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Abstract

This chapter provides a temporal method for measuring the porosity and the tortuosity
of air-saturated porous materials using experimental reflected waves. The direct prob-
lem of reflection and transmission of acoustic waves by a slab of porous material is
studied. The equivalent fluid model has considered in which the acoustic wave propa-
gates only in the pore-space. Since the acoustic damping in air-saturated porous mate-
rials is important, only the reflected waves by the first interface are taken into account,
and the multiple reflections are neglected. The study of the sensitivity analysis shows
that porosity is much more sensitive than tortuosity to reflection, especially when the
incident angle is less than its critical value, at which the reflection coefficient vanishes.
The inverse problem is solved using experimental data at a different incidence angle in
reflection. Some advantages and perspectives of this method are discussed.

Keywords: porosity, tortuosity, porous material

1. Introduction

Porosity [1–3] is one of the most important parameters for describing the acoustic propagation

in porous materials. This parameter intervenes in the propagation phenomena at all frequen-

cies. Porosity is the relative fraction, by volume, of the air contained within the material. Air-

saturated porous materials [1, 2, 4] as plastic foams, fibrous or granular materials are of great

interest for a wide range of industrial applications. Figure 1 gives an example of air-saturated

porous material commonly used in the sound absorption (passive control). These materials are

frequently used in the automotive and aeronautics industries and in the building trade.

Beranek [3] has developed an apparatus for measuring the porosity of air saturated porous

materials. This device was based on the equation of state for ideal gases at constant temperature

i.e., Boyle’s law. Porosity can be determined by measuring the change in air pressure occurring

with a known change in volume of the chamber containing the sample. In this apparatus, both
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pressure change and volume change are monitored using a U-shaped fluid-filled manometer.

Leonard [6] has given an alternate dynamic method for measuring porosity. Other techniques

using water as the pore-filling fluid, rather than air, are common in geophysical studies [7, 8].

Mercury has been used as the pore-filling fluid in other applications [9]. However, for many

materials, the introduction of liquids into the material is not appropriate. Recently, a similar

device to that of Beranek [3], involving the use of an electronic pressure transducer, was intro-

duced by Champoux et al. [10]. This device can be used to measure very slight changes in

pressure accurately, and the output can be recorded by a computer.

Generally, the most methods used for measuring the porosity cited previously do not use

acoustic waves. Here, we present an ultrasonic method for measuring porosity using ultra-

sonic reflected waves by the porous material. The direct and inverse problem is solved in the

time domain using experimental reflected data. The inverse problem is solved directly in time

domain using the waveforms. The attractive feature of a time domain-based approach [11–16]

is that the analysis is naturally limited by the finite duration of ultrasonic pressures and is

consequently the most appropriate approach for the transient signal.

2. Model

In the acoustics of porous materials, a distinction can be made between two situations

depending on whether the frame is moving or not. In the general case (when the frame is

moving), as for cancellous bone and rock and all porous media saturated by a liquid, the

dynamics of the waves due to the coupling between the solid frame and the fluid are clearly

described by the Biot theory [17, 18]. In air-saturated porous media, as plastic foams or fibrous

materials that are used in sound absorption, the structure is generally motionless and the waves

propagate only in the fluid. This case is described by the model of equivalent fluid, which is a

particular case in the Biot model, in which the interactions between the fluid and the structure

are taken into account in two frequency response factors: the dynamic tortuosity of the medium

Figure 1. Air saturated plastic foam.
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α ωð Þ given by Johnson et al. [4] and the dynamic compressibility of the air included in the

porous material β ωð Þ given by Allard and Champoux [5]. In the frequency domain, these factors

multiply the density of the fluid and its compressibility, respectively, and represent the deviation

from the behavior of the fluid in free space as the frequency increases. In the time domain, they

act as operators, and in the high-frequency approximation, their expressions are given by [11]

~α tð Þ ¼ α
∞

δ tð Þ þ 2

Λ

η

πrf

 !1=2

t�1=2

0

@

1

A, (1)

~β tð Þ ¼ δ tð Þ þ 2 γ� 1ð Þ
Λ

0
η

πPrrf

 !1=2

t�1=2

0

@

1

A: (2)

In these equations, δ tð Þ is the Dirac function, Pr is the Prandtl number, η and rf are fluid

viscosity and fluid density, respectively, and γ is the adiabatic constant. The most important

physical parameters of the model are the medium’s tortuosity α
∞

initially introduced by

Zwikker and Kosten [2] and viscous and the thermal characteristic lengths Λ and Λ
0 intro-

duced by Johnson et al. [4] and Allard and Champoux [5]. In this model, the time convolution

of t�1=2 with a function is interpreted as a semi-derivative operator according to the definition

of the fractional derivative of order ν given in Samko et al. [19]

Dν x tð Þ½ � ¼ 1

Γ �νð Þ

ðt

0

t� uð Þ�ν�1x uð Þdu, (3)

where Γ xð Þ is the Gamma function.

In this framework, the basic equations of our model can be expressed as follows

rf ~α tð Þ∗ ∂vi
∂t

¼ �∇ip and
~β tð Þ
Ka

∗
∂p

∂t
¼ �∇:v, (4)

where ∗ denotes the time convolution operation, p is the acoustic pressure, v is the particle

velocity and Ka is the bulk modulus of the air. The first equation is the Euler equation, the

second is a constitutive equation obtained from the equation of mass conservation associated

with the behavior (or adiabatic) equation.

In the plane (xoz), the constitutive equation (4) can be written as
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(5)
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where vx and vz are the components of particle velocity along axes x and z. In these equations,

the integrals express the fractional derivatives, defined mathematically by convolutions and

describe the dispersive nature of the porous material. They take into account the memory effects

due to the fluid-structure interactions and to the viscous and thermal losses in the medium.

The problem geometry is shown in Figure 2. A homogeneous porous material occupies the

region 0 ≤ x ≤ L. This medium is assumed to be isotropic and to have a rigid frame. A short

sound pulse impinges at oblique incidence on the medium from the left, giving rise to an

acoustic pressure field p x; z; tð Þ and an acoustic velocity field v x; z; tð Þ within the material,

which satisfies the system of Eq. (5) that can be written as:

rfα∞

∂vx x; z; tð Þ

∂t
þ
2rfα∞

Λ

η

rf

 !1=2

D1=2 vx x; z; tð Þ½ � ¼ �
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, (6)
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In the region x ≤ 0, the incident pressure wave is given by

pi x; z; tð Þ ¼ pi t�
x cosθ

c0
�
z sinθ

c0

� �

, (9)

where c0 is the velocity of the free fluid (x ≤ 0); c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

Ka=rf

q

.

In the region 0 ≤ x ≤L, the pressure wave is given by

p x; z; tð Þ ¼ p t�
x cosθ0

c0
�
z sinθ0

c0

� �

, (10)

Figure 2. Problem geometry.

Porosity - Process, Technologies and Applications114



where c0 is the velocity in the porous material (0 ≤ x ≤L), and the refraction angle θ0 is given by

the Descartes-Snell law [27, 28]:

sinθ

c0
¼ sinθ0

c0
(11)

To simplify the system of Eq. (5), we can then use the following property

∂

∂z
¼ � sinθ

c0

∂

∂t
, (12)
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From Eqs. (7) and (13), we obtain the relation
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By using Eqs. (6), (8) and (14), the equation systems (6), (7) and (8) can thus be simplified to
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From Eqs. (15) and (16), we derive the fractional propagation wave equation in the time domain

along the x-axis

∂
2p x; z; tð Þ
∂x2

� 1

c20
α∞ � sin 2θ
� � ∂
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p

Λ
0

� �

D3=2 p x; z; tð Þ½ � ¼ 0, (17)

The solution of the wave Eq. (17) with suitable initial and boundary conditions is by using the

Laplace transform. F is the medium’s Green function [12, 20] given by

F t; kð Þ ¼
0 if 0 ≤ t ≤ k

Ξ tð Þ þ Δ
Ð t�k
0 h t; ξð Þdξ if t ≥ k

(

(18)
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with

Ξ tð Þ ¼ b0

4
ffiffiffiffi
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where h τ; ξð Þ has the following form:
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2
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If the incident sound wave is launched in region x ≤ 0, then the expression of the pressure field

in the region on the left of the material is the sum of the incident and reflected fields

p1 x; t;θð Þ ¼ pi t� x cosθ

c0

� �

þ pr tþ x cosθ

c0

� �

, x < 0: (21)

Here, p1 x; t;θð Þ is the field in the region x < 0, pi and pr denote the incident and reflected fields,

respectively.

The incident and reflected fields are related by the scattering operator (i.e., the reflection

operator) for the material. This is an integral operator represented by

pr x; t;θð Þ ¼
ðt

0

~R τ;θð Þpi t� τþ x cosθ

c0

� �

dτ, (22)

In Eq. (22), the function ~R is the reflection kernel for incidence from the left. Note that the lower

limit of integration in Eq. (22) is set to 0, which is equivalent to assuming that the incident

wavefront impinges on the material at t ¼ 0:

Expression of the reflection-scattering operator taking into account the n-multiple reflections in

the material is given by

~R t;θð Þ ¼ 1� E

1þ E

� �

X

n ≥ 0

1� E

1þ E

� �2n

F t; 2n
L

c

� �

� F t; 2nþ 2ð ÞL
c
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, (23)

with

E ¼
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin 2θ
α∞

q

ffiffiffiffiffiffi

α∞

p
cosθ

, (24)

Generally [21], in air-saturated porous materials, acoustic damping is very important, and the

multiple reflections are thus negligible inside the material. So, by taking into account only
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the first reflections at interfaces x ¼ 0 and x ¼ L, the expression of the reflection operator will

be given by

~R t;θð Þ ¼ r t;θð Þ þℜ t;θð Þ, (25)

with

r t;θð Þ ¼
1� E

1þ E

� �

δ tð Þ and ℜ t;θð Þ ¼ �
4E 1� Eð Þ

1þ Eð Þ3
F t;

2L

c

� �

, (26)

where r t;θð Þ is the instantaneous response of the porous material corresponding to the reflec-

tion contribution at the first interface (x ¼ 0). ℜ t;θð Þ is equivalent to reflection at the interface

x ¼ L, which is the bulk contribution to reflection. The part of the wave corresponding to r t;θð Þ

is not subjected to dispersion but simply multiplied by the factor 1� Eð Þ= 1þ Eð Þ.

The reflection coefficient at the first interface vanishes for a critical angle θc

r t;θð Þ ¼ 0 ) sinθc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α∞ α∞ � ϕ2
� �

α2
∞
� ϕ2

s

:

Figure 3 shows the variation of the reflection coefficient at the first interface r with the incident

angle θ, for a fixed porosity value ϕ ¼ 0:9, and for different values of tortuosity α
∞
¼ 1:99 (solid

line), α∞ ¼ 1:75 (star), α∞ ¼ 1:5 (dashed line), α∞ ¼ 1:24 (dash-dot line) and α∞ ¼ 1 (circle).

Figure 4 shows the variation of rwith the incident angle, for a fixed tortuosity of α
∞
¼ 1:1, and

for different values of porosity ϕ ¼ 0:99 (solid line), ϕ ¼ 0:75 (star), ϕ ¼ 0:50 (dashed line),

ϕ ¼ 0:25 (dash-dot line) and ϕ ¼ 0:01 (circle).

Figure 3. Variation of the reflection coefficient at the first interface r with the incident angle θ, for a fixed porosity value

ϕ ¼ 0:9, and for different values of tortuosity α∞ ¼ 1:99 (solid line), α∞ ¼ 1:75 (star), α∞ ¼ 1:5 (dashed line), α∞ ¼ 1:24

(dash-dot line) and α∞ ¼ 1 (circle).
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When the incident angle is θ < θc, the reflection coefficient decreases slowly with the incident

angle, and when it is θ > θc, the reflection coefficient increases quickly with the angle. It can be

seen also from Figures 2 and 3 that the sensitivity of porosity variation is more important than

the sensitivity of tortuosity on the reflection coefficient at the first interface.

3. Inverse problem

The inverse problem is solved using transmitted waves and an estimation of the tortuosity,

viscous and thermal characteristic length is given. However, the porosity cannot be inverted in

transmission since its sensitivity is low. In this work, we determine porosity and tortuosity by

solving the inverse problem for waves reflected by the first interface and by taking into

account experimental data concerning all measured incident angles (Figure 4). The propaga-

tion of acoustic waves in a slab of porous material in the high-frequency asymptotic domain is

characterized by four parameters: porosity ϕ, tortuosity α
∞
, viscous characteristic length Λ, and

thermal characteristic length Λ0, the values of which are crucial to the behavior of sound waves

in such materials. It is of some importance to work out new experimental methods and

efficient tools for their estimation. The basic inverse problem associated with the slab may be

stated as follows: from the measurement of the signals transmitted and/or reflected outside the

slab, find the values of the medium’s parameters. The inverse problem is to find values of

parameters ϕ, α
∞
, which minimize the function:

U ϕ;α
∞

� �

¼
X

θi

X

ti

pr x;θi; tið Þ � r θi; tið Þ∗pi x;θi; tið Þ
	 
2

, (27)

Figure 4. Variation of the reflection coefficient at the first interface with the incident angle, for a fixed tortuosity value

α
∞
¼ 1:1, and for different values of porosity ϕ ¼ 0:99 (solid line), ϕ ¼ 0:75 (star), ϕ ¼ 0:50 (dashed line), ϕ ¼ 0:25 (dash-

dot line) and ϕ ¼ 0:01 (circle).
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where pr x;θi; tið Þ represents the discrete set of values of the experimental reflected signal for

different incident angles θi, r θi; tið Þ is the reflection coefficient at the first interface, and pi x;θi; tið Þ

is the experimental incident signal. The term r θi; tið Þ∗pi x;θi; tið Þ represents the predicted

reflected signal. The inverse problem is solved numerically by the least-square method.

Let us consider three samples of plastic foam M1, M2, and M3. Their tortuosity and porosity

were measured using classical methods [22–31] (Table 1). We solved the inverse problem for

these samples via waves reflected at the first interface and for different incident angles.

Experiments were performed in air with two broadband Ultran NCT202 transducers with a

190 kHz central frequency in air and a 6 dB bandwidth extending from 150 to 230 kHz. Pulses

of 400 V were provided by a 5052PR panametrics pulser/receiver. An optical goniometer was

used to position the transducers. The received signals were amplified to 90 dB and filtered

above 1 MHz to avoid high-frequency noise. Electronic interference was removed by 1000

acquisition averages. The experimental setup is shown in Figure 5.

Figures 6 and 7 show a variation of the cost function, U, with tortuosity and porosity, for

samples M1, M2, and M3, respectively. The reconstructed values of porosity and tortuosity

corresponding to the positions of the minima of these cost functions are given in Table 2.

Material M1 M2 M3

Tortuosity 1.1 1.1 1.5

Porosity 0.95 0.99 0.86

Table 1. Measured values of porosity and tortuosity by classical methods [22–31].

Figure 5. Experimental set-up of the ultrasonic measurements in reflected mode. PG: pulse generator; HFFPA: high-

frequency filtering-pre-amplifier; DO: digital oscilloscope; C: computer; T: transducer; S: sample.
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Figure 6. Variation of the cost function U with tortuosity for the plastic foams M1, M2, and M3.

Figure 7. Variation of the cost function U with porosity for the plastic foams M1, M2, and M3.

Material M1 M2 M3

Tortuosity 1.12 1.1 1.6

Porosity 0.96 0.99 0.85

Table 2. Reconstructed values of porosity and tortuosity by solving the inverse problem.

Figure 8. Comparison between simulated reflection coefficient at the first interface using reconstructed values of the

porosity and tortuosity (solid line) and experimental data of the reflection coefficient at the first interface (circle) for the

plastic foam M1.
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A comparison is given in Figures 8–10, between simulated reflection coefficient at the first inter-

face using reconstructed values of porosity and tortuosity (solid line) and experimental data of the

reflection coefficient at the first interface (circle) for plastic foams M1, M2, and M3, respectively.

The correspondence between experiment and theory is good, which leads us to conclude that

this method based on the solution of the inverse problem is appropriate for estimating the

porosity and tortuosity of porous materials with a rigid frame. This method is very interesting

comparing the classical one using non-acoustic waves.

Figure 9. Comparison between simulated reflection coefficient at the first interface using reconstructed values of the

porosity and tortuosity (solid line) and experimental data of the reflection coefficient at the first interface (circle) for the

plastic foam M2.

Figure 10. Comparison between simulated reflection coefficient at the first interface using reconstructed values of the

porosity and tortuosity (solid line) and experimental data of the reflection coefficient at the first interface (circle) for the

plastic foam M3.
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4. Conclusion

In this chapter, an inverse determination of porosity and tortuosity is given using experimental

reflected acoustic waves at different incidence angles. The inverse problem is solved numeri-

cally by the least-square method. The obtained values of porosity and tortuosity are close to

those given using classical (non-acoustical) methods. Generally, the tortuosity is inverted easily

using transmitted waves, and this is not the case for porosity because of its weak sensitivity in

transmitted mode. This method is very interesting from its simplicity and constitutes an alter-

native to the usual method involving the use of a porosimeter introduced by Beranek [3] and

improved by Champoux et al. [10] or the other ultrasonic methods based on transmitted mode.

This method is valuable for porous materials having a rigid frame as air-saturated media, in

which the equivalent fluid model is used. However, for liquid-saturated materials as rock or

cancellous bone, this method cannot be used and should be adapted using the general Biot

model [17, 18]. We hope, in the future, to extend this method to porous media with an elastic

frame saturated with viscous fluid, in order to estimate other parameters that play an impor-

tant role in acoustic propagation.
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