligand shell [45].

5. Physical and chemical properties of Au_{n}(XR)_{m} clusters

Au_{n}(SR)_{m} clusters exhibit size-specific electronic structures, and their physical and chemical properties also vary with size. Herein, we first discuss typical physical and chemical characteristics of such Au_{n}(SR)_{m} clusters.

5.1. Photoluminescence

Small Au_{n}(SR)_{m} clusters have been shown to exhibit photoluminescence (Figure 6(a)) [18, 20, 23, 70, 71, 90]. As an example, Au_{25}(SC_{2}H_{4}Ph)_{18} (SC = glutathionate) exhibits photoluminescence with an estimated quantum yield of \(-1 \times 10^{-3}\) [71], which can be used for sensing and imaging applications [91].

5.2. Redox behavior

Au_{n}(SR)_{m} clusters also display redox behavior [20, 21]. Figure 6(b) shows a differential pulse voltammogram obtained from Au_{25}(SC_{2}H_{4}Ph)_{18} in which the peaks at \(-1.9\) and \(-0.3\) V originate from \([\text{Au}_{25}(\text{SC}_{2}\text{H}_{4}\text{Ph})_{18}]^{-/2}\) and \([\text{Au}_{25}(\text{SC}_{2}\text{H}_{4}\text{Ph})_{18}]^{0/-}\) redox couples, respectively. This
redox behavior is not confined to clusters with discrete electronic structures; Au$_{n}$(SR)$_{m}$ clusters larger than Au$_{144}$(SR)$_{60}$ also exhibit redox behavior as a result of quantized double-layer charging [21]. The redox properties of Au$_{n}$(SR)$_{m}$ clusters could be applied to single-electron transistors [92].

5.3. Optical activity

Several clusters, such as Au$_{38}$(SR)$_{24}$ and Au$_{40}$(SR)$_{26}$, have optical isomers with different —S(R)1—Au—S(R)x— staple (x = 1, 2) configurations [93–95] and thus are optically active [36]. Figure 6(c) presents the circular dichroism spectra of two optical isomers of Au$_{38}$(SC$_2$H$_4$Ph)$_{24}$.
The anisotropy factor associated with the optical activity of this cluster increases with wavelength up to a maximum of 4×10^{-3}.

5.4. Catalytic activity

Catalytic activity is another typical size-specific property of Au$_n$(SR)$_m$ clusters (Figure 6(d)) [22, 72]. As an example, Au$_{25}$(SR)$_{18}$ catalyzes the oxidation of CO, styrene, benzyl alcohol, cyclohexane, and sulfides. The same cluster also exhibits catalytic activity for the hydrogenation of nitrophenol, aldehydes, and ketones and promotes C—C coupling reactions. As noted, several Au$_n$(SR)$_m$ clusters have optical isomers and therefore could potentially function as asymmetric catalysts [96].

5.5. Effect of changing ligands

Regarding Au$_n$(SeR)$_m$ and Au$_n$(TeR)$_m$ clusters, it has been reported that the incorporation of SeR or TeR ligands changes the nature of the bonding between the Au atoms and the ligands [97, 98]. In the case of Au$_n$(SeC$_{12}$H$_{25}$)$_m$ clusters, this effect reduces the degree of charge transfer from the Au atoms to the ligands (Figure 7(a)) such that the Au—ligand bond becomes much more covalent than that in Au$_n$(SC$_{12}$H$_{25}$)$_m$ clusters [41]. Owing to these changes in bonding characteristics, Au$_{25}$(SeR)$_{18}$ (R = C$_{12}$H$_{25}$ or C$_8$H$_{17}$) exhibits greater resistance to degradation in solution compared with Au$_{25}$(SR)$_{18}$ (R = C$_{12}$H$_{25}$ or C$_8$H$_{17}$) (Figure 7(b)) [42, 99]. In addition to such an improved stability, the use of SeR ligands is expected to improve conductivity between the gold core and the ligands [97, 100, 101], and future work is likely to demonstrate the conductivity of Au$_n$(SeR)$_m$ clusters. Furthermore, recent studies have found that Au$_{25}$(SePh)$_{18}$ exhibits catalytic activity for the reduction of 4-nitrophenol (Figure 7(c)) [48].

Figure 7. A comparison of (a) the Au L$_3$-edge X-ray absorption near-edge structure spectra of Au$_{25}$(SeC$_{12}$H$_{25}$)$_{18}$ and Au$_{25}$(SC$_{12}$H$_{25}$)$_{18}$ and (b) the stability of Au$_{25}$(SeC$_{12}$H$_{25}$)$_{18}$ and Au$_{25}$(SC$_{12}$H$_{25}$)$_{18}$ in solution under harsh conditions. (c) Representative UV-vis optical absorption spectra acquired during the reduction of 4-nitrophenol to 4-aminophenol over Au$_{25}$(SePh)$_{18}$ (these figures were adapted from Refs. [42, 43, 48]).
6. Ligand exchange reactions

As described above, Auₙ(SR)ₘ clusters tend to resist degradation. However, this type of metal cluster readily exchanges its ligands with other coexisting ligands in solution (Figure 8(a)). A complete understanding of the associated mechanism would allow these reactions to be controlled, thus permitting synthesis of novel metal clusters with specific functions. Recently, more details regarding exchange reactions between metal clusters and ligands have been reported, and these findings are discussed in this section.

6.1. Mechanism

Murray et al. reported the ligand exchange reactions of this type of cluster nearly 20 years ago [60–65]. However, their research was conducted using mixtures and did not use advanced techniques such as mass spectrometry and single-crystal X-ray structural analysis to characterize the products. Therefore, a thorough understanding of the details of these reactions was not obtained. More recent research has elucidated the associated mechanism. As an example, Au₂₅(SR)₁₈ has a geometry in which the Au₁₃ core is covered by six Au–S(R)₂ staples (Figure 9(a)). As a result, there are two types of SR units in Au₂₅(SR)₁₈: those in contact with the Au₁₃ core (core-site SR; Figure 9(a)) and those at the apex of each staple (apex-site SR; Figure 9(a)) [102, 103]. Ackerson et al. performed a single-crystal X-ray structural analysis of the product obtained from the reaction of Au₂₅(SC₂H₄Ph)₁₈ (SC₂H₄Ph = 2-phenyl ethanethiolate)
with \(\text{para}-\text{bromobenzenethiol} \) to ascertain which SR was more likely to be exchanged [103]. The results showed that \(\text{Au}_{25}(\text{SC}_2\text{H}_4\text{Ph})_{16}(\text{p-BBT})_2 \) \((\text{p-BBT} = \text{para}-\text{bromobenzenethiolate})\), in which the substitution had occurred at the core-site SR ligands, was obtained (Figure 9(a)), suggesting that the ligand exchange occurred at the core-site SR locations. However, this prior work did not determine whether other structures may have been present in the reaction mixture or not. For this reason, Niihori et al. employed reversed-phase high-performance liquid chromatography to allow the high-resolution separation of the coordination isomers generated by a similar reaction and estimated the distribution of isomers in the product. It was confirmed that the product mixture mainly contained a coordination isomer in which the core-site SR ligands had been substituted (Figure 9(b)) [104]. Fernando and Aikens performed density functional theory (DFT) calculations at approximately the same time, and the results indicated that ligand exchange was likely to occur at core-site SR ligands in \(\text{Au}_{25}(\text{SR})_{18} \) [105]. These results demonstrated that ligand exchange preferentially proceeds at core-site SR ligands in \(\text{Au}_{25}(\text{SC}_2\text{H}_4\text{Ph})_{18} \). The research by Hossain et al. has revealed that preferential exchange at core-site SR ligands also occurs in the reaction between \([\text{Au}_{25}(\text{SC}_2\text{H}_4\text{Ph})_{18}]^-\) and other chalcogenides (Figure 9(c)) [106].

6.2. Induction of quasi-isomerization

Studies have found that, in addition to ligand exchange, a change in geometry can also take place during reactions with thiol (RSH) (Figure 8(b)). This discovery originated from the prediction of the geometry of \(\text{Au}_{24}(\text{SR})_{20} \) clusters. Specifically, Jin et al. synthesized \(\text{Au}_{24}(\text{SC}_2\text{H}_4\text{Ph})_{20} \) in 2010 [107], after which Pei and coworkers predicted the geometry of these clusters via DFT calculations based on \(\text{Au}_{24}(\text{SCH}_3)_{20} \) [108]. Thereafter, Jin et al. characterized \(\text{Au}_{24}(\text{SCH}_2\text{Ph}^\text{Bu})_{20} \) \((\text{SCH}_2\text{Ph}^\text{Bu} = 4\text{-tert-butylphenylmethanethiolate})\) by single-crystal X-ray structural analysis but found that the resulting structure was different from that predicted by Pei's group [109]. This discrepancy prompted Jiang et al. to study the geometric structures of \(\text{Au}_{24}(\text{SR})_{20} \) clusters \((R = \text{CH}_3, \text{C}_2\text{H}_4\text{Ph}, \text{or} \text{CH}_2\text{Ph}^\text{Bu}) \) using DFT, leading to the conclusion that the most stable structure of a \(\text{Au}_{24}(\text{SR})_{20} \) cluster depends on the ligand [110]. At present, this theory has not been proven experimentally for \(\text{Au}_{24}(\text{SR})_{20} \). However, in 2016, Jin et al. reported that exchanging the ligands of \(\text{Au}_{24}(\text{SPh}^\text{Bu})_{20} \) \((\text{SPh}^\text{Bu} = 4\text{-tert-butylbenzenethiolate})\) with cyclohexanethiolate \((S-c\text{-C}_6\text{H}_11)\) altered the skeletal structure of the cluster (Figure 10(a)) [111].
This same work also demonstrated that exchanging the ligands of \(\text{Au}_{28}(\text{S}-\text{C}_{6}\text{H}_{11})_{20} \) with \(\text{SPh}^{-}\text{tBu} \) regenerated the original geometry, meaning that the reaction was reversible (Figure 10(a)) [111]. Thus, it has recently been revealed that both ligand exchange and quasi-isomerization (as opposed to true isomerization because the ligand is different) can be induced for a particular \(\text{Au}_{n}(\text{SR})_{m} \) cluster.

6.3. Induction of size transformation

Researches have also shown that the introduction of a significant structural deformation via ligand exchange can result in the formation of \(\text{Au}_{n}(\text{SR})_{m} \) clusters with different chemical compositions (Figure 8(c)) [102]. An example is the reaction of \(\text{Au}_{38}(\text{SC}_{2}\text{H}_{4}\text{Ph})_{24} \) clusters (Figure 3(b)) with \(\text{tBu-PhSH} \) in solution, from which \(\text{Au}_{36}(\text{SPh}^{-}\text{tBu})_{24} \) was generated as the main product (yield ~90%) (Figure 10(b)) [112]. This outcome indicates that exchange with a ligand containing a bulky functional group can affect the chemical composition of the cluster.

Figure 10. Examples of ligand exchange reactions, including (a) quasi-isomerization and (b) size transformation (these figures were adapted from Refs. [111, 112]).
Research regarding the mechanism of such reactions has also been conducted. Jin et al. found that the following four processes occur in the reaction between Au_{38}(SC_2H_4Ph)_24 and tBu-PhSH: (I) ligand exchange, (II) structural distortion, (III) disproportionation, and (IV) size focusing conversion together with further ligand exchange (Figure 10(b)) [112]. In the first process, ligand exchange occurs without size or structural transformations, while the structural distortion of the resulting Au_{38}(SC_2H_4Ph)_{24-m}(SPh-tBu)_m (m > ~12) is initiated in the second process. During the third process, one Au_{38}(SC_2H_4Ph)_{24-m}(SPh-tBu)_m releases two gold atoms to form Au_{36} and another Au_{38}(SC_2H_4Ph)_{24-m}(SPh-tBu)_m captures these two atoms and two free ligands to form Au_{40}(SC_2H_4Ph)_{24-m}(SPh-tBu)_{m+2}. In the final process, the Au_{40}(SC_2H_4Ph)_{24-m}(SPh-tBu)_{m+2} begins to convert to Au_{36} such that pure Au_{36}(SPh-tBu)_24 is eventually obtained (Figure 1(b)). Au_{n}(SR)_{m} clusters such as Au_{28}(SPh-tBu)_{20}, Au_{36}(SPh-tBu)_{24}, and Au_{36}(S-c-C_5H_9)_{24}, none of which can be generated via direct synthesis at atomic precision, have also been synthesized in a size-selective manner by inducing this kind of structural deformation [102].

6.4. Relation between ligand structure and outcome

In this way, the outcomes are significantly affected by the bulkiness of the ligand in the ligand exchange reactions. Normally, ligand exchange with alkanethiol or PhC_2H_4SH does not result in structural transformation, but simply leads to ligand exchange. Conversely, a bulky ligand such as tBu-PhSH often leads to structural transformation. At present, these are no clear rules for predicting the final state of the deformed cluster (whether quasi-isomerization or size transformation). The final state seems to be related to the magnitude of the structural transformation and the possibility of isomeric structures with similar stabilities.

7. Summary

This chapter summarized common methods of fabricating Au_{n}(XR)_{m} clusters and surveyed the various geometric and electronic structures of these compounds, as well as their physical and chemical properties. Recent discoveries regarding ligand exchange reactions capable of enhancing the functionality of these clusters were also described. Although the precise synthesis of such clusters was first reported only 13 years ago at the time of writing, many studies regarding these clusters have been conducted in the interim, all of which have significantly improved our understanding of synthetic methods as well as the structures and functions of the clusters. It is expected that more information related to Au_{n}(XR)_{m} clusters will be gained on the basis of continuing research, leading to the readily synthesis of metal clusters with desired functions in the near future.

Acknowledgements

This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant numbers JP16H04099, 16 K17480, and 17 K19040) and by the Scientific
Research on Innovative Areas (Coordination Asymmetry) (grant number 17H05385). Funding from the Takahashi Industrial and Economic Research Foundation, Futaba Electronics Memorial Foundation, Iwatani Naoji Foundation, Murata Science Foundation, and Ube Industries Foundation is also gratefully acknowledged. We thank Michael D. Judge, MSc, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Conflict of interest

There are no conflicts to declare.

Author details

Sakiat Hossain¹, Lakshmi V. Nair², Junta Inoue², Yuki Koyama², Wataru Kurashige² and Yuichi Negishi¹, ²*

*Address all correspondence to: negishi@rs.kagu.tus.ac.jp

1 Photocatalysis International Research Center, Tokyo University of Science, Noda, Chiba, Japan

2 Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan

References

[16] Balasubramanian R, Guo R, Mills AJ, Murray RW. Reaction of Au_{55}(PPh_{3})_{12}Cl_{6} with thiols yields thiolate monolayer protected Au_{75} clusters. Journal of the American Chemical Society. 2005;127:8126-8132. DOI: 10.1021/ja050793v

[60] Song Y, Huang T, Murray RW. Heterophase ligand exchange and metal transfer between monolayer protected clusters. Journal of the American Chemical Society. 2003;125:11694-11701. DOI: 10.1021/ja0355731

[73] Wolfe RL, Murray RW. Analytical evidence for the monolayer-protected cluster Au₂₂₅[(S(CH₂)₅CH₃)]₇₅. Analytical Chemistry. 2006;78:1167-1173. DOI: 10.1021/ac051533z

[88] Heaven MW, Dass A, White PS, Holt KM, Murray RW. Crystal structure of the gold nanoparticle [N(C$_8$H$_{17}$)$_4$][Au$_{25}$(SCH$_2$CH$_2$Ph)$_{18}$]. Journal of the American Chemical Society. 2008;130:3754-3755. DOI: 10.1021/ja800561b

[89] Pohjolainen E, Häkkinen H, Clayborne A. The role of the anchor atom in the ligand of the monolayer-protected Au$_{25}$(XR)$_{28}$ nanocluster. The Journal of Physical Chemistry C. 2015;119:9587-9594. DOI: 10.1021/acs.jpcc.5b01068

[91] Lin SY, Chen NT, Sum SP, Lo LW, Yang CS. Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chemical Communications. 2008:4762-4764. DOI: 10.1039/b808207c

from homoleptic gold(I) thiolates to core-stacked nanoparticles. Journal of the American Chemical Society. 2012;134:3015-3024. DOI: 10.1021/ja208559y

[112] Zeng C, Liu C, Pei Y, Jin R. Thiol ligand-induced transformation of Au$_{36}$(SC$_2$H$_4$Ph)$_{24}$ to Au$_{36}$(SPh-t-Bu)$_{24}$. ACS Nano. 2013;7:6138-6145. DOI: 10.1021/nn401971g