We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,800 Open access books available
116,000 International authors and editors
120M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

Let \((X, \|\cdot\|)\) be a (real) Banach space. We refer to [38] or [28] as some introduction to the general theory of Banach spaces. Note that, as usual in the case, all the results we discuss here remain valid for complex scalars with possibly different constants. Let \(I\) be a countable set with possibly some ordering we refer to whenever considering convergence with respect to elements of \(I\) (which will be denoted by \(\lim_{i \to \infty}\)).

Definition 1

We say that countable system of vectors \(\Phi = (e_i, e^*_i)_{i \in I}\) is biorthogonal if for \(i, j \in I\) we have

\[
e^*_i(e_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}.
\]

(1)

Such a general class of systems would be inconvenient to work with, therefore we require biorthogonal systems to be aligned with the Banach space \(X\) we want to describe.

Definition 2

We say that system \(\Phi = (e_i, e^*_i)_{i \in I}\) is natural if the following conditions are satisfied:

\[
0 < \inf_{i \in I} \|e_i\| \leq \sup_{i \in I} \|e_i\| < \infty; \tag{2}
\]

\[
0 < \inf_{i \in I} \|e^*_i\| \leq \sup_{i \in I} \|x^*_i\| < \infty; \tag{3}
\]

\[
\span{e_i : i \in I} = X. \tag{4}
\]

Usually we assume also that \(\|e_i\| = 1\) for all \(i \in I\), i.e. we normalize the system. Note that if (4) holds then functionals \((e^*_i)_{i \in I}\) are uniquely determined by the set \(\{e_i : i \in I\}\) and thus slightly abusing the convention we can speak about \((e_i)_{i \in I}\) being a biorthogonal system. Observe that if assumptions (1)-(4) are verified, then each \(x \in X\) is uniquely determined by the values \((e^*_i(x))_{i \in I}\) and moreover \(\lim_{i \to \infty} e^*_i(x) = 0\) for every \(x \in X\).

Clearly the concept of biorthogonal system is to express each \(x \in X\) as the series \(\sum_{i \in I} e^*_i(x)e_i\) convergent to \(x\). If such expansion exists for all \(x \in X\) then we work in in the usual Schauder basis setting.

1 Research is partially supported by the Foundation for Polish Science: Grant NP-37
Definition 3 A natural system Φ is said to be Schauder basis if $I = \mathbb{N}$ and for any $x \in X$ the series $\sum_{i=1}^{\infty} c_i(x) e_i$ is convergent.

However in this chapter we proceed in a slightly more general environment and do not require neither convergence of $\sum_{i=1}^{\infty} c_i(x) e_i$ nor fix a particular order on I. Obviously still the idea is to approximate any $x \in X$ by linear combinations of basis elements and therefore for any $x \in X$ and $J \subset I$ we define

$$P_J(x) := \sum_{j \in J} e_j(x) e_j,$$

whenever this makes sense. In particular it is well defined for any finite J. It suggests that for each $m = 0, 1, 2, \ldots$ we can consider the space of m-term approximations. Namely we denote by Σ_m the collection of all elements of X which can be expressed as linear combinations of m elements of $(e_i)_{i \in I}$, i.e.:

$$\Sigma_m := \{ y = \sum_{j \in J} a_j e_j : J \subset I, |J| = m, a_j \in \mathbb{R} \}.$$

Let us observe that the space Σ_m is not linear since the sum of two elements from Σ_m is generally in Σ_m, not in Σ_m. For $x \in X$ and for $m = 0, 1, 2, \ldots$ we define its best m-term approximation error (with respect to Φ)

$$\sigma_m(\Phi, x) = \sigma_m(x) = \inf \{ \| x - y \| : y \in \Sigma_m \}.$$

Commonly the system Φ is clear from the context and hence we can suppress it form the above notation. Observe that from (4) we acknowledge that for each $x \in X$ we have $\lim_{m \to \infty} \sigma_m(x) = 0$. There is a natural question one may ask, what has to be assumed for the best m-term approximation to exist, i.e. that there exists some $y \in \Sigma_m$ such that $\sigma_m(x) = \| x - y \|$. The question of existence of the best m-term approximation for a given natural system was discussed even in a more general setting in [4]. A detailed study in our context can be found in [39] from which we quote the following result:

Theorem 1 Let $(e_i, e^*_i)_{i \in I}$ be a natural biorthogonal system in X. Assume that there exists a subspace $Y \subset X^*$ such that

1. Y is norming i.e. for all $x \in X$

$$\sup \{ |y(x)| : y \in Y \text{ and } \|y\| \leq 1 \} = \| x \|.$$

2. for every $y \in Y$ we have $\lim_{m \to \infty} y(e_i) = 0$.

Then for each $x \in X$ and $m = 0, 1, 2, \ldots$ there exists $y \in \Sigma_m$ such that $\sigma_m(x) = \| x - y \|$. The obvious candidate for being the norming subspace of X^* is $Y = \text{span}(e_i^*, i \in I)$.

Later we will show that this is the case of unconditional bases. The idea of an approximation algorithm is that we construct a sequence of maps $T_m : X \to X$, $m = 0, 1, 2, \ldots$ such that for each $x \in X$, we have that $T_m(x) \in \Sigma_m$. The fundamental property which any admissible algorithm $(T_m)_{m=0}$ should verify is that the error we make is comparable with the approximation error, namely

$$\| x - T_m(x) \| \leq C \sigma_m(x),$$
where C is an absolute constant. The potentially simplest approach is to use projection of the type (5). We will show later that in the unconditional setting for each $m, x \in X$ there exists projection P_l which has the minimal approximation error, namely $\|x - P_l x\| = \sigma_m(x)$. Among all the possible projections, one choice seems to be the most natural: we take a projection with the largest possible coefficients, that means we denote

$$G_m(\Phi, x) := G_m(x) = \sum_{j \in J} e_j^*(x) e_j$$

where the set $J \subset I$ is chosen in such a way that $|J| = m$ and $|e_j^*(x)| \geq |e_k^*(x)|$ whenever $j \in J$ and $k \notin J$. The collection of such G_m, i.e. $(G_m)_{m=0}^\infty$ will be called the Greedy Algorithm. Clearly $G_m, m = 0, 1, 2, \ldots$ have some surprising features which one should keep in mind, when working with this type of approximation (cf. [40]):

1. It may happen that for some x and m the element $G_m(x)$ (i.e. the set J) is not uniquely determined by the previous conditions. In such case we pick any of them.
2. The operator $G_m(x)$ is not linear (even if appropriate sets are uniquely defined).
3. The operator $G_m(x)$ is discontinuous. To see it it suffices to fix $J_1, J_2 \subset I$ such that $J_1 \cap J_2 = \emptyset$ and $|J_1| = |J_2| = m$. We define two sequences of vectors

$$y_n = \frac{n + 1}{n} \sum_{j \in J_1} e_j + \sum_{k \in J_2} e_k,$$

$$z_n = \sum_{j \in J_1} e_j + \frac{n + 1}{n} \sum_{k \in J_2} e_k.$$

Clearly both y_n and z_n converge to $\sum_{j \in J_1 \cup J_2} e_j$, but

$$G_m(y_n) = \frac{n + 1}{n} \sum_{j \in J_1} e_j \rightarrow \sum_{j \in J_1} e_j,$$

and

$$G_m(z_n) = \frac{n + 1}{n} \sum_{j \in J_2} e_j \rightarrow \sum_{j \in J_2} e_j.$$

4. Following the previous example we learn that G_m is continuous at the point $x \in X$ if and only if the set J used in the definition of $G_m(x)$ is uniquely defined.
5. If $I = \mathbb{N}$ then there is a simple trick to define G_m uniquely, namely given $x \in X$ we define greedy ordering as the map $F : \mathbb{N} \rightarrow \mathbb{N}$ such that \{\{ j : e_j^*(x) \neq 0 \} \subset F(\mathbb{N})\} and so that if $j < k$ then either $|e_{F(j)}^*(x)| > |e_{F(k)}^*(x)|$ or $|e_{F(j)}^*(x)| = |e_{F(k)}^*(x)|$ and $F(j) < F(k)$. With this notation the mth greedy approximation of x equals
As announced we consider the greedy algorithm acceptable if it verifies (6). We formalize the idea in the following definitions:

Definition 4 A natural biorthogonal system Φ is called a greedy basis if there exists a constant C such that for all $x \in X$ and $m = 0, 1, 2, \ldots$ we have

$$|x - G_m(\Phi, x)| \leq C \sigma_m(\Phi, x).$$

The smallest constant C will be called the greedy constant of Φ.

Definition 5 A natural biorthogonal system Φ is called quasi-greedy if for every $x \in X$ the norm limit $\lim_{m \to \infty} G_m(\Phi, x)$ exists (and equals x).

Clearly every greedy basis is quasi-greedy. We remark that those concepts were formally defined in [26] though implicit in earlier works of Temlyakov [30]-[33]. Throughout the chapter we study various properties of greedy and quasi greedy bases. Toward this goal let us introduce the following notation:

$$\varphi(m) := \sup \{\|\sum_{i \in I} x_i\| : |I| \leq m\},$$

$$\psi(m) := \inf \{\|\sum_{n \in I} x_n\| : |I| \geq m\},$$

$$E_m := \sup_{x \in X, x \neq 0} \frac{\|x - G_m(x)\|}{\sigma_m(x)},$$

$$M_m := \sup_{k \leq m} \frac{\sup \{\|\sum_{j \in J} x_j\| : |J| = k\}}{\inf \{\|\sum_{j \in J} x_j\| : |J| = k\}}.$$

2. Unconditional bases

One of the most fruitful concepts in the Banach space theory concerns the unconditionality of systems. The principal idea of the approach is that we require the space to have a lot of symmetry which we hope to provide a number of useful properties. We refer to [37],[38] as some introductory feedback to this item.

Definition 6 A biorthogonal system $\Phi = (e_i, e_i^*)_{i \in I}$ is unconditional if there exists a constant K such for all $x \in X$ and any finite $J \subset I$ we have have $\|P_J(x)\| \leq K \|x\|$. The smallest such constant K will be called unconditional constant.

Remark 1 Note that the above definition is equivalent to requiring that $\|P_J(x)\| \leq K \|x\|$ for all (not necessarily finite) $J \subset I$.

Sometimes we refer to a stronger property which is called symmetry.

Definition 7 An an unconditional system $\Phi = (e_i, e_i^*)_{i \in I}$ is symmetric if there exists a constant U such for all $x \in X$, any permutation $\pi : I \to I$ and random signs $(\varepsilon_i)_{i \in I}$ we have

$$\|\sum_{i \in I} \varepsilon_i e_i^*(x) e_{\pi(i)}\| \leq U \|x\|.$$
The smallest such constant \(U \) will be called symmetric constant. Usually in the sequel we will assume that the unconditional system has the unconditional constant equal to 1. This is not a significant restriction since given unconditional system \(\Phi \) in \(X \) one can introduce a new norm

\[
\|\|x\|\| := \sup_{|\lambda_i| \leq 1} \sum_{i \in I} \lambda_i e_i(x) e_i.
\]

By the classical extreme point argument one can check that this is an equivalent norm on \(X \), more precisely \(\|x\| \leq \|\|x\|| \leq 2K\|x\| \) for \(x \in X \) and \(\Phi \) has unconditional constant 1 in \((X, \|\cdot\|)\). In the classical Banach space theory a lot of attention has been paid to understand some features of spaces which admits the unconditional basis. We quote from [1] a property we have announced in the introduction.

Proposition 1 Let \((e_i)_{i \in I}\) be an unconditional basis for \(X \) (with constant \(K \)). Then \(Y = \text{span}(e_i^*, i \in I) \) verifies that

\[
K^{-1}\|x\| \leq \sup \{\|y(x)\| : y \in Y, \|y\| \leq 1\} \leq \|x\|
\]

for all \(x \in X \).

Proof. Let \(x \in X \). Since \(Y \subset X^* \), it follows immediately that

\[
\sup \{\|y(x)\| : y \in Y, \|y\| \leq 1\} \leq \sup \{\|x^*(x)\| : x^* \in X^*, \|x^*\| \leq 1\} = \|x\|.
\]

For the other inequality, pick \(x^* \in S_{X^*} \) (from unit sphere in \(X^* \)) so that \(x^*(x) = \|x\| \). Then for each finite \(J \) we have

\[
K^{-1}\|(P_J^* x^*)x\| \leq \|(P_J^* x^*)_x\| \leq \sup \{\|y(x)\| : y \in Y, \|y\| \leq 1\}.
\]

Now we let \(J \) tend to \(I \) and use that if \(\|P_J x - x\| \to 0 \) then \(\|(P_J^* x^*)_x\| = \|x^*(P_J x)\| \to \|x\| \).

Therefore according to Theorem 1 the optimal \(m \)-term approximation for unconditional system exists, i.e. \(\sigma_m(x) \) is attained at some \(y \in \sum_{m'} \). We remark that there are a lot of classical spaces which does not admit any unconditional basis and even (e.g. \(C[0, 1] \)) cannot be embedded into a Banach space with such a structure. In the greedy approximation theory we consider the class of unconditional bases as the fine class we usually tend to search for the optimal algorithm (see [14]). The reason is that for unconditional bases for a given \(x \in X \) the best \(m \)-term approximation must be attained at some projection \(P_J x \).

Proposition 2 Let \(\Phi = (e_i, e_i^*)_{i \in I} \) be a natural biorthogonal system with unconditional constant 1. Then for each \(x \in X \) and each \(m = 0, 1, 2, \ldots \) there exists a subset \(I \subset I \) of cardinality \(m \) such that \(\|x - P_J x\| = \sigma_m(x) \).

Proof. Let us fix \(m \) and \(x = \sum_{i \in I} a_i e_i \in X \). Let \(y_m = \sum_{j \in J} b_j e_j \) be the best \(m \)-term approximation i.e. \(\|x - y_m\| \leq \sigma_m(x) \) (the existence is guaranteed by Proposition 1). Note that

\[
\|x - P_J x\| = \|x - y_m + P_J y_m - P_J x\| = \|(I_d - P_J)(x - y_m)\| \leq \|x - y_m\| = \sigma_m(x),
\]

which completes the proof.

www.intechopen.com
We turn to show that for unconditional systems \mathcal{E}_m and \mathcal{M}_m are comparable. The result we quote from [35] but for concrete systems (see [32]) the answer was known before.

Theorem 2 If Φ is a natural biorthogonal system with unconditional constant 1, then

$$\frac{1}{2} \mathcal{M}_m(\Phi) \leq \mathcal{E}_m(\Phi) \leq 2 \mathcal{M}_m(\Phi).$$

Proof. We have shown in Proposition 2 that we can take the best m-term approximation of x as $T_m(x) = P_{J_0}x$. Clearly $G_m(x) = P_Jx$ for some $J \subset I$. In order to estimate $\|x - G_m(x)\|$ we write

$$x - G_m(x) = x - P_{J_0}x + P_{J_0}x - P_Jx = (x - P_{J_0}x) + P_{J_0 \setminus J}x - P_{J_0 \setminus J_0}x = P_{J \setminus J_0}(x - P_{J_0}x) + P_{J_0 \setminus J}x$$

so using 1-unconditionality we obtain

$$\|x - G_m(x)\| \leq \|x - T_m(x)\| + \|P_{J_0 \setminus J}x\| \leq \sigma_m(x) + \|P_{J_0 \setminus J_0}x\|.$$

Note that $\max\{|e_j^*|: j \in J_0 \setminus J\} := c \leq \min\{|e_j^*|: j \in J \setminus J_0\}$ and also $|J_0 \setminus J_0| \leq m$. This implies that $\|P_{J_0 \setminus J}x\| \leq c\|\sum_{j \in J_0 \setminus J} e_j\|$ and $\|P_{J_0 \setminus J_0}x\| \geq c\|\sum_{j \in J \setminus J_0} e_j\|$. Thus estimating c from the second inequality and substituting it into the first we get

$$\|P_{J_0 \setminus J}x\| \leq \frac{\|P_{J \setminus J_0}x\|}{\|\sum_{j \in J \setminus J_0} e_j\|} \|\sum_{j \in J \setminus J_0} e_j\| \leq \mathcal{M}_m\|P_{J \setminus J_0}x\| \leq \mathcal{M}_m\sigma_m(x).$$

Consequently

$$\|x - G_m(x)\| \leq \sigma_m(x)(1 + \mathcal{M}_m) \leq 2\mathcal{M}_m\sigma_m(x).$$

To show the converse inequality use the following result:

Lemma 1 For each m there exists disjoint sets J_1 and J_2 with $|J_1| = |J_2| \leq m$ such that $\|\sum_{j \in J_1} e_j\| \|\sum_{j \in J_2} e_j\|^{-1} \geq 2^{-1}\mathcal{M}_m$.

Proof. If $\mathcal{M}_m \leq 2$ the claim is obvious. Otherwise take sets J_1 and J_2 with $|J_1| = |J_2|$ such that $\|\sum_{j \in J_1} e_j\| \|\sum_{j \in J_2} e_j\|^{-1} \geq \max(2, \mathcal{M}_m - \varepsilon)$. For simplicity write

$$a = \|\sum_{j \in J} e_j\|, \quad b = \|\sum_{j \in J} e_j\|$$

$$a_1 = \|\sum_{j \in J_1} e_j\|, \quad a_2 = \|\sum_{j \in J_2} e_j\|.$$

With this notation we have $2 < (a/b) \leq (a/a_1)$ so $a_1 < a/2$. This implies

$$\frac{a}{b} \leq \frac{a_1 + a_2}{b} = \frac{a_1}{b} + \frac{a_2}{b} < \frac{a}{2b} + \frac{a_2}{b},$$

so $a_2/b > a/(2b)$. Thus we have to replace J_1 by any set of proper cardinality which contains $J_1 \setminus J_2$ and is disjoint with J_2.

\[\square\]
We take sets as in Lemma 1 and denote $|J_1| = |J_2| = k \leq m$. Let $J_3 \supset J_1$ be a set of cardinality m disjoint with J_2. Consider

$$x := (1 + \varepsilon) \sum_{j \in J_2} e_j + (1 + \varepsilon/2) \sum_{j \in J_2 \setminus J_1} e_j + \sum_{j \in J_1} e_j.$$

Then $\mathcal{G}_m(x) = x - \sum_{j \in J_1} e_j$, so $\|x - \mathcal{G}_m(x)\| = \|\sum_{j \in J_1} e_j\|$. From Proposition 2 we learn that

$$\sigma_m(x) = \min\{\|P_S x\| : S \subset J_2 \cup J_3, \text{ and } |S| = m\} \leq \|P_{J_2} x\| \leq (1 + \varepsilon)\|\sum_{j \in J_2} e_j\|.$$

This and Lemma 1 give

$$E_m \geq \frac{\|\sum_{j \in J_1} e_j\|}{\sigma_m(x)} \geq \frac{\|\sum_{j \in J_1} e_j\|}{(1 + \varepsilon)\|\sum_{j \in J_2} e_j\|} \geq \frac{1}{2(1 + \varepsilon)} M_m.$$

Since ε is arbitrary it completes the proof.

More elaborate results of this type are presented in [29].

Theorem 3 Let Φ be a natural biorthogonal system with unconditional constant 1. Suppose that $s(m)$ is a function such that for some $c > 0$

$$\psi(s(m)) \geq c \varphi(m), \text{ for } m = 1, 2, ...$$

Then

$$\|x - \mathcal{G}_{m+s(m)}(x)\| \leq C \sigma_m(x)$$

for some constants C and $m = 0, 1, 2, ...$

Proof. Let us fix $x \in X$ with $\|x\| = 1$ and $m = 0, 1, 2, ...$. By Proposition 2, there exists a subset $J_0 \subset I$ of cardinality $s(m)$ such that

$$\sigma_m(x) = \|x - P_{J_0} x\|,$$

and $J_0 \subset I$ a subset of cardinality $s(m) + m$ such that $\mathcal{G}_{s(m)+m}(x) = P_{J_0} x$. Using the unconditionality of the system we get

$$\|x - P_{J_0} x\| \geq \max\{\|x - P_{J_0 \cup J_0} x\|, \|P_{J_0 \setminus J_0} x\|\},$$

$$\|x - P_{J_0} x\| \leq \|x - P_{J_0 \cup J_0} x\| + \|P_{J_0 \setminus J_0} x\|.$$

Let $\delta = \inf_{x \in J_0} |x|^2(x)$. The again using unconditionality we derive

$$\|P_{J_0 \setminus J} x\| \geq \delta \sum_{j \in J_0 \setminus J} x_j \geq \delta \psi(s(m)).$$

(8)
Since for $j \in J \setminus J_0$ we have $|x_j^*(x)| \leq \delta$, we get

$$
\| P_{J \setminus J_0} x \| \leq \delta \sum_{j \in J \setminus J_0} x_j \| \leq \delta \varphi(m). \tag{9}
$$

From (8), (9) and (7) we get

so

$$
\| P_{J \setminus J_0} x \| \leq C \| P_{J_0 \setminus J} x \|
$$

so

$$
\| x - G_{s(m)+m}(x) \| = \| x - P_{J_0} x \| \leq C(\| x - P_{J \setminus J_0} x \| + \| P_{J_0 \setminus J} x \|) \leq 2C \| x - P_J x \| \leq 2C \sigma_m(x). \tag{12}
$$

Let $\Phi = (e_i, e_i^*)_{i \in I}$ be a biorthogonal system. The natural question rises when e_i^*, $i \in I$ is the unconditional system in X^*. The obvious obstacle may be that such system does not verify (4). For example the standard basis $(e_i)_{i \in I}$ in $l^1 = l^\infty$, since the latter is not separable. However, if we consider it as a system in span$\{e_i^* : i \in I\}$, then it will satisfy all our assumptions and thus we denote such system by Φ^*. Note that if Φ is unconditional then so is Φ^*.

Theorem 4 Let Φ be natural biorthogonal system with unconditional constant 1. Then

$$
M_m(\Phi^*) \leq 2 \log m M_m(\Phi),
$$

for $m = 2, 3, \ldots$.

Proof. Let us fix m, $k \leq m$, and a set $J \subset I$ of cardinality k. We have

$$
\left\| \sum_{j \in J} e_j^* \right\| \geq k \left\| \sum_{j \in J} e_j \right\|^{-1} \geq k \varphi(k), \tag{10}
$$

On the other hand there exists $x \in X$ with $\| x \| = 1$ such that

$$
\left\| \sum_{j \in J} e_j^*(x) \right\| \leq 2 \sum_{j \in J} |e_j^*(x)| \tag{11}
$$

Let $\sigma : \{1, \ldots, |J|\} \rightarrow J$ be such that $|x_{\sigma(j)}^*| \leq |x_{\sigma(k)}^*|$ whenever $k \geq j$. From 1-unconditionality we deduce that

$$
|e_{\sigma(j)}^*(x)| \sum_{k=1}^{j} e_{\sigma(k)} \| \leq \| x \| = 1
$$

therefore

$$
\sum_{j \in J} |e_j^*(x)| \leq \sum_{j=1}^{k} \psi(j)^{-1}. \tag{12}
$$
Thus from (10),(11) and (12) using the fact that $\varphi(k)/k$ is decreasing, we obtain that

$$
\mathcal{M}_m(\Phi^*) \leq 2 \sup_{k \leq m} \frac{1}{k} \sum_{j=1}^{k} \varphi(j) \psi(j) \leq 2 \sup_{k \leq m} \sum_{j=1}^{k} \frac{1}{j} \varphi(j) \psi(j) \leq 2 \log m \sup_{j \leq m} \frac{\varphi(j)}{\psi(j)} \leq 2 \log m \mathcal{M}_m(\Phi).
$$

(13)

Theorems 3 and 4 are quoted from [40] but the almost the same arguments were used earlier in [11] and [27].

3. Greedy bases

The first step to understand the idea of greedy systems in Banach spaces is to give their characterization in terms of some basic notions. The famous result of Konyagin and Temlyakov [26] states that being a greedy basis is equivalent to be an unconditional and democratic basis. We start from introducing these two concepts.

The second concept we need to describe greedy bases concerns democracy. The idea is that we expect the norm $\|\sum_{j \in J} x_j\|$ being essentially a function of $|J|$ rather then from J itself.

Definition 8 A biorthogonal system Φ is called democratic if there exists a constant D such that for any two finite subsets $J_1, J_2 \subset I$ with $|J_1| = |J_2|$ we have

$$
\|\sum_{j \in J_1} e_j\| \leq D \|\sum_{j \in J_2} e_j\|.
$$

The smallest such constant D will be called a democratic constant of Φ.

We state the main result of the section.

Theorem 5 If the natural biorthogonal system Φ is greedy with the greedy constant less or equal C, then it is unconditional with unconditional constant less or equal C and democratic with the democratic constant less or equal C. Conversely if it is unconditional with constant K and democratic with constant D, then it is greedy with greedy constant less or equal $K + KD$.

Proof. Assume first that Φ is greedy with the greedy constant C. Let us fix a finite set $J \subset I$ of cardinality m, $x \in X$ and a number $N > \sup_{i \in I} |e_i|$. We put $y := x - P_J x + N \sum_{j \in J} e_j$. Clearly $\sigma_m(y) \leq \|x\|$ and $G_m(y) = N \sum_{j \in J} e_j$. Thus

$$
\|x - P_J x\| = \|y - G_m(y)\| \leq C \sigma_m(y) \leq C \|x\|.
$$

(14)

Therefore Φ is unconditional according to Definition 6.

To show that Φ is democratic we fix two subsets $J_1, J_2 \subset I$ with $|J_1| = |J_2| = m$. Then we choose a third subset $J_3 \subset I$ such that $|J_3| = m$ and $J_1 \cap J_3 = \emptyset$, $J_2 \cap J_3 = \emptyset$. Defining $x = (1 + \varepsilon) \sum_{j \in J_1} e_j + \sum_{j \in J_3} e_j$ we have that

$$
(1 + \varepsilon) \|\sum_{j \in J_1} e_j\|
$$

www.intechopen.com
and
\[\left\| \sum_{j \in J_3} e_j \right\| = \left\| x - \mathcal{G}_m(x) \right\| \leq C \sigma_m(x) \leq C(1 + \varepsilon) \sum_{j \in J_1} e_j. \]

Analogously we get
\[\left\| \sum_{j \in J_2} x_j \right\| \leq C(1 + \varepsilon) \left\| \sum_{j \in J_3} x_j \right\| \]
and the conclusion follows.

Now we will prove the converse. Fix \(x \in X \) and \(m = 0, 1, 2, \ldots \). Choose \(y_m = \sum_{j \in J} a_j e_j \) with \(|J| = m \) and \(\| x - y_m \| \leq \sigma_m(x) + \varepsilon \). Clearly
\[\mathcal{G}_m(x) = \sum_{j \in J_0} e_j^* e_j = P_{d_0} x \]
for appropriate \(J_0 \subset I \) with \(|J_0| = m \). We write
\[\| x - \mathcal{G}_m(x) \| = \| x - P_{d_0} x + P_J x - P_J x \| = \| x - P_J x + P_{J \setminus J_0} - P_{J_0 \setminus J} x \|. \] (15)
Using unconditionality we get
\[\| x - P_J x - P_{d_0 \setminus J} x \| = \| x - P_J x \| = \| P_{J \setminus (J_0 \cup J)} (x - y_m) \| \leq K \sigma_m(x) + \varepsilon \] (16)
and analogously
\[\| P_{J_0 \setminus J} x \| \leq K \sigma_m(x) + \varepsilon. \]

From the definition of \(\mathcal{G}_m \) we infer that
\[\alpha = \min_{J \setminus J_0} |x_j^*(x)| \geq \max_{J \setminus J_0} |x_j^*(x)| = \beta, \]
so from unconditionality we get
\[K \| P_{J \setminus J_0} x \| \geq \alpha \| \sum_{j \in J \setminus J_0} e_j \| \] (17)
and
\[\| P_{J_0 \setminus J} x \| \geq K \beta \| \sum_{j \in J \setminus J_0} e_j \|. \] (18)

Since \(|J \setminus J_0| = |J_0 \setminus J| \) from (17) and (18) and democracy we deduce that
\[\| P_{J \setminus J_0} x \| \leq K^2 D \| P_{d_0 \setminus J} x \|. \] (19)

From (15), (16) and (19) we get (\(\varepsilon \) is arbitrary)
\[\| x - \mathcal{G}_m(x) \| \leq (K + K^2 D) \sigma_m(x). \]

\[\square \]
Remark 2 The above proof is taken from [26]. However some arguments (except the proof that greedy implies unconditional), were already in previous papers [32] and [35]. If we disregard constants Theorem 5 says that a system is greedy if and only if it is unconditional and democratic. Note that in particular Theorem 5 implies that a greedy system with constant 1 (i.e. 1-greedy) is 1-unconditional and 1-democratic. However this is not the characterization of bases with greedy constant 1 (see [40]). The problem of isometric characterization has been solved recently in [2]. To state the result we have to introduce the so called Property (A).

Let \((e_i)_{i=1}^\infty\) be a Schauder basis of \(X\). Given \(x \in X\), the support of \(x\) denoted \(\text{supp}\) consists of those \(i \in \mathbb{N}\) such that \(e_i^* \neq 0\). Let \(M(x)\) denote the subset of \(\text{supp}\) where the coordinates (in absolute value) are the largest. Clearly the cardinality of \(M(x)\) is finite for all \(x \in X\). We say that 1-1 map \(\pi : \text{supp} x \to \mathbb{N}\) is a greedy permutation of \(x\) if \(\pi(i) = i\) for all \(i \in \text{supp} x \setminus M(x)\) and if \(i \in M(x)\) then, either \(\pi(i) = i\) or \(\pi(i) \notin \text{supp} x\). That is a greedy permutation of \(x\) puts those coefficients of \(x\) whose absolute value is the largest in gaps of the support of \(x\), if there are any. If \(\text{supp} x \neq \mathbb{N}\) we will put \(M^*_x(x) = \{ j \in M(x) : \pi(j) \neq j \}\). Finally we denote by \(\Pi_C(x)\) the set of all greedy permutation of \(x\).

Definition 9 A Schauder basis \((e_i)_{i=1}^\infty\) for Banach space \(X\) has property (A) if for any \(x \in X\) we have

\[
\| \sum_{i \in \text{supp} x} e_i^*(x)e_i \|= \| \sum_{i \in \text{supp} x} \varepsilon_{\pi(i)} e_i^*(x)e_{\pi(i)} \|.
\]

for all \(\pi \in \Pi_C(x)\) and all signs \((e_i)_{i=1}^\infty\), (i.e. \(e_i = \pm 1\)) with \(\varepsilon_{\pi(i)} = 1\) if \(i \notin M^*_x(x)\).

Note that property (A) is a weak symmetry condition for largest coefficients. We require that there is a symmetry in the norm provided its support has some gaps. When \(\text{supp} x = \mathbb{N}\) then the basis does not allow any symmetry in the norm of \(x\). The opposite case occurs when \(x = \sum_{j \in J_0} e_j\) and \(J_0\) is finite, then \(\|x\| = \| \sum_{j \in J} e_j \|\) for any \(J \subset \mathbb{N}\) of cardinality \(|J_0|\).

Theorem 6 A basis \((e_i)_{i=1}^\infty\) for a Banach space \(X\) is 1-greedy if and only if it is 1- unconditional and satisfies property (A).

Another important for application result is the duality property.

Remark 3 Suppose that \(\Phi\) is greedy basis and that \(\varphi(m) \simeq m^\alpha\) with \(0 < \alpha < 1\). Then \(\Phi^*\) is also greedy.

Proof. From Theorem 5 we know that \(\Phi\) is unconditional, so we can renorm it to be 1-unconditional. Also, because \(\Phi\) is greedy we have \(\varphi(m) \simeq \psi(m)\). We repeat the proof of Theorem 4 but in (13) we explicitly calculate as follows:

\[
\mathcal{M}_m(\Phi^*) \leq 2C \sup_{k \leq m} \frac{1}{k} \sum_{j=1}^k \frac{k^\alpha}{j^\alpha} \leq \text{const},
\]

so \(\Phi^*\) is greedy.
This is a special case of Theorem 5.1 from [11]. We recall that it was proved in [21] that each unconditional basis in L_p, $1 < p < 1$, has a subsequence equivalent to the unit vectors basis in l_p, so for each greedy basis Φ in L_p we have $\varphi(\Phi, m) \simeq m^{1/p}$. Thus we get:

Corollary 1 If Φ is a greedy basis in L_p, $1 < p < 1$, then Φ^+ is a greedy basis in L_{p^*}, $1/p + 1/q = 1$.

4. Quasi greedy bases

In this section we characterize the quasi-greedy systems. The well known result of Wojtaszczyk [35] says quasi-greedy property is a kind of uniform boundedness principle.

Theorem 7 A natural biorthogonal system is quasi greedy if and only if there exists a constant C such that for all $x \in X$ and $m = 0, 1, 2, \ldots$ we have

$$G_m(\Phi, x) \leq C \|x\|.$$

The smallest constant C in the above theorem will be called quasi greedy constant of the system Φ.

Proof. 1\Rightarrow2. Since the convergence is clear for x's with finite expansion in the biorthogonal system, let us assume that x has an infinite expansion. Take $x_0 = \sum_{j \in J} a_j e_j$ such that $\|x - x_0\| < \varepsilon$ where $J \subset I$ is a finite set and $a_j \neq 0$ for $j \in J$. If we take m big enough we can ensure that $G_m(x - x_0) = \sum_{j \in \Omega} c_j^* (x - x_0) e_j$ with $\Omega \supset J$ and $G_m(x) = \sum_{j \in \Omega} c_j^* (x) e_j$. Then

$$\|x - G_m(x)\| \leq \|x - x_0\| + \|x_0 - G_m(x)\| \leq \varepsilon + \|G_m(x_0 - x)\| \leq (C + 1)\varepsilon.$$

This gives 2.

2\Rightarrow1. Let us start with the following lemma.

Lemma 2 If 2 does not hold, then for each constant K and each finite set $J \subset I$ there exist a finite set $J_0 \subset I$ disjoint from I and a vector $x = \sum_{j \in J} a_j e_j$ such that $\|x\| = 1$ and $\|G_m(x)\| \geq K$ for some m.

Proof. Let us fix M to be the minimum of the norms of the (linear) projections $P_0(x) = \sum_{j \in \Omega} c_j^* (x) e_j$ where $\Omega \subset J$. Let us start with a vector x_1 such that $\|x_1\| = 1$ and $\|G_m(x_1)\| \geq K_1$ where K_1 is a big constant to be specified later. Without loss of generality we can assume that all numbers $|c_j^* (x_1)|$ are different. For $x_2 = x_1 - \sum_{j \in J} c_j^* (x_1) e_j$ we have $\|x_2\| \leq M + 1$ and $G_m(x_1) = G_m(x_2) + P_0(x_1)$ for some $k \leq m$ and $\Omega \subset J$. Thus $\|G_m(x_2)\| \geq K_1 - M$ and for $x_3 = x_2 \|x_2\|^{-1}$ we have $\|G_m(x_3)\| \geq (K_1 - M)/(1 + M)$. Let us put

$$\delta = \inf \{ |e_j^*(G_m(x_3))| : e_j^*(G_k(x_3)) \neq 0 \}$$

and take a finite set J_1 such that for $i \in J_1$ we have $|e_i^*(x_3)| \leq \delta/2$. Let us take η very small with respect to $|J_1|$ and $|J|$ and find x_4 with finite expansion such that $\|x_3 - x_4\| < \eta$. If η is small enough we can modify all coefficients of x_4 from J_1 and J so that the resulting x_5 will have its k biggest coefficients the same as x_3 and $\|x_4 - x_5\| < \delta$. Moreover x_5 will have the form $x_5 = \sum_{j \in J_0} c_j^* (x_5) e_j$ with J_0 finite and disjoint from J. Since $G_k(x_5) = G_k(x_3)$, for $x = x_5 \|x_5\|^{-1}$ we get $\|G_k(x)\| \geq (K_1 - M)/(1 + M)$ which can be made greater or equal K if we take K_1 big enough.

www.intechopen.com
Using Lemma 2 we can apply the standard gliding hump argument to get a sequence of vectors \(y_n = \sum_{j \in J_n} a_j e_j \) with sets \(J_n \) disjoint and \(\|y_n\| = 1 \), a decreasing sequence of positive numbers \(\varepsilon_n \leq 2^{-n} \) such that if \(e_j^*(y_n) \neq 0 \) then \(|e_j^*(y_n)| \geq \varepsilon_n \) and a sequence of integers \(m_n \) such that \(\|G_m(y_n)\| \geq 2^n \sum_{j=1}^{n-1} \varepsilon_j^{-1} \). Now we put \(x = \sum_{n=1}^{\infty} (\sum_{j=1}^{n-1} \varepsilon_j) y_n \). This series is clearly convergent in \(X \). If we write \(x = \sum_{i \in I} b_i e_i \) we infer that

\[
\inf\{ |b_j| : j \in \bigcup_{s=1}^{N} J_s \text{ and } b_j \neq 0 \} \geq \prod_{l=1}^{N} \varepsilon_l \geq \max\{ |b_j| : j \not\in \bigcup_{s=1}^{N} J_s \}.
\]

This implies that for \(k = \sum_{l=1}^{N-1} |J_l| + m_N \) we have

\[
G_k(x) = \sum_{n \leq N} \left(\prod_{l=1}^{n-1} \varepsilon_l \right) y_n + G_{m_N} \left(\prod_{l=1}^{N} \varepsilon_l \right) y_{N+1}
\]

so

\[
\|G_k(x)\| \geq \left(\prod_{l=1}^{N} \varepsilon_l \right) \|G_{m_N}(y_{N+1})\| - C \geq 2^{N+1} - C.
\]

Thus \(G_k(x) \) does not converge to \(x \).

One of the significant features of quasi greedy systems is that they are closely related to the unconditionality property.

Remark 4 Each unconditional system is quasi greedy.

Proof. Note that for an unconditional system \(\Phi = (e_i, e_i^*)_{i \in I} \) and each \(x \in X \) the series \(\sum_{i \in I} e_i^*(x) e_i \) converges unconditionally (we can change the order of \(l \)). In particular the convergence holds for any finite set approximation of \(I \) and hence \(\Phi \) is quasi greedy.

There is a result in the opposite direction, which shows that quasi-greedy bases are rather close to unconditional systems.

Definition 10 A system \(\Phi \) is called unconditional for constant coefficients if there exists constants \(c_1 > 0 \) and \(c_2 < 1 \) such that for finite \(J \subset I \) and each sequence of signs \((\varepsilon_j)_{j \in J} = \pm 1 \) we have

\[
c_1 \| \sum_{j \in J} e_j \| \leq \| \sum_{j \in J} \varepsilon_j e_j \| \leq c_2 \| \sum_{j \in J} e_j \|.
\]

Proposition 3 If \((\Phi) \) has a quasi-greedy constant \(C \) then it is unconditional for constant coefficients with \(c_1 = C^{-1} \) and \(c_2 = C \).

Proof. For a given sequence of signs \((\varepsilon_j)_{j \in J} \) let us define the set \(J_0 = \{ j \in J : \varepsilon_j = 1 \} \). For each \(\varepsilon > 0 \) and \(\varepsilon < 1 \) we apply Theorem 7 and we get

\[
\| \sum_{j \in J_0} e_j \| \leq C \| \sum_{j \in J_0} e_j + \sum_{j \in J \setminus J_0} (1 - \varepsilon) e_j \|.
\]
Since this is true for each $\varepsilon > 0$ we easily obtain the right hand side inequality in (20). The other inequality follows by analogous arguments.

The quasi greedy bases may not have the duality property. For example for the quasi greedy basis in l_1, constructed in [12] the dual basis is not unconditional for constant coefficients and so it is not quasi greedy. On the other hand dual of a quasi greedy system in a Hilbert space is also quasi greedy (see Corollary 4.5 and Theorem 5.4 in [11]). Otherwise not much has been proved for quasi greedy bases.

5. Examples of systems

In this section we discuss a lot of concrete examples of biorthogonal systems. We remark here that all of the discussed concepts of: greedy, quasi greedy, unconditional symmetric and democratic systems, are up to a certain extent independent of the normalization of the system. Namely we have (cf. [40]):

Remark 5 If $(\lambda_i)_{i \in I}$ is a sequence of numbers such that

$$0 < \inf_{i \in I} |\lambda_i| \leq \sup_{i \in I} |\lambda_i| < \infty$$

and $\Phi = (x_i, x_i^*)$ is a system which satisfies any of the Definitions 4-8, then the system $(\lambda_i e_i, \lambda_i^{-1} e_i^*)_{i \in I}$ verifies the same definitions.

The most natural family of spaces consists of L_p spaces $1 \leq p \leq \infty$ and some of their variations, like rearrangement spaces. As for the systems we will be mainly interested in wavelet type systems, especially the Haar system or similar, and trigonometric or Walsh system.

5.1 Trigonometric systems

Clearly standard basis in l_p, $p > 1$ is greedy. The straightforward generalization of such system into $L_p(\mathbb{R})$ space is the trigonometric system $(e^{ijt})_{j \in \mathbb{Z}}$. Such system may be complicated to the Walsh system in $L_p(\mathbb{R}^d)$ given by $(e^{ijt})_{j \in \mathbb{Z}^d}$, where $t \in \mathbb{R}^d$. Unfortunately the trigonometric system is not quasi greedy even in L_p. To show this fact we use Proposition 3, i.e. we prove that such systems are not unconditional for constant coefficients whenever $p \neq 2$.

Suppose that for some fixed $1 \leq p < \infty$ trigonometric system verifies (20). Then taking the average over signs we get

$$\left(\int_0^1 \left\| \sum_{j=1}^N r_j(t) e^{ijt} \right\|_p^p dt \right)^{1/p} \approx \left\| \sum_{j=1}^N e^{ijt} \right\|_p.$$

The symbol r_j in the above denotes the Rademacher system. The right hand side (which is the L_p norm of the Dirichlet kernel) is of order $N^{1-\frac{1}{p}}$ if $p > 1$ and of order $\log N$ when $p = 1$. Changing the order of integration and using the Khinchine inequality we see that the left hand side is of order \sqrt{N}. To decide the case $p = \infty$ we recall that the well-known Rudin Shapiro polynomials are of the form $p_N(s) = \sum_{j=1}^N \pm e^{ij\theta}$ for appropriate choice of $\|p_N\|_\infty \simeq \sqrt{N}$ while the L_p norm of the Dirichlet Kernel is clearly equal to N. This violates (20). Those results are proved in [40], [30], [8] and [35].
5.2 Haar systems

We first recall the definition of Haar system in L^p space. The construction we describe here is well known and we follow its presentation from [40]. We start from a simple (wavelet) function:

$$h(t) = \begin{cases}
1 & \text{if } 0 \leq t < 1/2 \\
-1 & \text{if } 1/2 \leq t < 1 \\
0 & \text{otherwise.}
\end{cases} \quad (21)$$

Clearly $\text{supp } h = [0, 1)$. For pair $(j, k) \in \mathbb{Z}^2$ we define the function $h_{jk}(t) := h(2^j t - k)$. The support of h_{jk} is dyadic interval $I = I(j, k) = [2^j, (k+1)2^j)$. The usual procedure is to index Haar functions by dyadic intervals I and write h_I instead of h_{jk}. We denote by \mathcal{D} the set of all dyadic subintervals of \mathbb{R}. It is a routine exercise to check that the system $\{h_I : (j, k) \in \mathbb{Z}^2\} = \{h_I : I \in \mathcal{D}\}$ is complete orthogonal system in $L_2(\mathbb{R})$. Note that whenever we consider the Haar system in a specified function space X on \mathbb{R} we will consider the normalized system $h_I/\|h_I\|_X$.

There are two common Haar systems in \mathbb{R}^d:

1. The tensorized Haar system, denoted by h_{d}^δ and defined as follows: If $J = j_1 \times \ldots \times j_d$ where $j_1, \ldots, j_d \in \mathcal{D}$, then we put $h_{J}(t_1, \ldots, t_d) := h_{j_1}(t_1) \cdots h_{j_d}(t_d)$. One checks trivially that the system $\{h_J : J \in \mathcal{D}^d\}$ is a complete, orthogonal system in $L_p(\mathbb{R}^d)$. We will consider this system normalized in L_p with $1 \leq p \leq \infty$, i.e. $h_{d}^\delta = \{H_{d}^\delta : J \in \mathcal{D}^d\}$, where $H_{d}^\delta = \|h_J\|^{-1}_p h_J$. The main feature of the system is that supports of the functions are dyadic parallelograms with arbitrary sides.

2. The cubic Haar system, denoted by h_{d}^J defined as follows: We denote by $h(t)$ the functions $h(t)$ defined in (21) and by $h^0(t)$ the function $1_{[0,1]}$. For fixed $d = 1, 2, \ldots$, let C denotes the set of sequences $\delta = (\delta_i : i = 1, \ldots, d)$ such that $\delta_i = 0$ or 1 and $\sum_{i=1}^{d} \delta_i > 0$. For $\delta \in C$ and $k \in \mathbb{Z}^d$ we define a function $h_{d,j,k}^\delta$ on \mathbb{R}^d by the formula

$$h_{d,j,k}^\delta(t_1, \ldots, t_d) := 2^{d/2} \prod_{i=1}^{d} h_{\delta_i}^\delta(2^i t_i - k_i). \quad (22)$$

Again it is a routine exercise to show that the system $\{h_{d,j,k}^\delta\}$ where δ varies over C, i varies over \mathbb{Z} and k varies over \mathbb{Z}^d is a complete orthonormal system in $L_2(\mathbb{R}^d)$. As before we consider the system normalized in $L_p(\mathbb{R}^d)$, namely $h_{d}^\delta = \{H_{d}^\delta\}_{\delta \in C}$ where $C = \mathbb{Z} \times \mathbb{Z}^d$ and for $\alpha = (\delta, j, k) \in C$ we have $H_{d}^\delta = \|h_{d,j,k}^\delta\|^{-1}_p h_{d,j,k}^\delta$. The feature of this system is that supports of the functions are all dyadic cubes. Therefore one can restrict the Haar system h_{d}^δ to the unite cube $[0, 1]^d$. We simply consider all Haar functions whose supports are contained in $[0, 1]^d$ plus the constant function. In this way we get the Haar system in $L_p([0, 1]^d)$. The above approach can be easily generalized to any wavelet basis. In the wavelet construction we have a multivariate scaling function $\phi(t)$ and the associated wavelet $\varphi(t)$.
on \(L_p(\mathbb{R}) \). We assume that both \(\phi^0 \) and \(\phi^1 \) have sufficient decay to ensure that \(\phi^0, \phi^1 \in L_1(\mathbb{R}) \cap L_{\infty}(\mathbb{R}) \). Clearly functions \(1_{[0,1]} \) and \(h(t) \) are the simplest example of the above setting, i.e. of scaling and wavelet function respectively. This concept may be extended to \(\mathbb{R}^d \), i.e. we can define a tensorized wavelet basis, though since we do not study such examples in this chapter we refrain from detailing the construction.

5.3 Haar systems in \(L_p \) spaces

Since Haar systems play important role in the greedy analysis we discuss some of their properties. The main tool in our analysis of \(L_p \) will be the Khintchine inequality which allows to use an equivalent norm on the space.

Proposition 4 If \(\Phi = \{\phi_t, \phi^*_t\}_{t \in I} \) is an unconditional system in \(L_p \), \(1 < p < \infty \), then the expression

\[
\|x\|_p = \left(\int \left| \sum_{n \in I} c_n^* \phi(x) \right|^p ds \right)^{1/p}
\]

(23)

gives an equivalent norm on \(L_p \).

The above proposition fails for \(p = 1 \) but if we introduce the norm given by (23) for \(p = 1 \), then we obtain a new space denoted as \(H_1 \), in which the Haar system \(h_1 \) is unconditional. The detail construction of the space may be found in [37], 7.3.

We show that one of our Haar systems \(h_d \) is greedy whereas the second one \(h_d \) is not. We sketch briefly these results. The first result was first proved in [33] but we present argument given in [22] and [40] which is a bit easier.

Theorem 8 The Haar \(h_d \) is greedy basis in \(L_p(\mathbb{R}^d) \) for \(d = 1, 2, \ldots \) and \(1 < p < \infty \). The system \(h_1 \) is greedy in \(H_1 \).

Proof. The unconditionality of the Haar system is clear from Proposition 4. Therefore we only need to prove that \(h_d \) is democratic in \(L_p(\mathbb{R}^d) \) for \(d = 1, 2, \ldots \) (and also in \(H_1 \)). Let \(J \subset J(d) \) be a finite set. Note that if the cube \(Q \) is the support of the Haar function \(H_{\alpha} \), then \(|H_{\alpha}| = |Q|^{-1/p} 1_Q \). Thus, for each \(t \in \mathbb{R}^d \), the non-zero values of the Haar functions \(H_{\alpha} \) belong to a geometric progression with ratio \(2^d \). Then we check that for a given \(t \in \mathbb{R}^d \) there are at most \(2^d-1 \) Haar functions which take a given non zero value at this point. Thus defining \(2^{M(t)} := \max_{\alpha \in J} |H_{\alpha}^p(t)|^p \), we obtain that

\[
2^{M(t)} \geq c(d) \sum_{\alpha \in J} |H_{\alpha}^p(t)|^p
\]

for some constant \(c(d) > 0 \). So

\[
\left(\int \left(\sum_{\alpha \in J} |H_{\alpha}^p(t)|^{2/p} \right)^{p/2} 1/Q \right)^{1/p} \geq \left(\int 2^{M(t)} dt \right)^{1/p} \geq \left(\int c(d) \sum_{\alpha \in J} |H_{\alpha}^p(t)|^{p} dt \right)^{1/p} = c(d)^{1/p} |J|^{1/p}
\]

We recall that for a given \(t \in \mathbb{R}^d \) there are at most \(2^d-1 \) Haar functions which have the same non zero value at this point. Therefore, following the same geometric progression argument we see that for each \(t \in \mathbb{R}^d \) we have
for some constant $C(d) < \infty$ and $\alpha_0 \in J$ depending on t. Thus

$$\left(\int \left(\sum_{\alpha \in J} |H_{\alpha}^p(t)|^2 \right)^{p/2} dt \right)^{1/p} \leq \left(\int C(d) \sum_{\alpha \in J} |H_{\alpha}^p(t)|^p dt \right)^{1/p} \leq C(d)^{1/p} |J|^{1/p}. \tag{24}$$

It shows that $\left(\int \left(\sum_{\alpha \in J} |H_{\alpha}^p(t)|^2 \right)^{p/2} dt \right)^{1/p}$ is comparable with $|J|^{1/p}$, which in the view of Proposition 4 completes the proof. \hfill \Box

The second result shows that h_d^p is not greedy in L_p. We recall that for as system, h_d^p we have used intervals $I \in D^d$ as the indices. We first prove the following:

Proposition 5 For $d = 1, 2, \ldots$ and $1 < p < \infty$ in $L_p(\mathbb{R}^d)$ we have

$$\left(\sum_{I \in J} |a_I|^p \right)^{1/p} (\log |J|)^{\frac{1}{p} - \frac{1}{p'}} \leq \| \sum_{I \in J} a_I h_d^p(t) \|^p \leq \left(\sum_{I \in J} |a_I|^p \right)^{1/p} \tag{25}$$

for $p \leq 2$, and

$$\left(\sum_{I \in J} |a_I|^p \right)^{1/p} \leq \| \sum_{I \in J} a_I h_d^p \| \leq (\log |J|)^{\frac{1}{p} - \frac{1}{p'}} \left(\sum_{I \in J} |a_I|^p \right)^{1/p} \tag{26}$$

Proof. The right hand side inequality in (24) is easy. We simply apply the Holder inequality with exponent $\frac{p}{p'} \geq 1$ to the inside sum and we get

$$\left(\int \left(\sum_{I \in J} |a_I h_d^p(t)|^2 \right)^{p/2} dt \right)^{1/p} = \left(\sum_{I \in J} |a_I|^p \right)^{1/p}. \tag{25}$$

To show the left hand side we will need the following result:

Lemma 3 For $d = 1$ and $1 \leq p < \infty$ and for any finite subset $J \subset D$ we have

$$2^{1/p} |J|^{1/p} \leq \left(\int \left(\sum_{I \in J} |h_I^d(t)|^2 \right)^{p/2} dt \right)^{1/p}. \tag{26}$$

Proof. Let us denote $2^{M(t)} = \max I \in J |h_I^d(t)|^p$. From the definition of the Haar system we obtain that $2^{M(t)} \geq \frac{1}{2} \sum_{I \in J} |h_I^d(t)|^p$ so

$$\left(\int \left(\sum_{I \in J} |h_I^d(t)|^2 \right)^{p/2} dt \right)^{1/p} \geq \left(\int 2^{M(t)} dt \right)^{1/p} \geq \frac{1}{2} \left(\int \sum_{I \in J} |h_I^d(t)|^p dt \right)^{1/p} = 2^{-1/p} |J|^{1/p}. \tag{25}$$

Now we fix $d = 1$ and $1 < p \leq 2$. Let $\sigma : \{1, 2, \ldots, |J|\} \rightarrow J$ be such that $|a_{\sigma(i)}|$ is a decreasing sequence. Fix s such that $2^s \leq |J|$ and we put
\[f_k(t) = \left(\sum_{j=2k-1}^{2k-1} |a(\sigma(j)) h_{\sigma(j)}^d(t) |^2 \right)^{1/2} \]

Then
\[
\left(\int_{\mathbb{R}} \left(\sum_{l \in I} |h_I^d(t)|^2 p/2 \, dt \right)^{1/p} \right)^{1/p} \geq \left(\int_{\mathbb{R}} \left(\sum_{k=0}^{s} f_k^d(t) \right)^{1/p} \, dt \right)^{1/p} \geq \left(\int_{\mathbb{R}} \left(\sum_{k=0}^{s} \left(\int_{\mathbb{R}} h_I^d(t) \, dt \right) \right)^{2/p} \, dt \right)^{1/2}.
\]

Hence using Lemma 3 we obtain that
\[
\left(\int_{\mathbb{R}} \left(\sum_{l \in I} |h_I^d(t)|^2 p/2 \, dt \right)^{1/p} \right)^{1/p} \geq \left(\sum_{k=0}^{s} 2^{2(k-1)/p} |a(\sigma(2^k))|^2 \right)^{1/2}.
\]

Since
\[
\sum_{l \in I} |a_l|^p = \sum_{j=1}^{|I|} |a(\sigma(j))|^p \leq \sum_{k=0}^{s} 2^k |a(\sigma(2^k))|^p \leq s^{1-1/p} \sum_{k=0}^{s} 2^{2k/p} |a(\sigma(2^k))|^2 p/2,
\]
we derive
\[
\left(\int_{\mathbb{R}} \left(\sum_{l \in I} |h_I^d(t)|^2 p/2 \, dt \right)^{1/p} \right)^{1/p} \geq 2^{-1/p} (\log |I|)^{-1-1/p} \sum_{l \in I} |a_l|^p \right)^{1/p} = 2^{-1/p} (\log |I|)^{-1-1/p} \sum_{l \in I} \left| a_l \right|^p \right)^{1/p}.
\]

Therefore we have established (24) for \(d = 1 \). We turn to show the left hand side inequality in (24) by induction on \(d \). Suppose we have (24) valid for \(d-1 \). Given a finite set \(I \subset \mathcal{D}^d \) we write each \(I \in J \) as \(I = A \times B \) with \(A \in \mathcal{D} \) and \(B \in \mathcal{D}^{d-1} \) and then \(h_I^d(t) = h_A(t_1) h_B^{d-1}(\xi) \) where \(\xi = (t_2, ..., t_d) \). We denote \(S := (\int_{\mathbb{R}^d} \left| h_I^d(t) \right|^2 p/2 \, dt)^{1/p} \) and estimate
\[
S = \left(\int_{\mathbb{R}^{d-1}} \left(\sum_{l \in I} |a_l h_A(t_1)|^2 |h_B^{d-1}(\xi)|^2 p/2 \, dt_1 \right) \, d\xi \right)^{1/p} = \left(\int_{\mathbb{R}^{d-1}} \left(\sum_{B} \left(\sum_{A} |a_l h_A(t_1)|^2 |h_B^{d-1}(\xi)|^2 p/2 \, d\xi \right) \, dt_1 \right)^{1/p}.
\]

For each \(t_1 \) we apply the inductive hypothesis (note that the number of different \(B \)'s is at most \(j \)) and we continue the estimates

www.intechopen.com
Now we apply the estimate (24) for \(d = 1 \) and we continue as
\[
S \geq C(d-1, p) \left(\sum_{J \in I} \left| J \right| \right)^{(d-1)(1/2-1/p)} \left(\sum_{A \in B} \left| a_{I} h_{A}(t_{I}) \right|^{2} dt_{1} \right)^{1/p} \\
\geq C(d-1, p) \left(\sum_{J \in I} \left| J \right| \right)^{(d-1)(1/2-1/p)} \left(\sum_{A \in B} \left| a_{I} h_{A}(t_{I}) \right|^{2} \right)^{1/2} dt_{1}^{1/p}
\tag{28}
\]

Now we apply the estimate (24) for \(d = 1 \) and we continue as
\[
S \geq C(d-1, p) \left(\sum_{J \in I} \left| J \right| \right)^{(d-1)(1/2-1/p)} \left(\sum_{A \in B} \left| a_{I} \right|^{p} \right)^{1/p} C(1, p) \left(\log |J| \right)^{(1/2-1/p)}
\]
\[
= C(d, p) \left(\sum_{J \in I} \left| J \right| \right)^{(d-1)/p} \left(\sum_{I \in J} \left| a_{I} \right|^{p} \right)^{1/p}.
\tag{29}
\]

Due to Proposition 4 we can complete the proof of (24). The inequality (25) follows by duality from (24) for \(1 < p \leq 2 \).

Note that if we work in the setting where all \(a_{I} = 1 \), then actually one can show, using Lemma 3, that for \(d = 1 \), \(\| \sum_{J \subseteq J} h_{I} \| \) is just comparable with \(|J|^{1/p} \). Therefore we can start the induction from \(d = 2 \) and thus derive:

Proposition 6 For \(d = 1, 2, \ldots \) and \(1 < p \leq 2 \) in \(L_{p}(\mathbb{R}^{d}) \) we have
\[
c(d, p) \left| J \right|^{1/p} \left(\log |J| \right)^{(1/2-1/p)(d-1)} \leq \left\| \sum_{I \in J} h_{I} \right\| \leq C(d, p) \left| J \right|^{1/p}
\tag{30}
\]
for \(2 \leq p < \infty \), and
\[
c(d, p) \left| J \right|^{1/p} \leq \left\| \sum_{I \in J} h_{I} \right\| \leq C(d, p) \left(\log |J| \right)^{(1/2-1/p)(d-1)} |J|^{1/p}
\tag{31}
\]

The inequalities (30) and (31) finally lead to the main result for \(h_{p}^{d} \) systems which was conjectured in [32] and proved in [35].

Theorem 9 Suppose that for \(1 < p < \infty \) we consider the system \(h_{p}^{d} \) in \(L_{p}(\mathbb{R}^{d}) \) space. Then
\[
\mathcal{E}_{m} \lesssim (\log m)^{(d-1)(1/2-1/p)}
\tag{32}
\]

Proof. Proposition 6 combined with Theorem 2 shows that \(\mathcal{E}_{m} \leq C(\log m)^{(1/2-1/p)(d-1)} \).

The estimate from below was proved in [32].

Corollary 2 For \(d = 1, 2, \ldots \) and \(2 < p < \infty \) in \(L_{p}(\mathbb{R}^{d}) \) we have
\[
\phi(h_{p}^{d}, m) \sim m^{1/p}
\tag{33}
\]
\[
\psi(h_{p}^{d}, m) \sim m^{1/p} (\log m)^{(1/2-1/p)(d-1)},
\tag{34}
\]
whereas for \(p \leq 2 \).

www.intechopen.com
Note that Corollary 2 implies that (7) is verified with $s(m) \simeq m^{(p-2)/2} (d-1)$. Consequently we deduce from Theorem 3 that for a given $x \in X$ there exist $m(p, m) \simeq m(m, m) \simeq m^{m} < 1 \frac{m}{2} (d-1)$ coefficients from which we should choose m to find near best m-term approximation. Therefore it seems to be intriguing problem to find the algorithm which provides the near optimal approximation for h_d^m.

5.4 Haar systems in other spaces

One could expect that if there exists the Haar system h_d^p in $L_p(\mathbb{R}^d)$ the same construction should work in rearrangement spaces. We recall that a rearrangement invariant space is a Banach space $(X, \| \cdot \|)$ whose elements are measurable functions on measure space (Ω, μ) satisfying the following conditions

1. if $x \in X$ and y is a measurable function such that $|y(\omega)| \leq |x(\omega)|$, μ-a.e.
2. if $x \in X$ and y has the same distribution as x, i.e. for all $\lambda \in \mathbb{R}$ we have $\mu(x \leq \lambda) = \mu(y \leq \lambda)$

then $y \in X$ and $\|x\| = \|y\|$.

The main result of [42] states that L_p are the only rearrangement spaces for which the normalized Haar system is greedy.

Theorem 10 Let X be a rearrangement invariant space on $[0, 1]^d$. If a Haar system h_d^p normalized in X is a greedy basis in X, then $X = L_p[0, 1]^d$ for some $1 < p < \infty$.

On the other hand there are examples of bizarre rearrangement spaces (see [20]) for which there exists some greedy basis. However, it was conjectured in [42] that for classical different from L_p rearrangement spaces (e.g. Lorentz, Orlicz) this is not possible. We recall that Lorentz $L_{p,q}(\mathbb{R}^d)$ is a Lorentz rearrangement space with the norm $\|x\|_{p,q} = \left(\int_0^1 x^-(t)^{\frac{q-1}{q}} dt \right)^{1/q}$, where x^+ is non-increasing rearrangement of x (uniquely determined). It was shown in [42] that if for $p \neq q$ there exists greedy basis in $L_{p,q}$ then it has rather unusual properties.

The second interesting class of examples comprise Orlicz spaces. We recall that $L_\phi(\mathbb{R}^d)$ is an Orlicz rearrangement space with the norm $\|x\|_\phi = \inf \{C : \phi(|x|/C) d\mu \leq 1 \}$, where ϕ is some convex, increasing, $\phi(0) = 0$ function. Such spaces where analyzed recently in [16] where some extension of Theorem 10 has been proved. We say that space has non-trivial Boyd indices if

$$0 < \sup_{0 < t < 1} \sup_{s > 0} \frac{\phi(st)}{\phi(s) \phi(t)} \leq \inf_{1 < t < \infty} \sup_{s > 0} \frac{\phi(st)}{\phi(s) \phi(t)} < \infty.$$

Theorem 11 Let $L_\phi(\mathbb{R}^d)$ be an Orlicz spaces with non-trivial Boyd indices. An wavelet basis is democratic in $L_\phi(\mathbb{R}^d)$ if and only if $L_\phi(\mathbb{R}^d) = L_p(\mathbb{R}^d)$ for some $1 < p < \infty$.

www.intechopen.com
5.5 Functions of bounded variations

Let $\Omega \subset \mathbb{R}^d$ be an open subset. Let us recall that a function $f \in L_1(\Omega)$ has bounded variation if all its distributional derivatives $\frac{\partial f}{\partial x_j}$ are measures of bounded variation. The space of all such functions equipped with the norm

$$\|f\|_{BV} = \sum_{j=1}^{d} \|\frac{\partial f}{\partial x_j}\|$$

is denoted by $BV(\Omega)$. This function space is of importance for the geometric measure theory, calculus of variation, image processing and other areas. Clearly whenever $\|f\|_{BV} < \infty$ then $f \in L_p$, where $p = d/(d - 1)$ by the classical embedding theorems. Observe that $BV(\mathbb{R}^d)$ is a non separable space so it cannot have any countable system satisfying (4). On the other hand one may ask whether the Haar system normalized to $BV(\mathbb{R}^d)$ (which we denote by h_{BV}^d) has some stability property, i.e. is quasi greedy on $BV(\mathbb{R}^d)$. Generalizing some of the previous results (e.g. [7],[36],[41]) it was proved in [5] that the following holds:

Theorem 12 Suppose that $\Phi = (e_i, e_i^*)_{i \in I}$ is a normalized wavelet basis generated by some compactly supported scaling function (see our discussion in Section about Haar Systems). Then if $f \in BV(\mathbb{R}^d)$, $d \geq 2$ the following inequality holds

$$|G_{m}(\Phi, f)|_{BV} \leq C(p, d) \|f\|_{BV}$$

(37)

for some constant $C(p, d)$ depending on p, d only.

This is however not much satisfactory result since $\text{span}\{h_{BV}^d\}$ is not a very natural space. A natural separable space of $BV(\mathbb{R}^d)$ is the Sobolev space $W_1^1(\mathbb{R}^d)$, i.e. the space of all $f \in BV(\mathbb{R}^d)$ such that $\frac{\partial f}{\partial x_j}$ are absolutely continuous measures for $j = 1, 2, \ldots, d$. A natural and interesting problem which rises in this context is to find a smooth wavelet basis which is quasi greedy in $W_1^1(\mathbb{R}^d)$. We remark that $W_1^1(\mathbb{R}^d)$ does not have unconditional basis, so it does not have a greedy basis. On the other hand an immediate consequence of Theorem 13 is that $W_1^1(\mathbb{R}^d)$ has a quasi greedy basis.

6 Examples of greedy and quasi greedy bases

In this section we provide a class of basic examples for natural systems which share the greedy or quasi greedy property.

6.1 Greedy bases

There to basic examples of greedy bases which we often refer to:

1. the natural basis in L_p, $p \geq 1$;
2. the Haar system h_{BV}^d for $L_p(\mathbb{R}^d)$.

It occurs that these natural systems can be useful when combined with some theoretical methods of producing greedy bases.
The first approach is based on the fact that being greedy (or quasi greedy) is an isomorphic property. Therefore whenever \((e_i)_{i \in I}\) is a greedy system in Banach space \(X\) and \(T : X \to Y\) is a linear isomorphism, then \((T(e_i))_{i \in I}\) is a greedy system in \(Y\). We mention two practically useful examples of this remark:

1. Consider \(L_p\), \(1 < p < \infty\) space. If \(B\) is a good wavelet basis (cf. [37] Theorem 8.13) normalized to \(L_p\) then it is equivalent to the Haar system \(h_p\). Thus such all systems are greedy.

2. It is known (cf. [37], Chapter 9) that good wavelet bases in Besov space \(B^p_{0,p}\) when properly normalized are equivalent to the unit vector basis in \(l_p\), thus greedy for \(1 \leq p < \infty\).

The second approach is to use the dual basis (see Remark 3). In particular (see Corollary 1) we have shown that dual basis of \(h_p^1\) in \(L_p\), \(1 < p < \infty\) is greedy in \(L_p\) were \(1/p+1/q = 1\). However one has to be careful when using Remark 3, since without the additional assumption that \(\varphi(m) \simeq m^a\), for some \(0 < a < 1\) it may be not true that dual basis is greedy in its linear closure. The simplest example of such a case may be constructed for the system \(h_1^1\) in \(H_1\) (the space of integrable functions with the norm given by (23)). The dual system is the system \(h_1^\infty\) considered in the space \(VMO\). It was proved in [29] that \(E_m(h_1^\infty) \simeq \sqrt{\log m}\) in the space \(VMO\), so we have a natural example of a greedy system whose dual is not greedy. Actually one can show that the space \(VMO\) does not have any greedy system.

Now we turn to discuss other examples of greedy bases in \(L_p\). The simplest case is of \(p = 2\), i.e. when we consider Hilbert space. Clearly every orthonormal basis, and more generally, every Riesz basis is greedy in a Hilbert space, since they are the only unconditional systems in \(L_2\). This easily follows from Proposition 4.

In \(L_p\) for \(1 < p < \infty\), \(p \neq 2\), the situation is not as simple. Except wavelet bases it is a hard question to provide other examples of greedy bases. We state below the Kamont [23] construction of a generalized Haar system in \([0, 1]\):

The first function is \(1_{[0,1]}\). Next we divide \([0, 1]\) into two subintervals \(I_1\) and \(I_2\) (nontrivial but generally not equal) and the next function is of the form \(a 1_{I_1} + b 1_{I_2}\), and is orthogonal to the previous function. We repeat this process on each of intervals \(I_1\) and \(I_2\) and continue in this manner.

If we make sure that the lengths of subintervals tend to zero the system will span \(L_p[0, 1]\) for \(1 \leq p < \infty\). One of the main results of [23] states that each generalized Haar system (normalized in \(L_p[0, 1]\)) is equivalent to a subsequence of \(h_1^p\), so is greedy.

An example of a basis in \(L_p\) for \(p > 2\) which is greedy and not equivalent to a subsequence of the Haar system \(h_1^p\) was given in [35]. It follows from Corollary 1 that such an example exists also for \(1 < p < 2\).

6.2 Quasi greedy bases

As we have mentioned in Remark 4 all unconditional system are quasi greedy. This observation however shows that unfortunately the greedy approximation can be very inefficient when used in this case. For example for the natural basis in \(l_1 \oplus c_0\) which is unconditional we have \(E_m \simeq m\).

Obviously to show other examples one has to investigate spaces without unconditional bases. Some examples were given in [26] but the general treatment was presented in [35]
and recently generalized in [10]. In both papers the approach is quite abstract and uses the existence of good complemented subspace. A very general result (Corollary 7.3 from [10]) is as follows.

Theorem 13 If X has a basis and contains a complemented subspace S with a symmetric basis, where S is not isomorphic to c_0, then X has a quasi greedy basis.

We recall that X is a L_∞ space if there exists $n_0 \geq 1$ and a directed net Y_α of finite dimensional subspaces of X, where each Y_α is λ-isomorphic to an l_∞^n space such that $X = \bigcup_\alpha Y_\alpha$. This class includes every complemented subspace of $C(K)$. In [10] (Corollary 8.6) there was proved a characterization of L_∞ spaces which admits a greedy basis.

Theorem 14 The space c_0 is the unique infinite dimensional L_∞ space, up to isomorphism, with a quasi greedy basis. Moreover c_0 has a unique quasi greedy basis up to equivalence. Therefore neither $C[0,1]$ nor the disc algebra A (which trivially shares L_∞-property) do not have any quasi greedy basis.

Since clearly $L_1[0,1]$ does contain complemented symmetric subspace (which is necessarily isomorphic to l_1, see e.g. Proposition 5.6.3 in [1]) we obtain from Theorem 13 that $L_1[0,1]$ has a quasi greedy basis. Since it is known that $L_1[0,1]$ does not have unconditional (in particular greedy) this is a good kind of basis. On the other hand it is none of the classical systems. For example the Haar basis (and other wavelet bases) are not quasi greedy in $L_1(\mathbb{R})$. To see it note that for $I_n = [0, 2^n]$, $n = 1, 2, ..., N$, we have $\| \sum_{n=1}^N H_{I_n} f \|_1 \simeq \text{const}$, while $\| \sum_{n=1}^N (-1)^n H_{I_n} f \|_1 \simeq \log N$, so (20) is violated.

7. Basic sequences

We call a sequence $(e_i)_{i \in I}$ in a Banach space X a basic sequence if it is a basis for $\text{span}\{e_i, i \in I\}$. The unconditional sequence problem is that we ask whether or not in any infinite dimensional Banach space there exists a quasi greedy sequence. The problem was regarded as perhaps the single most important problem in the approximation theory. Eventually a counterexample was found by Gowers and Maurey in [18]. The construction which is extremely involved has led to a variety of other applications (see e.g. [25], [17], [19]). However there is still open a bit weaker version of the problem:

Conjecture 1 In every infinite Banach space X there exists a quasi greedy basic sequence.

Some partial positive results are given in [13] and [3]. Roughly speaking there is shown in thee papers that whenever our space X is far from c_0 (in a certain sense) then there exists quasi a greedy sequence.

8. Greedy bases are best in L_p

In this section we assume for simplicity that we work with Schauder bases. From recent works [9] and [36] it became apparent that greedy basis in L_p is a natural substitute for an orthonormal basis in a Hilbert space. Let us explain brifley what does it mean.

8.1 Comparing bases

In [9] the following general problem is discussed. Let F be a certain Banach space continuously embedded into L_p and let F_0 be its unit ball. For a given basis $B = (e_i)_{i=1}^\infty$ in L_p we introduce the quantities

$$
\| \sum_{i=1}^n a_i e_i \|_p = \left(\sum_{i=1}^n |a_i|^p \right)^{1/p}
$$

www.intechopen.com
\[\sigma_m(B, \mathcal{F}) = \sup_{x \in \mathcal{F}_0} \sigma_m(B, x), \quad m \geq 0 \]

We are looking for a basis \(B \) which gives the best order of decay \(\sigma_m(B, \mathcal{F}) \). It is natural to expect that the best basis has to have close connection with the class \(\mathcal{F} \). We shall say that \(\mathcal{F} \subset X \) is aligned with \(B \) if for each \(\sum_{i=1}^{\infty} a_i e_i \in \mathcal{F} \) and \(|b_i| \leq |a_i| \) we have that \(\sum_{i=1}^{\infty} b_i e_i \in \mathcal{F} \). The following was proved in [9] (Theorem 4.2).

Theorem 15 Let \(B \) be a greedy basis for \(X \) with the property \(\varphi(m) \approx \frac{1}{m^p} \), for some \(p > 1 \). Assume that \(\mathcal{F} \) is aligned with \(B \) and for some \(\alpha \in \mathbb{R}, \beta > 0 \), we have

\[\lim_{m \to \infty} \sup (\log m)^\alpha m^\beta \sigma_m(B, \mathcal{F}) > 0, \]

Then for any unconditional basis \(B' \) we have

\[\lim_{m \to \infty} \sup (\log m)^{\alpha + \beta} m^\beta \sigma_m(B', \mathcal{F}) > 0. \]

The theorem implies that in some sense a greedy basis aligned with \(\mathcal{F} \subset X \) is the best among all unconditional bases. Certainly it seems that if they are best in the class of fine bases, greedy bases should be best among all the possible bases. Unfortunately all the admissible methods require the second basis to be unconditional.

The first paper in this direction was by Kashin [24] who proved that if \(X \) is \(L_2 \) space then for each orthogonal basis \(B \) we have \(\sigma_m(B, \text{Lip}_a) \geq C(\alpha)m^{-\alpha} \), where \(0 < \alpha \leq 1 \) and \(\text{Lip}_a \) is a class of Lipschitz functions according to the metric \(d(s,t) = \|s-t\|_a \). Next step was due to Donoho (see [14], [15]) who proved under the assumption \(X = L_2 \) that if \(\mathcal{F} \) is aligned with an orthogonal basis \(B \), such that \(\lim \sup_{m \to \infty} m^\beta \sigma_m(B, \mathcal{F}) > 0 \), for some \(\beta > 0 \), then for \(\gamma > \beta \) we have \(\lim \sup_{m \to \infty} m^{\gamma} \sigma_m(B', \mathcal{F}) > 0 \). Then by DeVore, Temlyakov and Petrova [9] the result was extended from \(L_2 \) spaces to \(L_p \), yet with a loss of some logarithmic factor.

Theorem 15 has been recently improved in [6]. We first formulate the following condition

\[\sum_{k=1}^{n} \frac{2^k}{\varphi(2^k)} \leq A \frac{2^n}{\varphi(2^n)}, \quad \text{for } n \geq 1. \]

(38)

Clearly if \(\varphi(m) \approx \frac{1}{m^p} \), \(p > 1 \) then (38) is verified. The condition says that \(\varphi \) verifies a kind of \(\Delta_2 \) condition in \(\infty \) (i.e. it cannot be linear in \(\infty \)).

In what follows, we will need some of the basic concepts of the Banach space theory. First let us recall the definition of type and cotype. Namely, if \((\varepsilon_i)_{i=1}^{\infty} \) is a sequence of independent Rademacher variables, we say that \(X \) has type 2 if there exists a universal constant \(C_1 \) such that

\[\mathbb{E}\left\| \sum_{i=1}^{n} \varepsilon_i x_i \right\| \leq C_1 \left(\sum_{i=1}^{n} \|x_i\|^2 \right)^{1/2}, \quad \text{for } n \geq 1, \ x_i \in X, \]

and \(X \) is of cotype 2 if there exists a universal constant \(C_2 \) such that
In particular the L^p spaces have type 2 if $p \geq 2$ and cotype 2 if $1 \leq p \leq 2$. For more comprehensive information see for example, [38], Chapter III A. Since we work with bases, we need a definition of type and cotype 2 in these settings. A basis B is called Riesz basis if

$$\| \sum_{i=1}^{\infty} a_i e_i \| \leq A_1 \left(\sum_{i=1}^{\infty} |a_i|^2 \right)^{1/2},$$

and Bessel basis, if

$$\left(\sum_{i=1}^{\infty} |a_i|^2 \right)^{1/2} \leq A_2 \| \sum_{i=1}^{\infty} a_i e_i \|,$$

where A_1, A_2 are universal constants. Obviously if X has type or cotype 2 then B is Riesz or Bessel basis respectively.

We can formulate the main result of the section.

Theorem 16 Let X be a Banach space and let B be a greedy and Riesz basis (or greedy and Bessel basis) which satisfies (38) (the Δ_2 condition). Suppose that K is aligned with B and that B' is an unconditional basis for X. There exist absolute constants $C > 0$ and $\tau \in \mathbb{N}$ such that

$$\sigma_m(B, K) \leq C \sum_{k=n-\tau}^{\infty} \sigma_{2k}(B', K), \quad \text{for } n \in \mathbb{N}, \ n \geq \tau.$$

It is possible to prove a weaker version of Theorem 16 in which we do not assume B to be Riesz or Bessel basis and which exactly implies Theorem 15. However the main class of examples consists of L^p spaces $\varphi(m) \approx m^p$ for all greedy bases in L_p and in this setting we can benefit from the fact that L^p spaces are of type or cotype 2 (each unconditional basis B is Riesz or Bessel). Thus we can apply Theorem 16 for L^p spaces and consequently remove the additional logarithmic factor in Theorem 15.

Corollary 3 (of Theorem 16) Suppose that X is L^p space, $p > 1$ and F is aligned with a greedy basis B. If B verifies

$$\limsup_{m \to \infty} (\log m)^\alpha m^\beta \sigma_m(B, F) > 0,$$

then for each unconditional basis B' in X the following inequality holds

$$\limsup_{n \to \infty} (\log m)^\alpha m^\beta \sigma_m(B', F) > 0.$$

8.2 Tools

In this section, we derive some preliminary results that we shall need later. The following lemma holds.

Lemma 4 If B is unconditional basis and verifies (38) (the Δ_2 condition), then the following inequality holds:
\[ADK \| \sum_{i=1}^{2^n} a_i e_i \| \geq 2^{-n} \varphi(2^n) \sum_{i=1}^{2^n} |a_i|. \]

Proof. We can assume that \(|a_i| \geq |a_{i+1}|\), as thus since \(B\) is unconditional, we have
\[\| \sum_{i=1}^{2^n} a_i e_i \| \geq K^{-1} \| \sum_{k=1}^{2^n} |a_{2^k}| e_i \| = D^{-1} K^{-1} \varphi(2^k) |a_{2^k}|, \]
for \(k = 0, 1, \ldots, n\). Hence by (38) we obtain
\[\sum_{i=1}^{2^n} |a_i| \leq \sum_{k=0}^{n} 2^k |a_{2^k}| \leq D K \sum_{k=0}^{n} 2^k \varphi(2^k)^{-1} \| \sum_{i=1}^{2^n} a_i e_i \|. \]

Thus by (39)
\[\sum_{i=1}^{2^n} |a_i| \leq \sum_{k=0}^{n} 2^k \varphi(2^k)^{-1} \| \sum_{i=1}^{2^n} a_i e_i \|. \]

Our main class of examples consists of \(L_p\) spaces, \(p > 1\) for which the assumptions in Theorem 16 are clearly verified. In order to use Theorem 16 for much larger classes of Banach spaces, we need a simple characterization whether a greedy basis \(B\) is Riesz or Bessel in terms of \(\varphi(n)\) numbers.

Lemma 5 Suppose \(B\) is a greedy basis (democratic and unconditional). If \(\varphi(n)\) satisfies
\[\sum_{n=0}^{\infty} \varphi(2^n)^{-2n} 2^n \leq L_2, \] (39)
then \(B\) is Bessel basis and if
\[\sum_{n=0}^{\infty} \varphi(2^n) 2^{-n} \leq L_1, \] (40)
then \(B\) is Riesz basis.

Proof. We can assume that \(|a_i| \geq |a_{i+1}|\). The unconditionality of \(B\) implies
\[\| \sum_{i=1}^{\infty} a_i e_i \| \geq K^{-1} \| \sum_{i=1}^{2^k} |a_{2^k}| e_i \| = D^{-1} K^{-1} |a_{2^k}| \varphi(2^k), \]
for \(k = 0, 1, 2, \ldots\). Hence by (39)
\[\sum_{i=1}^{\infty} |a_i|^2 \leq \sum_{k=0}^{\infty} |a_{2^k}|^2 2^k \leq D^2 K^2 \sum_{k=0}^{\infty} 2^k \varphi(2^k)^{-2} \| \sum_{i=1}^{\infty} a_i e_i \|^2 \leq L_2 D^2 K^2 \| \sum_{i=1}^{\infty} a_i e_i \|^2. \]

Thus \(A_2 \| \sum_{i=1}^{\infty} a_i e_i \| \geq (\sum_{i=1}^{\infty} |a_i|^2)^{1/2} \), where \(A_2 = \sqrt{L_2 DK}\). Similarly assuming that \(|a_i| \geq |a_{i+1}|\) and the fact that \(B\) is a democratic basis, we have that
\[\| \sum_{i=1}^{\infty} a_i e_i \| \leq K \sum_{k=0}^{\infty} \| \sum_{i=2^k}^{2^k+1} |a_{2^k}| e_i \| \leq DK \sum_{k=0}^{\infty} |a_{2^k}| \varphi(2^k). \]
Thus using the Schwartz inequality and (40) we get

\[
\| \sum_{i=1}^{\infty} a_i e_i \| \leq DK \left(\sum_{k=0}^{\infty} |a_{2k}|^2 2^{k} \right)^{1/2} \sum_{k=0}^{\infty} \varphi(2^k) 2^{-k} \leq \sqrt{2L_1 DK} \left(\sum_{i=1}^{\infty} |a_i|^2 \right)^{1/2},
\]

where we applied the following inequality

\[
\sum_{k=0}^{\infty} |a_{2k}|^2 2^{k} \leq |a_1|^2 + 2 \sum_{k=1}^{\infty} \sum_{i=2k}^{2k+1} |a_i|^2 \leq 2 \sum_{i=1}^{\infty} |a_i|^2.
\]

Consequently \(\| \sum_{i=1}^{\infty} a_i e_i \| \leq A_1 \left(\sum_{i=1}^{\infty} |a_i|^2 \right)^{1/2}, \) where \(A_1 = \sqrt{2L_1 DK}. \)

Remark 6 If we assume only that \(\sup_{n \geq 0} \varphi(2^n) - 2^n \leq L'_2 \) or \(\sup_{n \geq 0} \varphi(2^n) 2^{-n} \leq L'_1, \) then mimicking the proof of Lemma 5 we obtain respectively

\[
\sum_{i=1}^{2^n} |a_i|^2 \leq A'_1 n^{1/2} \left(\sum_{i=1}^{2^n} |a_i|^2 \right)^{1/2}, \quad \text{or} \quad \sum_{i=1}^{2^n} |a_i e_i| \leq A'_1 n^{1/2} \left(\sum_{i=1}^{2^n} |a_i|^2 \right)^{1/2}.
\]

Remark 7 If \(\varphi(m) \approx m^{1/2}, \) where \(1 < p < 2 \) or \(p > 2 \) then respectively (39) or (40) holds true. Thus each greedy basis \(B \) such that \(\varphi(m) \approx m^{1/2}, \) where \(p > 1, \) \(p \neq 2, \) is Bessel or Riesz basis.

Furthermore for all \(p > 1, \) if \(\varphi(m) \approx m^{1/2} \) the condition from Remark 6 is verified.

Lemma 6 Let \((\varepsilon_i)_{i=1}^{\infty} \) be a sequence of independent Rademacher variables and \(a_i, a_{i,j} \in \mathbb{R}, \) \(i, j \in \mathbb{N}. \)

We have

\[
E| \sum_{i=1}^{\infty} a_i \varepsilon_i |^2 = \sum_{i=1}^{\infty} |a_i|^2, \quad E| \sum_{i,j=1}^{\infty} a_{i,j} \varepsilon_i \varepsilon_j |^2 \leq \sum_{i,j=1}^{\infty} |a_{i,j}|^2.
\]

Proof. The first equality is classical and easy so we only prove the second one. If \(\sum_{i,j=1}^{\infty} |a_{i,j}|^2 = \infty \) then there is nothing to prove, otherwise we have

\[
E| \sum_{i,j=1}^{\infty} a_{i,j} \varepsilon_i \varepsilon_j |^2 = \sum_{i,j=1}^{\infty} |a_{i,j}|^2 + \sum_{i,j=1}^{\infty} a_{i,j} a_{j,i} \leq \sum_{i,j=1}^{\infty} |a_{i,j}|^2,
\]

where we have used the inequality \(2ab \leq a^2 + b^2. \)

Lemma 7 Let \(B = (e_i), B' = (e'_i) \) are respectively greedy and unconditional basis for \(X. \) Let \(e'_j = \sum_{i=1}^{\infty} d_{j,i} e_i \) and \(e_i = \sum_{j=1}^{\infty} c_{i,j} e'_j, \) and let \(K' \) be the unconditionality constant for \(B'. \) If \(B \) is Riesz or Bessel basis, then

\[
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |c_{i,j}|^2 |d_{j,i}|^2 \leq c 2^n,
\]

where \(c \) is a certain constant (not depending on \(n \)).
Proof. Fix $i \geq 1$. By the unconditionality of B' and B and the Bessel property of B we have

$$1 = \|e_i\| = \| \sum_{j=1}^{\infty} c_{i,j} e'_j \| \geq (K')^{-1} \left\| \sum_{j=1}^{\infty} \varepsilon_{i,j} c_{i,j} e'_j \right\| \geq (KK')^{-1} \parallel \sum_{l=1}^{2^n} \left(\sum_{j=1}^{\infty} c_{i,j} d_{j,l} \varepsilon_j \right) e_l \parallel \geq (A_2 K K')^{-1} \left(\sum_{l=1}^{2^n} \left(\sum_{j=1}^{\infty} |c_{i,j} d_{j,l} \varepsilon_j|^2 \right)^{\frac{1}{2}} \right)$$

Thus due to Lemma 6 we obtain

$$(A_2 K K')^2 \geq E \sum_{l=1}^{2^n} \left(\sum_{j=1}^{\infty} c_{i,j} d_{j,l} \varepsilon_j \right)^2 = \sum_{l=1}^{2^n} \sum_{j=1}^{\infty} |c_{i,j}|^2 |d_{j,l}|^2,$$

and hence $\sum_{i=1}^{2^n} \sum_{l=1}^{2^n} \sum_{j=1}^{\infty} |c_{i,j}|^2 |d_{j,l}|^2 \leq (A_2 K K')^2 2^n$.

Now fix $l \geq 1$. Due to the Riesz property of B and the unconditionality of B' and B we obtain

$$A_1 \left(\sum_{i=1}^{2^n} |a_i|^2 \right)^{\frac{1}{2}} \geq \sum_{i=1}^{2^n} a_i e_i = \left\| \sum_{i=1}^{\infty} \left(\sum_{j=1}^{2^n} a_i c_{i,j} e'_j \right) e_i \right\| \geq (K')^{-1} \left\| \sum_{i=1}^{\infty} \left(\sum_{j=1}^{2^n} a_i c_{i,j} e'_j \right) e_i \right\| = (K')^{-1} \left\| \sum_{i=1}^{\infty} \left(\sum_{j=1}^{2^n} a_i \left(\sum_{j=1}^{\infty} c_{i,j} d_{j,l} \varepsilon_j \right) e_i \right) \right\| \geq (KK')^{-1} \left\| \sum_{i=1}^{\infty} a_i \left(\sum_{j=1}^{2^n} c_{i,j} d_{j,l} \varepsilon_j \right) \right\|.$$

If we take $a_i = \sum_{j=1}^{\infty} c_{i,j} d_{j,l} \varepsilon_j$, then by Lemma 6 we get

$$(A_1 K K')^2 \geq E \sum_{l=1}^{2^n} \left(\sum_{j=1}^{\infty} c_{i,j} d_{j,l} \varepsilon_j \right)^2 = \sum_{l=1}^{2^n} \sum_{j=1}^{\infty} |c_{i,j}|^2 |d_{j,l}|^2.$$

It proves that $\sum_{i=1}^{2^n} \sum_{l=1}^{2^n} \sum_{j=1}^{\infty} |c_{i,j}|^2 |d_{j,l}|^2 \leq (A_1 K K')^2 2^n$.

Remark 8 If we assume only that $\sup_{n \geq 0} \sigma_{n}^{2n}(2^n)^{-2} 2^{-n} \leq L_2$ or $\sup_{n \geq 0} \sigma_{n}^{2n}(2^n)^{-2} 2^{-n} \leq L_1$ then applying Remark 6 in the above proof (instead of Riesz or Bessel property) we obtain

$$\sum_{i=1}^{2^n} \sum_{l=1}^{2^n} \sum_{j=1}^{\infty} |c_{i,j}|^2 |d_{j,l}|^2 \leq cn 2^n,$$

for some universal constant $c < \infty$.

8.3 Proof of main result

Proof of Theorem 1. Fix $n \geq 1$, $\delta > 0$. First we assume that $\sigma_n(B, \mathcal{F}) < \infty$. The definition of $\sigma_n(B, \mathcal{F})$ implies that there exists $x \in \mathcal{F}_0$ such that

$$\sigma_n(B, \mathcal{F}) \leq (1 + \delta) \sigma_n(B, x) \leq (1 + \delta) \|x - G_n(B, x)\|.$$
Observe that \(\|x - G_{2^{m}}(B, x)\| \) does not depend on the basis \(B \) renumeration, so we can and we will assume that \(|e_{i}^{*}(x)| \geq |e_{i+1}^{*}(x)| \) for \(i = 1, 2, \ldots \) and \(G_{2^{m}}(B, x) = \sum_{i=1}^{2^{m}} e_{i}^{*}(x) e_{i} \).

Since \(F \) is aligned to \(B \), whenever \(\sum_{i=1}^{\infty} a_{i} e_{i} \in F_{0} \) and \(|a_{i}| \leq |a_{i}| \), we have \(\sum_{i=1}^{\infty} b_{i} e_{i} \in u F_{0} \), where \(u \) is a universal constant. Consequently

\[
u^{-1}|e_{2^{k}}^{*}(x)| \sum_{i=1}^{2^{k}} \varepsilon_{i} e_{i} \in F_{0}, \quad \varepsilon_{i} \in \{-1, 1\}.
\]

It proves that denoting \(y_{k} := e_{2^{k}}^{*}(x) \), the cube

\[
F_{n,k} := \{u^{-1}y_{k} \sum_{i=1}^{2^{k}} \varepsilon_{i} e_{i}, \quad \varepsilon_{i} \in \{-1, 1\}\}
\]

is contained in \(F_{0} \). Applying the triangle inequality we obtain

\[
\|x - G_{2^{m}}(B, x)\| = \left\| \sum_{i=2^{m}+1}^{\infty} e_{i}^{*}(x) e_{i} \right\| \leq \sum_{k=n}^{2^{m}+1} \left\| \sum_{i=2^{k}+1}^{2^{k}+1} e_{2^{k}}^{*}(x) e_{i} \right\| \leq DK|e_{2^{k}}^{*}(x)| \varphi(2^{k}),
\]

Thus due to the unconditionality we get

\[
\| \sum_{i=2^{k}+1}^{2^{k+1}} e_{i}^{*}(x) e_{i} \| \leq K \| \sum_{i=2^{k}+1}^{2^{k+1}} |e_{2^{k}}^{*}(x)| e_{i} \| \leq DK|e_{2^{k}}^{*}(x)| \varphi(2^{k}),
\]

hence

\[
\sigma_{2^{m}}(B, F) \leq (1 + \delta) \|x - G_{2^{m}}(B, x)\| \leq (1 + \delta)DK \sum_{k=n}^{\infty} |e_{2^{k}}^{*}(x)| \varphi(2^{k}) = (1 + \delta)DK \sum_{k=n}^{\infty} y_{k} \varphi(2^{k}) \quad \text{(41)}
\]

Fix \(k \in \mathbb{N} \). Let \((\varepsilon_{i})_{i=1}^{\infty} \) be a sequence of independent Rademacher variables. For simplicity we denote \(d_{j}^{k} = (d_{j,1}, \ldots, d_{j,2^{k}}) \), \(c_{j}^{k} = (c_{1,j}, \ldots, c_{2^{k},j}) \) and consequently we have

\[
\langle c^{k}_{j}, \varepsilon \rangle = \sum_{i=1}^{2^{k}} \varepsilon_{i} c_{i,j}, \quad \langle d^{k}_{j}, \varepsilon \rangle = \sum_{i=1}^{2^{k}} \varepsilon_{i} d_{i,j}.
\]

Observe that \(\hat{x} = u^{-1}y_{k} \sum_{i=1}^{2^{k}} \varepsilon_{i} e_{i} \in F_{n,k} \subset F_{0} \) and thus \(\sigma_{2^{m}}(B', F) \geq \sigma_{2^{m}}(B', \hat{x}) \) for \(m = 0, 1, 2, \ldots \). By definition \(\sigma_{2^{m}}(B', \hat{x}) = \inf_{S \in \Sigma_{2^{m}}(B')} \|u^{-1}y_{k} \sum_{i=1}^{2^{k}} \varepsilon_{i} e_{i} - S\| \) and therefore

\[
\sigma_{2^{m}}(B', F) \geq \inf_{S \in \Sigma_{2^{m}}(B')} \|u^{-1}y_{k} \sum_{i=1}^{2^{k}} \varepsilon_{i} e_{i} - S\| = \inf_{(\lambda_{j}) = 2^{m} \varepsilon \in \mathbb{R}} \inf_{j=1}^{\infty} \|u^{-1}y_{k} \sum_{i=1}^{2^{k}} \langle c^{k}_{j}, \varepsilon \rangle c_{j}^{k} - \sum_{j \in \lambda} \alpha_{j}^{k} c_{j}^{k}\|.
\]
Furthermore, the unconditionality implies

\[\| u^{-1} y_k \sum_{j=1}^{\infty} (c_j, \varepsilon) e_j' - \sum_{j \in \Lambda} c_j \varepsilon e_j' \| \geq (K')^{-1} \| u^{-1} y_k \sum_{j \in \Lambda} (c_j, \varepsilon) e_j' \| = (uK')^{-1} \| y_k \| \sum_{i=1}^{2^k} e_i e_i' - \sum_{j \in \Lambda} (c_j, \varepsilon) e_j', \]

thus

\[\sigma_{2^{m}}(B', \mathcal{F}) \geq (uK')^{-1} \| y_k \| \inf_{|\Lambda|=2^m} \| \sum_{i=1}^{2^k} e_i e_i' - \sum_{j \in \Lambda} (c_j, \varepsilon) e_j' \|. \quad (42) \]

Again using the unconditionality and \(e'_j = \sum_{i=1}^\infty d_{ji} e_i \) we get

\[\| \sum_{i=1}^{2^k} e_i e_i' - \sum_{j \in \Lambda} (c_j, \varepsilon) e_j' \| = \| \sum_{i=1}^{2^k} (e_i - \sum_{j \in \Lambda} d_{ji} (c_j, \varepsilon)) e_i - \sum_{i=2^k+1}^{\infty} \sum_{j \in \Lambda} d_{ji} (c_j, \varepsilon) e_i \| \geq \]

\[\geq K^{-1} \| \sum_{i=1}^{2^k} (e_i - \sum_{j \in \Lambda} d_{ji} (c_j, \varepsilon)) e_i \|. \quad (43) \]

Now we apply Lemma 1 in the case of \(a_i = \varepsilon_i - \sum_{j \in \Lambda} d_{ji} (c_j, \varepsilon) \) and derive that

\[\| \sum_{i=1}^{2^k} e_i e_i' - \sum_{j \in \Lambda} (c_j, \varepsilon) e_j' \| \geq A^{-1} K^{-2} 2^{-k} \varphi(2^k) \sum_{i=1}^{2^k} | \varepsilon_i - \sum_{j \in \Lambda} d_{ji} (c_j, \varepsilon) |. \]

Observe that \(| \varepsilon_i - \sum_{j \in \Lambda} d_{ji} (c_j, \varepsilon) | \geq 1 - \varepsilon_i \sum_{j \in \Lambda} d_{ji} (c_j, \varepsilon) \), hence by (42) and (43) we have

\[uAK^2 K' \sigma_{2^{m}}(B', \mathcal{F}) \geq | y_k | \varphi(2^k) (1 - 2^{-k}) \sup_{|\Lambda|=2^m} \sum_{i=1}^{2^k} \varepsilon_i d_{ji} (c_j, \varepsilon) = | y_k | \varphi(2^k) (1 - 2^{-k}) \sup_{|\Lambda|=2^m} \sum_{j \in \Lambda} d_{ji} (c_j, \varepsilon) (c_j, \varepsilon). \]

The Schwartz inequality gives

\[\sum_{j \in \Lambda} (c_j, \varepsilon) (c_j, \varepsilon) \leq |\Lambda|^{1/2} \left(\sum_{j \in \Lambda} \| c_j, \varepsilon \|^2 \right)^{1/2} \leq 2^{m/2} \left(\sum_{j=1}^{\infty} \| c_j, \varepsilon \|^2 \right)^{1/2}. \]

Applying the inequality \(E |Y| \leq (E |Y|^2)^{1/2} \), Lemma 6 and Lemma 7, we get
Thus

Taking \(m = k - \tau \), and using (41) we get

We can find suitable \(\tau \) such that

Since \(\tilde{\mathcal{J}} > 0 \) is arbitrary we obtain

This completes the proof when \(M < 1 \) we can find \(x \) such that \(\| x - \mathcal{G}_n(B, x) \| \geq M \).

Mimicking the previous argument we prove that

Since \(M \) is arbitrary, it completes the proof in the case of \(\sigma_{2^n}(B, F) = \infty \).

Proof of Corollary 1. Obviously if \(X \) is \(L_p \) space, then \(B \) is Riesz (for \(p \geq 2 \)) or Bessel (for \(1 \leq p \leq 2 \)) basis. Moreover since \(\varphi(m) \approx m^{1/2} \) (see Section 2 in [9]), the basis \(B \) satisfies the \(\Delta_2 \) condition and thus we can apply Theorem 16. Assume that \(\lim_{n \to \infty} \sigma_{2^n}(B', K) = 0 \). That means for every \(\varepsilon > 0 \) there exists \(N(\varepsilon) \in \mathbb{N} \) such that \(\sigma_{2^n}(B', K) \leq \varepsilon k^{-\alpha}2^{-\beta k} \), for \(k \geq N(\varepsilon) \).

Thus for \(n > N(\varepsilon) + \tau \) we have

Observe that \(\sum_{k=n-\tau}^{\infty} k^{-\alpha}2^{-\beta k} \leq cn^{-\alpha}2^{-\beta n} \), where \(c \) is a universal constant (which depends on \(\alpha, \beta, \tau \) only). Theorem 16 implies that

\[\sigma_l(B, F) \leq \sigma_{2^n}(B, F) \leq c \varepsilon n^{-\alpha}2^{-\beta n}, \] for \(n \geq N(\varepsilon) + \tau, \ l \geq 2^n \),
which is impossible since $\limsup_{n \to \infty} (\log_2 n)^\alpha n^{1/3} \sigma_n(B, F) > 0$.

Remark 9 Using Remark 8 instead of Lemma 7 in the proof of Theorem 16 and then mimicking the argument from Corollary 1 (but for general Banach spaces and greedy basis B such that $\varphi(m) \approx m^{1/3}$) we get Theorem 15.

Remark 10 Results of [9] do not exclude the possibility that for some other unconditional basis B we have $\lim_{m \to \infty} \sigma_m(B, F)/\sigma_m(B, F) = 0$. It was conjectured in [40] that it is impossible.

9. References

Each chapter comprises a separate study on some optimization problem giving both an introductory look into the theory the problem comes from and some new developments invented by author(s). Usually some elementary knowledge is assumed, yet all the required facts are quoted mostly in examples, remarks or theorems.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
