We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,900 Open access books available
116,000 International authors and editors
120M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Antimicrobial Effects of Probiotics and Novel Probiotic-Based Approaches for Infectious Diseases

Ping Li and Qing Gu

Abstract

Probiotics are live microorganisms, which confer health benefits on host when administered in adequate amounts. Probiotics exert their beneficial effects by maintenance flora healthy, enhancement of mucosal barrier integrity and modulation of immune responses. Antimicrobial substances including bacteriocins, hydrogen peroxide, organic acids, and short-chain fatty acids (SCFAs) produced by probiotics allow them to inhibit mucosal and epithelial adherence of pathogens and compete for limiting resources, thus suppress the growth of bacterial and fungal pathogens. Probiotics effect the colonization of fungal pathogen Candida to host surfaces, suppress Candida growth and biofilm development in vitro. Clinical results have shown that some probiotics can reduce oral, vaginal, and enteric colonization of Candida, alleviate clinical signs and symptoms, and potentially reduce the incidence of invasive fungal infection. Therefore, probiotics may be potential antifungals for prevention and treatment of candidiasis.

Keywords: probiotics, mechanism of action, antimicrobial activity, candidiasis, safety

1. Introduction

Probiotics are “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host,” which was defined by the Food and Drug Organization of the United Nations (FAO) and World Health Organization (WHO) [1–3]. Probiotics should have some fundamental characteristics, such as human origin, nonpathogenic in nature, resistance to destruction by technical processing, acid and bile tolerances, adequate adherence and colonization on epithelial surfaces, antagonistic activity against pathogens, regulation of immune response, and influence human metabolic activities [4–7].
Bacteria belonging to the genera *Lactobacillus* and *Bifidobacterium* are the most frequently used probiotics. Besides, *Enterococcus*, *Streptococcus*, *Saccharomyces*, and *Bacillus* are also commonly used probiotics (representative species are listed in Table 1). The administration of probiotics has been confirmed as an alternative biological approach to combat bacterial and fungal pathogens in the oral cavity, GI tract, and urogenital system [4, 5, 7–14]. It has been reported that probiotics could reduce Candida, which cause fungal infections in different organ systems of the human body and prevent bacterial infectious diseases [9, 10, 15]. Probiotics were capable of preventing cancers [16], modulating blood pressure [17, 18], and repressing cholesterol levels [19]. Recently, species of *Akkermansia muciniphila*, *Eubacterium hallii*, and *Faecalibacterium prausnitzii* are identified as new potential probiotics because of their great benefits to the microbial metabolic networks and human health, especially the effects on correcting the imbalance of gut microbiota composition [7, 20–22]. A combination of probiotics with traditional treatment has been thought to be a potential approach for treatment of certain diseases.

It is noteworthy that health benefits of probiotic bacteria are strain specific, which cannot be generalized to other strains, not even the same species, although some properties may be common for different strains because of the similarities in the metabolism of ecological functionality [5, 6]. Thus, the selection of certain probiotics for therapeutic purposes should be targeted for specific pathogens. Probiotics effects are dose specific [5, 6]. It has been suggested that a daily intake of 10^6–10^9 colony-forming units (CFUs) of probiotic microorganisms is the minimum effective dose for therapeutic purposes [5, 6, 8].

A number of probiotics are currently commercially available, and they have been categorized into single-strain or multi-strain/multispecies products [7, 23, 24]. Multi-strain/multispecies probiotics exhibited better effects than single-strain probiotics. The multispecies probiotic consortium VSL#3 (*Streptococcus thermophilus, Eubacterium faecium, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus helveticus, and Lactobacillus fermentium*)

<table>
<thead>
<tr>
<th>Genera</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus</td>
<td>Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus paracasei, Lactobacillus sporogenes, Lactobacillus lactis, Lactobacillus helveticus, and Lactobacillus fermentium</td>
</tr>
<tr>
<td>Lactococcus</td>
<td>Lactococcus lactis, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. diacetylactis, and Lactococcus Lactis subsp. cremoris</td>
</tr>
<tr>
<td>Bifidobacterium</td>
<td>Bifidobacterium longum, Bifidobacterium bifidum, Bifidobacterium bifidus, and Bifidobacterium lactis</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>Enterococcus faecalis and Enterococcus faecium</td>
</tr>
<tr>
<td>Saccharomyces</td>
<td>Saccharomyces cerevisiae and Saccharomyces boulardii</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>Streptococcus thermophiles</td>
</tr>
<tr>
<td>Bacillus</td>
<td>Bacillus coagulans and Bacillus subtilis</td>
</tr>
<tr>
<td>Others</td>
<td>Akkermansia muciniphila, Eubacterium hallii, and Faecalibacterium prausnitzii</td>
</tr>
</tbody>
</table>

Table 1. Representative microbe commonly considered as probiotics.
Plantarum, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus) was proven more effective than single-strain probiotics for the treatment of ulcerative colitis [23]. The multispecies probiotic consortium, Ecologic AAD (Bifidobacterium bifidum W23, Bifidobacterium lactis W18, Bifidobacterium longum W51, Enterococcus faecium W54, Lactobacillus acidophilus W37 and W55, Lactobacillus paracasei W72, Lactobacillus plantarum W62, Lactobacillus rhamnosus W71, and Lactobacillus salivarius W24), combined with amoxicillin, could reduce diarrhea-like bowel movements, while the single strain could not [25]. Thus, the combination-specific probiotic effects from diverse strains can lead to synergistic effects.

Among the most frequently used probiotics, the genera Lactobacillus, Bifidobacterium, Lactococcus, and Saccharomyces have been included in the category of “generally regarded as safe” (GRAS) [4, 6]; however, other probiotic organisms such as Enterococcus, Bacillus, and Streptococcus are not generally regarded as safe. Since probiotics have been applied in food production, disease treatment, and others, it is important to undergo safety evaluation of probiotics before human consumption.

In this chapter, we briefly review the mechanisms of action of probiotics, the safety concern of probiotics, and their potentials for prevention and treatment of diseases. Here, we discuss the application of probiotics in the fungal Candida-infected and invasion candidiasis.

2. Probiotics mechanism of action

Probiotics mechanism of action is with important differences among different species and strain, examples are listed in Table 2.

2.1. Maintenance flora healthy by reduction the growth and colonization of pathogens

The ability of probiotics to establish in the gastrointestinal (GI) tract, maintain flora healthy, and reduce the growth of pathogens and colonization is enhanced by their ability to eliminate competitors. Probiotic strains release different antimicrobial molecules such as organic acids, hydrogen peroxide (H₂O₂), and antimicrobial peptide bacteriocins into the intestinal environment to limit the growth of bacterial and fungal pathogens [6, 39–43].

Lactic acid and acetic acid are the main metabolites formed by lactic acid bacteria (LAB). Both lactic acid and acetic acid could result in acidity environment and thus inhibit the growth of various microorganisms. Acetic acid has a broader spectrum of antimicrobial activity when compared to lactic acid. Moreover, it is known that a synergistic effect exists between the two acids: mixtures of acetic and lactic acids suppress the growth of the pathogenic enteric bacterium Salmonella typhimurium [44].

LAB can also produce H₂O₂, the antimicrobial activity of which is linked to the strong oxidizing effect. Hydrogen peroxide showed a bactericidal effect on most pathogens when in
<table>
<thead>
<tr>
<th>Mechanism of action</th>
<th>Probiotics</th>
<th>Study outcomes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance flora healthy by reduction the growth and colonization of pathogens</td>
<td>L. rhamnosus GGG, L. casei Shiota, L. reuteri SD2112 and L. brevis CD2, L. plantarum, commercial preparation LactoLevure®, B. breve, L. casei (randomized controlled trial, RCT)</td>
<td>L. rhamnosus GGG showed the strongest inhibitory activity in fructose and glucose medium against C. albicans, followed by L. casei Shiota, L. reuteri SD2112 and L. brevis CD2. Increased survival of mice infected by multidrug resistant P. aeruginosa and E. coli. Levels of beneficial organic acids significantly increased in the gut, and the incidences of infectious (pneumonia and bacteremia) complications were significantly lower in the probiotic group.</td>
<td>[26][27][32]</td>
</tr>
<tr>
<td>Symbiotic (Lactobacillus, Bifidobacterium, and galactooligosaccharides) for 8 weeks (RCT)</td>
<td></td>
<td>Acetic acid concentration significantly increased (100 times), pH value decreased, Gram-negative rod (1/10) in the gut decreased, and P. aeruginosa decreased in the probiotic group.</td>
<td>[33]</td>
</tr>
<tr>
<td>Multi-strain symbiotic for 7 days (RCT)</td>
<td></td>
<td>Symbiotic group had lower pathogenic bacteria (43% versus 75%) and multiple organisms (39% versus 75%) in nasogastric aspirates than controls.</td>
<td>[34]</td>
</tr>
<tr>
<td>B. lactis Bb12 for 7–21 days (RCT)</td>
<td></td>
<td>Probiotic group had great higher counts of Bifidobacterium (P = 0.001) and lower counts of Enterobacteriaceae (P = 0.015) and Clostridium spp. (P = 0.014) than in placebo group.</td>
<td>[35]</td>
</tr>
<tr>
<td>L. casei subsp. rhamnosus for 6 weeks (RCT)</td>
<td></td>
<td>Colonization of Candida in gut was reduced in probiotic group (P = 0.01).</td>
<td>[28]</td>
</tr>
<tr>
<td>Enhancement of mucosal barrier integrity</td>
<td>L. plantarum 299v for 8 days (RCT)</td>
<td>Bacterial translocation in mesenteric lymph nodes and liver was reduced to 0 and 12%, respectively.</td>
<td>[29]</td>
</tr>
<tr>
<td>Microencapsulated Bifidobacteria</td>
<td></td>
<td>Bacterial translocation to mesenteric lymph nodes was reduced by encapsulated Bifidobacteria (P < 0.05).</td>
<td>[30]</td>
</tr>
<tr>
<td>VSL#3 (RCT)</td>
<td></td>
<td>Decreased incidence of bacterial translocation in VSL#3 group than in water group (8% versus 50%; P = 0.03).</td>
<td>[31]</td>
</tr>
<tr>
<td>Immune modulation</td>
<td>VSL#3 (Lactobacillus, Bifidobacterium, and S. thermophilus) for 7 days (RCT)</td>
<td>Reduced acute physiology and chronic health evaluation II score; reduced sequential organ failure assessment, IL-6, procalcitonin, and protein.</td>
<td>[36]</td>
</tr>
<tr>
<td>L. plantarum 299v (RCT)</td>
<td></td>
<td>Late attenuating effect (after 15 days), serum IL-6 levels reduced</td>
<td>[37]</td>
</tr>
</tbody>
</table>

Table 2. Mechanism of action of probiotics.

Combination with lactoperoxidase-thiocyanate milk system [45]. *L. johnsonii* NCC933 and *L. gasseri* KS120.1 killed enteric uropathogenic and vaginosis-associated pathogens due to the production of lactic acid and hydrogen peroxide [46].
Bacteriocins are ribosomally synthesized antimicrobial peptides, which have a broad spectrum of inhibitory effect against Gram-positive and Gram-negative bacteria, viruses, and fungi [47–50]. *L. plantarum* 2.9, a bacteriocinogenic strain, inhibited a set of foodborne pathogens including *B. cereus*, *E. coli* O157:H7, and *S. enterica* [51]. Bacteriocin-producing strains identified in our lab, e.g., *L. plantarum* ZJ316, *L. plantarum* LZ95, *L. plantarum* ZJ008, and *L. plantarum* ZJ005, showed antimicrobial activity against various pathogens in vitro such as *S. aureus*, *E. coli*, *S. enterica*, *L. monocytogenes*, and *C. albicans* [42, 52–54].

2.2. Enhancement of mucosal barrier integrity

Probiotics have been shown to improve barrier function and the mechanisms of barrier function including alteration of tight junction protein expression and/or localization, induction of mucus secretion, increased production of cytoprotective molecules such as heat-shock proteins, inhibition of apoptosis of epithelial cells, and promoting cell survival [29, 55, 56]. They compete with pathogens and prevent their invasion through the epithelium by the ability of adherence to the intestinal epithelium and mucus. *L. plantarum* has been shown to enhance mucosal barrier by adhering to the mucosal membrane and reducing Gram-negative bacteria [29]. Probiotics also compete for limiting resources, thus suppressing the growth of bacterial and fungal pathogens. The probiotic *E. coli* Nissle 1917 is able to effectively take up multiple limited environmental irons and simultaneously competitively inhibit the growth of other intestinal microbes and pathogens [57]. Furthermore, butyrate, a short-chain fatty acid (SCFA), could reduce bacterial translocation, improve the organization of tight junctions, modulate intestinal motility in addition to being an energy source for colonocytes, and maintain the integrity of the intestinal epithelium [29–31, 58–60]. *E. hallii* is an important anaerobic butyrate producer resident in our gut, which influences the intestinal metabolic balance and enhances the host-gut microbiota homeostasis [61]. Thus, the administration of probiotics with butyrate-producing bacteria, in particular, could be an effective way to achieve health benefits.

2.3. Immune modulation

Probiotics are reported to enhance phagocytic activity of granulocytes and cytokine excretion in lymphocytes, increase immunoglobulin-secreting cells, and attenuate inflammasome activation. They are able to affect cells involved in immune responses, including epithelial cells, dendritic cells (DCs), T cells, regulatory T (Treg) cells, monocytes/macrophages, immunoglobulin A (IgA)-producing B cells, and natural killer cells [62, 63].

Probiotic bacteria have an effect on intestinal DCs, which have the ability to recognize and respond to different bacteria by linking the innate immune system to the adaptive immune response and to develop T- and B-cell responses. Badia et al. found that the immunomodulatory role of *S. boulardii* in the DCs prior to infection was related to the upregulation of tumor necrosis factor alpha (TNFα) and C–C chemokine receptor type 7 mRNAs, which might make the DCs more effective in antagonizing bacteria [64, 65]. Smith et al. reported that *S. boulardii* stimulated the production of cytokines TNFα, IL-1, IL-12, IL-6, and IL-10 in DCs and also
induced high levels of costimulatory molecules CD80 and CD86, thus modulated the immune system and led to an efficient clearing of enteropathogenic bacteria from the bloodstream coupled with a faster cytokine response [65, 66].

Probiotics also influence intestinal epithelial cells through interaction with Toll-like receptors (TLRs) and downregulate the expression of NF-κB and proinflammatory cytokines [67, 68]. This effect is supported by the following studies: the supernatant of probiotic Faecalibacterium prausnitzii inhibited the NF-κB pathway in vitro and in vivo and showed protective effects in different models such as dinitrobenzene sulfate (DNBS)-induced colitis model and dextran sodium sulfate (DSS)-induced colitis [69]; the probiotic strain L. rhamnosus GG prevented cytokine-induced apoptosis in intestinal epithelial cells [70]; and L. rhamnosus GR-1 reduced the adhesion of *E. coli* by promoting TLR2 and NOD1 synergism and attenuating ASC-independent NLRP3 inflammasome activation [71].

3. Probiotic as antifungals for prevention and treatment of candidiasis

Candida is an opportunistic pathogen, causing mucosal infections including infections in the oral cavity, oropharynx, esophagus, and vagina, and potentially life-threatening systemic candidiasis. *Candida albicans* is the most common fungal pathogen in humans responsible for causing superficial as well as deep invasive candidiasis, which are essentially caused by *Candida* biofilms attached to body surfaces. Other *Candida* species such as *Candida tropicalis*, *Candida guilliermondii*, *Candida krusei*, and *Candida glabrata* are less frequently isolated in healthy and diseased humans [72–74]. Probiotics are known to reduce *Candida* infection in different organs and are generally considered to be beneficial for overall health. They appear to assist the host combat the pathogen by suppressing filamentation formation and reducing biofilm development, the mechanism of which may be related to expression of genes associated with biofilm formation and filamentation in *Candida* species. In vitro and in vivo studies have demonstrated the role of probiotics in the prevention of *Candida* colonization and invasive candidiasis [38, 75–86].

3.1. In vitro evidences: probiotics in prevention/treatment of *Candida* infections

Several in vitro studies have addressed the antifungal effects of probiotics against *Candida* isolated from the human oral cavity, GI tract, and genitourinary tract [77–81, 86, 87]. The probiotics that have been investigated against *Candida* species include *Lactobacillus* (e.g., *L. rhamnosus*, *L. plantarum*, *L. fermentum*, *L. acidophilus*, *L. paracasei*, *L. johnsonii*, and *L. salivarius*), *Bifidobacterium* (e.g., *B. bifidum* and *B. infantis*), *Saccharomyces* (e.g., *S. boulardii*), and *Streptococcus* (e.g., *S. thermophilus*). Table 3 shows candidacidal activity of probiotic strains in different studies. *C. albicans* appears to be more susceptible to the antifungal effect of *Lactobacillus* than *C. pseudotropicalis* [81], and the probiotics exhibited growth inhibitory activities against *C. glabrata*, *C. krusei*, and *C. parapsilosis* [79, 87].
<table>
<thead>
<tr>
<th>Probiotics</th>
<th>Target pathogen</th>
<th>Study outcome</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 strains:</td>
<td>C. albicans and C. pseudotropicalis</td>
<td>All probiotics inhibited the growth of C. albicans by H₂O₂ production and alternative mechanism</td>
<td>[81]</td>
</tr>
<tr>
<td>L. fermentum, L. rhamnosus, L. plantarum, and L. acidophilus</td>
<td>C. albicans SC5314</td>
<td>S. boulardii inhibited the affecting hyphae formation, Candida adhesion, and biofilm formation by capric acid production</td>
<td>[87]</td>
</tr>
<tr>
<td>S. boulardii</td>
<td>C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis</td>
<td>High activity toward Candida strains except C. glabrata and C. tropicalis</td>
<td>[79]</td>
</tr>
<tr>
<td>L. paracasei IMC 502</td>
<td>C. albicans ATCC 14053</td>
<td>Strong inhibition of C. albicans by supernatant of selenium-enriched Lactobacillus spp.</td>
<td>[86]</td>
</tr>
<tr>
<td>L. plantarum ATCC 8014 and L. johnsonii enriched or not with SeNPs</td>
<td>C. albicans 10341</td>
<td>Significant inhibitory effect on biofilm formation and reduce viability of Candida</td>
<td>[80]</td>
</tr>
<tr>
<td>L. acidophilus, L. rhamnosus, L. salivarius, B. bifidum, S. thermophilus, and B. infantis</td>
<td>C. albicans SC5314</td>
<td>Visible inhibition zones of fungal C. albicans by probiotic treatment; low pH environment caused by lactic acid and the H₂O₂ production may be anti-Candida factors</td>
<td>[77]</td>
</tr>
<tr>
<td>L. acidophilus ATCC 4356</td>
<td>C. albicans ATCC 18804</td>
<td>Reduce growth of C. albicans cells by 45.1%</td>
<td>[78]</td>
</tr>
<tr>
<td>L. casei subsp. rhamnosus</td>
<td>Candida spp.</td>
<td>80 preterm neonates with a very low birth weight: probiotic reduced incidence and intensity of enteric colonization by Candida spp. (RCT)</td>
<td>[28]</td>
</tr>
<tr>
<td>L. rhamnosus GG, L. rhamnosus LC705, P. freudenreichii subsp. shermanii JS</td>
<td>Candida spp.</td>
<td>276 elderly people: probiotic intervention reduced the risk of high yeast counts by 75% and the prevalence of hyposalivation (RCT)</td>
<td>[76]</td>
</tr>
<tr>
<td>L. rhamnosus GR-1 and L. reuteri RC-14</td>
<td>Candida spp.</td>
<td>55 women: probiotics significant reduced vaginal discharge, itching, and/or burning vaginal feeling, dyspareunia, and/or dysuria, and reduced the presence of Candida spp. (RCT)</td>
<td>[82]</td>
</tr>
<tr>
<td>L. acidophilus, L. rhamnosus, B. longum, B. bifidum, S. boulardii, and S. thermophilus</td>
<td>Candida spp.</td>
<td>150 children (aged 3 month to 12 year) on broad-spectrum antibiotics for at least 48 h: probiotic therapy avoided a significant increase in the number of patients colonized by Candida spp., significantly reduced the presence of Candida in the urine (RCT)</td>
<td>[83]</td>
</tr>
<tr>
<td>L. bulgaricus, B. longum, and S. thermophilus</td>
<td>Candida spp.</td>
<td>65 patients with Candida-associated stomatitis: detection rate of Candida spp. was reduced in the probiotic group; significant relief of clinical signs and symptoms after probiotic administration (RCT)</td>
<td>[84]</td>
</tr>
</tbody>
</table>
However, the mechanisms involved in antifungal activity of probiotics against *Candida* remain unclarified. Strus et al. found that *Lactobacillus* strains could inhibit the growth of *C. albicans* to a certain degree and their anticandidal activity related to H$_2$O$_2$ production [81]. Murzyn et al. reported that *S. boulardii* was able to secrete active compounds, mainly capric acid, reduced the expression of *hwp1*, *ino1*, and *csh1* genes that encode virulence factors in *C. albicans* SC5314 cells, and inhibited filamentation of *C. albicans* and its mycelial development [87]. Therefore, it is likely that the antimicrobial molecules, organic acids, and H$_2$O$_2$ produced by probiotic are major factors to limit growth of fungal pathogen *Candida*. This idea was supported by the research of Köhler et al. They demonstrated that low pH environment caused by lactic acid and the H$_2$O$_2$ production of *L. rhamnosus* GR-1 and *L. reuteri* RC-14 strains played important role in their inhibition activity to *C. albicans* SC5314. Moreover, *L. rhamnosus* GR-1 and *L. reuteri* RC-14 inhibited genes associated with *C. albicans* biofilm formation [87]. This result, together with the findings in Murzyn et al. study, shed light on a novel approach for uncovering the molecular mechanisms of the probiotic effect by using gene expression and related technology.

3.2. *In vivo* evidences: probiotics in prevention/treatment of *Candida* infections

In vivo studies, especially RCTs, have also been performed to substantiate the antifungal activity of probiotics in humans. These studies mostly focus on the sites of oral cavity, GI tract, and urogenital tract, which are susceptible to *Candida* infections (Table 3).

<table>
<thead>
<tr>
<th>Probiotics</th>
<th>Target pathogen</th>
<th>Study outcome</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. acidophilus, B. lactis, B. longum, and B. bifidum</td>
<td>Candida spp.</td>
<td>112 preterm neonates (gestational age < 37 wk and birth weight < 2500 g); probiotics may reduce enteral fungal colonization and invasive fungal sepsis in low-birth-weight neonates (RCT)</td>
<td>[75]</td>
</tr>
<tr>
<td>L. reuteri DSM 17938 and L. reuteri ATCC PTA 5289</td>
<td>Candida spp.</td>
<td>215 elderly people (aged 60–102 y): significant reduction of Candida cells in saliva and plaque (RCT)</td>
<td>[85]</td>
</tr>
</tbody>
</table>

Table 3. Probiotics in prevention/treatment of *Candida* infections.

For the urogenital tract, chronic vulvovaginal candidiasis (VVC) is the most common candidiasis disease and impacts the life quality of thousands of women around the world. Researches on the effect of probiotics in the treatment and prophylaxis of VVC have been performed [82]. Martinez et al., in an RCT involving 55 women, demonstrated that the administration of *L. rhamnosus*...
GR-1 and L. reuteri RC-14 significantly reduced the presence of Candida and therefore reduced the vaginal discharge, itching, and/or burning vaginal feeling, dyspareunia, and/or dysuria [82]. For the GI tract, Candida species are common inhabitants of GI tract. Dysbiosis of GI tract may lead to candidal overgrowth and possible invasive infections, especially in infants. Hence, immunocompromised children, especially preterm neonates with low birth weight, have been the target population of a large number of studies to evaluate the prevention or/and treatment potentials of probiotics to Candida infections [28, 75, 83]. Manzoni et al., in an RCT involving 80 very low birth weight (VLBW) neonates, demonstrated that orally administered L. casei subsp. rhamnosus significantly reduced incidence and intensity of enteric colonization by Candida [28]. Another RCT, by Roy et al., found L. acidophilus, B. lactis, B. longum, and B. bifidum reduced enteral fungal colonization and invasive fungal sepsis in 112 preterm neonates (gestational age < 37 wk and birth weight < 2500 g) [75]. Together, both the laboratory studies and clinical studies showed that probiotics could prevent Candida colonization by inhibiting adhesion, filamentation, and biofilm formation, and therefore supplementation of probiotics could be a potential approach for reducing Candida colonization and invasive candidiasis.

4. Safety of probiotics

Although most commercially available probiotic strains are generally regarded as safe and none of the clinical studies mentioned above were reported to have adverse effects directly related to probiotics, there are some concerns regarding the safety of probiotics, including potential of bacteremia and/or endocarditis occurrence, toxicity to the gastrointestinal tract, and transfer of antibiotic resistance [4].

4.1. Potential of bacteremia and/or endocarditis occurrence

Lactic acid bacteria, including Bifidobacterium, have been reported to cause bacteremia as well as endocarditis [88–92]. Cannon et al. described that L. rhamnosus caused liver abscess, lactobacilllemia, and infective endocarditis in a few case studies, and also the occurrence of Lactobacillus sepsis was directly linked with the ingestion of probiotic supplements, especially among immunocompromised patients and those with endocarditis [89]. Kunz et al. found two premature infants with short gut syndrome developed Lactobacillus bacteremia while taking Lactobacillus GG supplements. However, the risk of infection due to Lactobacilli is extremely rare. Statistic data from surveillance in Finland suggest that there was no increase in Lactobacillus bacteremia during 1990–2000, and Lactobacilli were isolated in 0.02% of all blood cultures [93].

4.2. Toxicity to the gastrointestinal tract

The role of probiotics on gastrointestinal physiology suggests a theoretical possibility that the production of metabolites might be undesirable and also might lead to malabsorption due to deconjugation of bile salts. These might increase the risk of colon cancer; however, there is no epidemiologic or clinical evidence to support this hypothesis [94, 95].
4.3. Transfer of antibiotic resistance

Another major safety concern of theoretical importance is genetic transfer of antibiotic resistance from probiotic strains to pathogenic cells in the gastrointestinal tract [96, 97]. Plasmids with antibiotic-resistance genes, including genes encoding resistance to tetracycline, erythromycin, chloramphenicol, and macrolide-lincosamide-streptogramin, have been found in *L. plantarum*, *L. fermentum*, *L. acidophilus*, and *L. reuteri* strains. *L. plantarum* 5057 exhibited tetracycline resistance, and *L. lactis* was with streptomycin, tetracycline, and chloramphenicol resistances [98–100]. Although the transfer of native *Lactobacillus* plasmids is quite rare, there are some cases, e.g., the antibiotic-resistance plasmids from *Lactococcus* species could transfer to *Leuconostoc* species and *Pediococcus* species.

With respect to the potential risks of probiotics, it is important to conduct population-based surveillance for safety concern.

5. Conclusions

Probiotics have the ability to restore the imbalance of intestinal microbiota and could act as both prophylactic and adjunctive therapy against candidiasis. Antifungal effect of probiotics is likely due to their interference with *Candida* biofilm development and hyphal differentiation. Safety may be of concern in application, as probiotic strains may, although quite rarely, cause bacteremia, fungemia, and sepsis. Well-designed RCTs are required to address these issues before the routine use of probiotics is recommended.

Acknowledgements

This project was funded by the National Key Research and Development Program of China (2016YFD0400400), the National Science Foundation of China (31601449), the International Science and Technology Cooperation Program of China (2013DFA32330), the Natural Science Foundation of Zhejiang Province (LY16C200002), and the Food Science and Engineering—the most important discipline of Zhejiang Province (2017SIAR202).

Author details

Ping Li and Qing Gu*

*Address all correspondence to: guqing2002@hotmail.com

Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
References

[46] Atassi F, Servin AL. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens. FEMS Microbiology Letters. 2010;304:29-38. DOI: 10.1111/j.1574-6968.2009.01887.x

[56] Al-Sadi R, Nighot P, Guo SH, Al-Omari D, Ma TY. \textit{Lactobacillus Acidophilus} enhancement of intestinal epithelial tight junction barrier is mediated by p38 kinase and toll-like receptor-2 (TLR-2). Gastroenterology. 2016;150:S1007-S1007

[58] Lewis K, Lutgendorff F, Phan V, Soderholm JD, Sherman PM, McKay DM. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflammatory Bowel Diseases. 2010;16:1138-1148. DOI: 10.1002/ibd.21177

Antimicrobial Effects of Probiotics and Novel Probiotic-Based Approaches for Infectious Diseases

http://dx.doi.org/10.5772/intechopen.72804

[70] Yan F, Polk DB. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. The Journal of Biological Chemistry. 2002;277:50959-50965. DOI: 10.1074/jbc.M207050200

[77] Kohler GA, Assefa S, Reid G. Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infectious Diseases in Obstetrics and Gynecology. 2012;2012:636474. DOI: 10.1155/2012/636474

Kumar S, Bansal A, Chakrabarti A, Singh S. Evaluation of efficacy of probiotics in prevention of candida colonization in a PICU-a randomized controlled trial. Critical Care Medicine. 2013;41:565-572. DOI: 10.1097/CCM.0b013e31826a409c

Kunz AN, Noel JM, Fairchok MP. Two cases of Lactobacillus bacteremia during probiotic treatment of short gut syndrome. Journal of Pediatric Gastroenterology and Nutrition. 2004;38:457-458

