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Abstract

This chapter deals with studies of the mechanical properties of samples from long fiber-
reinforced composite structures that would contribute to the optimization of the devel-
oped constructions made of them. First, the basic issues of composite structures reinforced
with long fibers (carbon or glass) and generally of composites with the specification of
parameters that would lead to the optimization of mechanical properties with respect to
the theoretical strength are presented. Further, the possibilities and methods of measure-
ments of composite reinforced with carbon and glass fibers are described. This is followed
by the introduction of analytical models for the description of the transversal isotropic
composite, where these mathematical relations allow the determination of unknown elas-
tic constants and they are also important for the verification of numerical models. Finally, it
is comprehensively outlined the problems of creating a numerical model of advanced
composite fibrous structure for determining the mechanical properties, both through the
description of the continuum, and complex numerical model with a structural configura-
tion enabling approach to allow closer interaction among fibers and matrix. Compared to
the averaged values obtained from experimental samples, numerical simulations show a
similar trend of stress on strain, with results obtained from simulations.

Keywords: FEM, composite structures, testing, mechanical properties, nonlinear
properties

1. Introduction

Studies and analyses of mechanical properties of long fiber-reinforced composites provide

important information for future lightweight constructions. First of all, it is important to

approach the issues and specifics of long fiber-reinforced composite structures to increase the

strength and toughness of the resulting structure. The long fiber-reinforced composite struc-

ture is typically formed from two dominant components: carrier fiber reinforcement and a

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



matrix. Ideal arrangement of the final composite (fiber-matrix connection), due to synergy, the

high specific properties (high strength, stiffness, and toughness) can be achieved, where none

of input components reached. It is that the optimal synergistic effect is characterized by a

known “illogical” rule 2 + 3 = 7, which characterizes the sum of the properties of the individual

input components (fibers + matrix) achieves a higher value of the specific properties of the

newly created structure. In general, the highest specific properties can be achieved if the fibers

are stressed up to the strength limit σ
f
M

�

�

�

F f
!max

with stress transferred with matrix. The matrix

transforms the stress into the fibers, and it also has a significant effect on the bonding with the

fibers. Thus, the matrix is the binder component of the composite, creating the final geometry

of the composite and at the same time protecting the fibers from wear and damage, which

would lead to loss of stability and strength of the resulting composite. The description of the

properties of composite structures reinforced with long fibers due to their potential and

specific characteristics was given by the authors namely Agarwal et al. [1], Guedes [2], Gay

and Gambelin [3], Reifsnider [4], Teply and Reddy [5], Berthelot [6], Gibson [7], or Soden et al.

[8]. The authors agree that long fiber-reinforced composite structures are unique materials

whose mechanical properties cannot be generally described in an analytical or experimental

manner. Theories also differ in mathematical relationships derived for unidirectional compos-

ite structures, let alone complete synthesis of mechanical properties for geometrically complex

structures of frames with multidirectional fibrous arrangement. This is due to the fact that their

properties vary significantly with the type of fibers and a matrix (e.g., physical and mechanical

properties, surface treatment, chemical compositions, binding agents, density, thermal expan-

sion, etc.) because only a slight change forms various combinations with significantly different

properties in mechanical behavior.1 Generally, long fiber-reinforced composite structures can

be considered as inhomogeneous and heterogeneous structures with anisotropic properties in

terms of physical and mechanical behavior. Their heterogeneity is manifested by a large

number of combinations of different variants of the resulting structural materials suitable or

unsuitable for the specific design requirements and load.2 If the strength of the composite has

to be maximized, the specific surface of the fiber-matrix interface must be high and free of

defects. The selection of fiber reinforcement is possible to use a wide range of fibers, whereas

their offer is developed and expanded. For structural applications such as frames for machine

parts and equipment may be used virtually any organic natural fibers (e.g., coconut, cotton,

cellulose fibers, etc.) from a variety of polycrystalline ceramic materials, polymeric fibers, glass,

or carbon fibers. The production technology of these fibers is well described by Bareš [9].

Carbon fibers are industrially manufactured with a diameter of 5–12 μm by various methods

such as carbonization of organic fibers or pyrolysis. It is generally known that carbon can exist

in nature in three forms: diamond, graphite, and glassy (amorphous). Carbon fibers can be

1

This can be mentioned in the example given by Bareš [9]. A simple combination of three homogeneous isotropic light

metals to form ternary cast iron is obtained 82,160 possible variants of alloys, if more six metals are combined, more than

300 million different alloy variants could be obtained. (The composite structure reinforced with long fibers has a similar

behavior, where the change of the matrix, directional arrangement, and type of fiber significantly affect resulting mechan-

ical properties because it leads to qualitatively different structure [10]).
2

Transmission of static stress applied to the composite and transferred with fibers is required excellent consistency of

fibers and matrix; on the contrary, a dynamic impact requires energy absorption by the crack propagation along fibers.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques2



considered as fibers produced at 800–1600�C, and graphite fibers are produced at >2200�C.

However, only fibers obtained from the crystalline form of carbon arranged in a certain

direction (production under tension) have a high elastic modulus and other specific design

parameters such as a lower density, higher surface area, lower thermal conductivity, higher

electrical resistance, and so forth compared to graphite fibers. Glass fibers with diameter of

3.5–20 μm are produced by fast drawing from the melts (the speed reaches up to 400 mmin�1).

The spinning speed is also influenced by the viscosity (50–100 Pa s), the melting temperature,

Figure 1. Example: Low strength of the fiber composite structure due to the poor joint of the fiber with matrix.

Figure 2. Cross section of composite sample with long fibers (upper), detail: fiber-matrix (bottom left), detail: phase

interface (bottom right).
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and, of course, the chemical composition of the glass. The matrix, which affects the properties

and usability of the resulting composite, has been epoxy used for both the testing sample and

design of the developed composite construction. The composite production may result in

imperfect bonding of the matrix fibers (e.g., low wettability of the fiber reinforcement in the

matrix, bubble formation, etc.), which leads in mechanical defects in the composite structure,

which often over grow into critical defects with a significant reduction in strength (Figure 1).

The resulting strength of the composite structure affects mechanical properties of the selected

fiber reinforcement and matrix, which are characterized by mechanical parameters, for exam-

ple, the elastic modulus, Poisson number, or other parameters such as the creep and fracture

properties of the individual components. In terms of strength, a significant role (if not most)

plays the interfaces among the fibers and the matrix, which is shown in Figure 2. This is due to

the fact that the characteristic properties of the interface create a mechanism that apparently

causes the synergistic effect that provides their unique mechanical properties to composite

structures. Although a number of theories have been compiled, the synergistic mechanism of

the phase interface is not yet clear.

2. Measurement of mechanical properties of composite samples with long

fiber reinforcing

The determination of unknown parameters of composite materials has to be performed by

experimental measurements. These parameters represent input data for numerical simula-

tions. For a complete description of the properties, it is important to make measurements on

both the fiber reinforcement (tow) and the matrix as well as on the resulting long fiber-

reinforced composite structures (matrix-bonded fibers). Measurement of the mechanical prop-

erties of the samples is carried out according to standard laboratory tests, which are divided

according to the time course of the applied load. Tests can be divided into static and dynamic.

It can thus perform the tensile test at a constant or cyclic loading of the sample, three-point

bending strength, and Charpy impact test, as shown in Figure 3. The samples may be formed

in the “dog bone” shape or, optionally, in the form of a rectangle of defined length L, width b,

and thickness h,3 whereas they can be used for short- or long-term test.

The characteristic physical properties of samples of long fiber-reinforced composites are

influenced by weight and volume ratios of individual input components (fiber reinforcement

and matrices) that ultimately affect design parameters (mechanical properties and weight of

the structure). The mass and volume amounts of the fibers and the matrix in the composite

structure sample can be defined according to the following relationships (1–5).

mc
¼ mf

þmm (1)

Mf
¼

mf

mc
, Mm

¼
mm

mc
(2)

3

Note: geometrical dimensions h, b, L can be also smaller, but it can lead to a problem with clamping of the sample to the

jaws of dynamometer.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques4



Mf
¼ 1�Mm (3)

V f
¼

vf

vc
, Vm

¼
vm

vc
(4)

V f
¼ 1� Vm (5)

where mc is the total weight of composite, mf , mm is the weight of fibers and matrix, Mf ,Mm is

the weight amount of fibers and matrix, V f , Vm is the volume amount of fibers and matrix, vc is

the total volume of composite, and vf ,vm is the volume of fibers and matrix. Volume amount of

fibers V f and matrix Vm can be also expressed with the help of the fiber density r
f and matrix

density r
m, which is applied in Eq. (6). The total density r

c
¼ mc=vc can then be expressed as

the sum of components, that is, the reinforcement and matrix (7). The characteristic thickness

of the composite structure can be expressed according to the relationship (8).

V f
¼

Mf =rf

Mf =rf þMm=rm
, Mf

¼
V f

r
f

V f
rf þ Vm

rm
(6)

r
c
¼ r

fV f
þ r

mVm (7)

h ¼ mf 1

rf
þ

1

rm
�

1�Mf

Mf

� �� �

(8)

Gay and Hoa [10] reported that winding of the fibers onto-shaped geometry may achieve the

Figure 3. Determination of mechanical properties of composite samples: (a) tensile test, (b) three-point bending test, and

(c) Charpy impact test.

FEM Analysis of Mechanical and Structural Properties of Long Fiber-Reinforced Composites
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volume fraction of fibers in the composite maximally 55–80% of the total volume of the

composite structure. Ideally, these values can be increased by precisely placing fiber tows

side by side. A limit state of volume fiber fraction, that is, 100%, cannot be achieved due to

the necessity of the presence of the matrix. Also by perfectly precise laying of fiber strands, the

strands will always have a certain fill value that will never be equal to 1 in the geometric

configuration. Perfectly precise laying of fiber tows does not provide 100% of volume filling

due to fiber cross section. However, it should be noted that the optimum ratio of fiber rein-

forcement is in the range of the synergistic effect, that is, V f
≈ 0:4÷0:65:

The influence of selected physical parameters on the geometric parameter h of some tested

samples from long fiber-reinforced composite structures is shown in Table 1. These param-

eters can then be used to establish numerical models. Other input parameters that are

required for the numerical model have to be obtained by measuring the test samples. Other

input parameters that are necessary for the numerical model are obtained by testing com-

posite samples.

3. Analytical models for the study of mechanical properties of long

fiber-reinforced composites

Numerical modeling of the mechanical properties of the composite is a very difficult problem

because there are many unknown parameters that come into model simulations, which are

discussed in this chapter. Therefore, some parameters need to be properly verified with

analytical models. It is assumed that though mechanical properties of the sample are formed

from uniformly spaced transversely isotropic structure, its theoretical description is difficult, as

shown in Figure 4.

The model of the transverse isotropic fiber composite structure can be defined by

six independent elastic constants through the constitutive Eq. (9). The mechanical prop-

erties, such as composite structures, are also affected by the volume of fibers V f and

matrix Vm
:

Name of fibers mf ∗

[g m�2]

mm ∗

[g m�2]
Mf

[%]

MV

[%]

V f

[%]

Vm

[%]
r
f

[g cm�3]

r
m

[g cm�3]

h

[mm]

GF 1600 tex/PUR

Huntsman

560 600 48 52 30 70 2.45 1.1 1.2

CF prepreg HEXPLY-

M10R

150 91.96 62 38 52 48 1.8 1.2 0.22

CF 24K/PUR Huntsman 213 747 22 78 15 85 1.8 1.1 1.2

Note: mf ∗, mm ∗ represent area weight, mc ∗ is the total weight of composite.

Table 1. Examples of physical and geometrical parameters of the selected samples of composite structures reinforced

with long fibers.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques6
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=

>

>

>

>

>

>
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>

;

(9)

where σii, εii are the principal stresses and strains in the transversal isotropic composite in

individual directions of the coordinate system x1, x2, x3, whereas σ11 > σ22 ¼ σ33,

ε11 6¼ ε22 ¼ ε33, and τ12, τ23 ¼ τ13 are the shear stresses in the given planes, γ12,γ23 ¼ γ13

expresses the shear to individual planes, E11, E22 ¼ E33 expresses the longitudinal and trans-

verse modulus of elasticity, G12, G23 is the shear modulus in the plane of the principal load

direction and in a plane perpendicular to the principal load direction, ν12 is the Poisson ratio in

the principal direction of the load, and ν23 is the Poisson ratio in a plane perpendicular to the

principal load direction.

For the corresponding model, the interconnection of individual components A, B, C must be

included (see Figure 2) to create a multiphase system approaching the behavior of composite

structures. Therefore, the problem of modeling a composite can be treated as a continuum (a

solid model without a geometric arrangement of individual components) or by creating a

completely new model with structural parameters, that is, the individual components will be

included in the structured unit. The problem of analytical modeling of mechanical properties

of general fiber structures through a structural unit is described, among others, by Wyk for the

study of interfiber contacts [11] and by Neckář [12]. However, the description of the mechan-

ical properties of the fibrous composite structure is more difficult and has not yet been

properly described. This is probably due to the fact that knowledge of the deformation mech-

anism and damage process is more important for understanding the mechanical properties

than the knowledge of the absolute strength that cannot be determined with sufficient preci-

sion. This is due to the fact that it is not possible to comprehensively construct a general

energy theory (to derive empirical relationships for deformation work) based on statistical

Figure 4. Model of idealized transverse isotropic fiber composite structure.

FEM Analysis of Mechanical and Structural Properties of Long Fiber-Reinforced Composites
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characteristics, as can be done with very good accuracy for other anisotropic structures (Petrů

et al. [13, 14]). The problem is that the individual components composing the composite

structure cannot be reliably quantified even with homogeneous isotropic materials (matrices,

glass fibers), let alone anisotropic structures such as carbon fibers (the theoretical value

presented in the data sheet is different than value determined experimentally). Therefore, the

main problems are related to the complexity of the description and modeling of deformation

and the consequent character of the stress (stress concentration under loading). This is mainly

due to technological influences in composite production (influence of temperature, humidity,

and initial microporosity) that cannot be predicted for model simulations, and it is also

relatively difficult to experimentally identify these parameters.4

Over time, there have been widespread analytical relationships to form the approach to obtain

all elastic constants that can be used by these models, which are given as follows:

• phenomenological models.

• semiempirical models.

• homogenized models.

3.1. Phenomenological models

In the past, phenomenological models have been created as the primary mathematical deriva-

tion of the mechanical properties of transversally isotropic fibrous composite structures but

can be used well today. Such models include the Voigt and Reuss models. These are models

using the mixing rule (mixing of the individual input components, i.e., fibers and matrices),

while the Voigt model is very well usable for determining the elastic constants E11,ν12 defined

by relationships (10 and 11) and is characterized by isotropic strain. The Reuss model is usable

for determination E22, G12 defined by relationships (12 and 13) and unlike the Voigt model is

characterized by isotropic stress.

dσ11
dε11

¼ V f dσ
f

dεf
þ Vm dσm

dεm
) E11 ¼ V fE

f
11 þ VmEm (10)

ν12 ¼ V f
ν
f
12 þ Vm

ν
m (11)

E22 ¼
E
f
22E

m

EmV f
þ E

f
22E

m
(12)

G12 ¼
G

f
12G

m

GmV f
þ G

f
12E

m
(13)

4

In the advanced model, simulations can be assembled material models with any parameters, including the statistical

parameters, which describe technological production factors, for example, through the theory of random fields as defined

by Bittnar and Šejnoha [15]. The problem lies in the identification of the effects and the subsequent statistical evaluation.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques8



where E
f
11, E

f
22 are the longitudinal and transverse modulus of the fiber elasticity, G

f
12 is a fiber

shear module, and ν12f is the Poisson ratio in the plane of the principal direction of the load of

the fiber.

3.2. Semiempirical models

Semiempirical models were created later than phenomenological models, and based on the

new information and knowledge, they are still being updated. Their development led in

particular to the further expansion of the Voigt and Reuss models because these models have

been modified by correction factors to specify the resulting elastic constants for the given types

of input components. This category includes models that are implemented in certain modifi-

cations in finite element softwares such as the Halpin-Tsai model or the Chamis model.

• Modified model according to the mixing rule

Modified model according to the mixing rule is derived from Voigt [16] and Reuss [17], and for

elastic constants, E11, ν12 is defined according to Eqs. (10 and 11). Modification occurs with

constants E22, G12, because the resulting difference between the results obtained by the mea-

surements and the relationships (12–13) is usually noticeable. Therefore, it was necessary to

make a correction for E22, G12 according to Eqs. (14 and 15).

1

E22
¼

ζ
fV f

E
f
22

þ
ζ
mVm

Em (14)

1

G12
¼

V f

G
f

12

þ ζ
0
Vm

Gm

V f þ ζ
0

Vm
(15)

where ζf , ζm are correction factors,5 according to Younes et al. [18].

• Halpin-Tsai model

This is a model that is implemented in a number of numerical programs by using finite

element method (FEM). This model is developed as a semiempirical model [19] with correction

of E22, G12: Its semiempirical derivation (16–17) using correction factors ζ, ξ has a very good

agreement with experiments.

E22 ¼ Em 1þ ξζV f

1� ζV f

� �

(16)

G12 ¼ Gm 1þ ξζV f

1� ζV f

� �

(17)

5

Correction factors ζ
f , ζm can be express as ζ

f ¼
E
f

11
V fþ 1�ν

f

12
ν
f

21ð ÞEmþνmν
f

21
E
f

11½ �Vm

E
f

11
V fþEmVm

, ζm ¼
EmVmþ 1�νmνmð ÞE

f

11
� 1�νmν

f

12ð ÞEm½ �V f

E
f

11
V fþEmVm

, ζ
0

is a

variable function 0 < ζ
0

< 1, whereas preferred is ζ
0

≈ 0:5� 0:6:

FEM Analysis of Mechanical and Structural Properties of Long Fiber-Reinforced Composites
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where ζ correction factor, for which it is valid ζ ¼
Mf =Mm

�1

Mf =Mm
þξ
, ξ is constant, which is for E22 equal

to 1, and for G12 is equal to 2,M ¼ E or G in the case of an expression E22 and G12 according to

Eqs. (12–13).

• Chamis model

This is another semiempirical model [20], which was unlike previous models developed not

only for independent elastic constants E11, E22,G12,ν12 but also for G23: The determination of

E11, ν12 is again based on Voigt and Reusse according to Eqs. (10–11). The Chamis model for

calculating other elastic constants introduces a square root of the volume of fiber
ffiffiffiffiffiffi

V f
p

, which

has in Eqs. (18–20), the meaning of fiber incompressibility, which is in line with principle of

mass conservation.

E22 ¼
Em

1�
ffiffiffiffiffiffi

V f
p

1� Em=E
f
22

� 	 (18)

G12 ¼
Gm

1�
ffiffiffiffiffiffi

V f
p

1� Gm=G
f
12

� 	 (19)

G23 ¼
Gm

1�
ffiffiffiffiffiffi

V f
p

1� Gm=G
f
23

� 	 (20)

where G
f
23 is the shear modulus of the fiber elasticity in a plane perpendicular to the principle

direction of loading.

3.3. Homogenized models

Homogenized models are generalized models that can be used to determine very accurate

values of elastic constants for developed composite structures reinforced by longitudinally laid

fibers. Such models include, for example, the Mori-Tanaka model [21], a consistent model

created by Hill [22] or the Bridging model. Their applicability compared to phenomenological

or semiempirical models largely limits the more difficult determination of all constants enter-

ing to homogenized models. An example is the Eshelby toughness tensor that can be used for

inclusion, which is introduced in both the Mori-Tanaka model and the consistent model. In

view of this, from homogenized models, the Brindling model can be used to determine the

elastic constants.

• Bridging model

This is a model that is developed to predict the stiffness and strength of transverse isotropic

fiber composites. The elastic properties are for the elastic modulus E11, ν12 the same as for Voigt

and Reusse models (10–11). Elastic constants E22, G12, G23 can be expressed using the Bridging

model (21–23).

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques10



E22 ¼
V f þ Vma11

 �

� V f þ Vma22

 �

V f þ Vma11

 �

V fS
f
11 þ Vma22S

m
22

� 	

þ V fVm Sm21 � S
f
21

� 	

a12
(21)

G12 ¼
V f þ Vma66

 �

� G
f
12G

m

V fGm þ Vma66G
f
12

(22)

G23 ¼
1=2 V f þ Vma44


 �

V f S
f
22 � S

f
23

� 	

þ Vma44 Sm22 � Sm23

 �

(23)

where aii, S
f ,m
ii are thematrix components, which relate to fiber andmatrix ratios in the composite

structure as reported by Huang [23, 24], where a11 ¼ Em=E
f
22, a22 ¼ a44 ¼ 0, 35þ 1�ð 0; 35Þ

Em=E
f
22, a66 ¼ 0, 3þ 1� 0; 3ð Þ 0; 5Em= 1þ ν

mð �=G
f
12, a12 ¼ S

f
12 � Sm12

� 	

a11 � a22ð Þ= S
f
11 � Sm11

� 	

,
h

S
f ,m
11 ¼ 1=E

f ,m
11 , S

f ,m
22 ¼ 1=E

f ,m
22 S

f ,m
12 ¼ S

f ,m
21 ¼ �ν

f ,m
12 =E

f ,m
11 , S

f ,m
23 ¼ S

f ,m
32 ¼ � ν

f ,m
23 =E

f ,m
22 .

4. Numerical models for the study of mechanical properties of long fiber-

reinforced composites

Measurement and analytical models of long fiber-reinforced composite structures designed to

study mechanical properties are generally able to provide only limited information. This is due

to the fact that the measurements are limited by the possibilities of positioning of the sensors

and also by the fact that some properties cannot be measured well (e.g., the distribution of the

main stress and deformation in the composite structure). The knowledge of the distribution of

the main stresses and deformations in the structure is important for assessing how the struc-

ture is changed and under which stress. In this case, the corresponding model simulation using

numeric methods represents a significant support for the development. Very suitable is to

build model simulation in finite element method (FEM), but other numerical methods, such

as discrete element (DEM), boundary element (BEM) or finite volume method (FVM) method,

are also available. The mechanical loading of composite causes many different processes in the

inner structure that varies with the actual deformation. Therefore, it is necessary to simplify or

neglect some characteristic features in modeling of such structures. A major problem of

mechanical properties modeling of composite structures is in particular the description of the

principal stresses in short time Δt ¼ tiþ1 � ti. The solution of problem of composite with

boundary conditions under tensile loading lies not only in the specification of the correct

boundary conditions and material properties but also in the design of the proposed finite

element mesh. The FEM programs are currently very sophisticated and allow the solution of

a continuous problem transform into a final solution where the corresponding geometric

simple subareas (finite elements) can be designed in the preprocessor. Let Ω⊂ℜ
3 is the

continuous area of the three-dimensional space in which the problem is solved. Its borders

FEM Analysis of Mechanical and Structural Properties of Long Fiber-Reinforced Composites
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will be denoted Γ, where Γis Lipschitz border and let the approximation of the selected base

functions is derived above each finite element of length lelement, because any continuous func-

tion can be represented by a linear combination of algebraic polynomials converging to a

continuous solution, that is, limlelement!0 ! 1: Thus, the FEM method can be understood as a

special type of variation method by using the mathematical description of the problem solu-

tion. The current commercial software and FEM programs (e.g., Ansys, Abaqus, Permas,

LS-Dyna, Marc, PAM CRASH) allow to assemble and subsequently solve a series of problems

with nonlinear materials not only with elastic but also plastic behavior corresponding to the

properties of the long fiber-reinforced composite.

4.1. FEM simulation of mechanical properties of long fiber-reinforced composite

Model simulations in FEM were performed for different combinations of reinforcement

arrangements of long fiber-reinforced composites, which are important for comparison with

experiments and analytical relationships. This gives the material properties for numerical

simulation of the strength characteristics of whole frames.

This chapter describes the creation of two numerical models and their comparison:

(I) continuum model

(II) extended continuous model with structural unit

The simulations were performed for a complete assessment of the mechanical properties

σ11, σ22, ε11, ε22,γ12,γ23 and elastic constants E11, E22, G12, G23, ν12, ν23, whereas also informa-

tion explaining the shape changes of the samples observed especially during tensile stress.

Model simulations were performed in the following steps:

• creating two model simulations of the long fiber-reinforced composite,

• creating the corresponding mesh of finite elements of the computational model in the

preprocessor,

• defining the corresponding initial and boundary conditions,

• assembling a material model of the long fiber-reinforced composite,

• the evaluation and comparison of model simulation results in postprocessor.

4.1.1. Assembling of continuum of the long fiber-reinforced composite model

The FEM model was created in the concept of coherent continuum consisting of a surface

geometry corresponding to the test sample with length L = 100 mm, width b = 20 mm, and

thickness h = 1.7 mm. The finite element mesh of the numerical model was created from SHELL

elements (2D elements) with a constant element size of 2 mm. The boundary conditions

affecting the magnitude of the displacements and stress can be defined in two ways, that is,

the boundary conditions of the first and second types. The first way is to determine the

displacement and stress distributions if force conditions are known, that is, volume forces,

surface forces, and nodal loads. The other way is to determine the displacement and tension

distribution if the geometric conditions are known, that is, the size of node displacement, the
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deformations, and so on. Both ways can be also combined. It is mixed boundary conditions, as

shown by Li [25]. Boundary and initial conditions for the model were made by the boundary

conditions of the second type. One side of the sample was fixed against the displacement and

rotation of nodes Ui ¼ Ri ¼ 0 in all directions (layout), and the opposite side of the edge of the

sample was fixed identically; only in X direction, the movement was allowed, whereas

Ux ¼ 1 mm that corresponds to the deformation εx ¼ 1 %. The strain rate was 2 mm.min�1.

The boundary conditions are shown in Figure 5.

4.1.2. Assembling of extended continuous composite model of long fiber-reinforced composite

The second numerical FEM model, which was created in the concept of structure unit, is

formed from three components: fiber matrix—the interfacial interface, where the microscopic

dimensions of such a model are closer to the more real composite. Such a model can be created

from a structural unit with the 1, 2,…, n fibers, wherein the volume geometric configuration

(e.g., structural unit is a cube, cuboid, sphere) can affect the volumetric quantity of fibers and a

matrix V f , Vm, as shown by Neckář [12]. The change in volume ratio V f can be given on the

example of the structural unit of the cuboid, which is shown in the section in Figure 6. The

structural unit consists of six fibers represented by circles with the same spacing mi, which are

Figure 5. Continuum FEM model of the composite reinforced with long fibers with defined boundary and initial

conditions.

Figure 6. The influence of fiber spacing in the structural unit on V f fiber volume ratio.
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bounded by a matrix (rectangle). By changing of the spacing can then be increased or

decreased volume ratio of fibers V f
: The finite element mesh of the numerical model was

created from a combination of following elements: BRICK elements (3D elements) with a

designed element size of 0.0002 mm defined for fibers and matrix (Figure 7).

It will be assumed that E11 ¼
σ11
ε11
, E22 ¼

σ22
ε22
, G12 ¼

τ12
γ12
, G23 ¼

τ23

γ23
.

The problem lies in joining of fibers with the matrix because the interconnections form an

interphase. The structural FEM model assembling presents a problem of the determination of

appropriate boundary conditions, which is important in terms of accuracy and model verifica-

tion. Incorrect design may result in concentrators and singularities of stress. The boundary

conditions are created by the second type (geometric boundary conditions) as follows: the

perimeter surfaces of the model perpendicular to the plane of the stretching direction have

defined symmetry conditions on one side (symmetry in axis y and z) and on the opposite side,

the boundary conditions are not prescribed. On surfaces in the plane of the stretch direction, that

is, in the direction of the X axis, the displacements and rotations were not allowedUi ¼ Ri ¼ 0 in

all directions. On the opposite surface of the specimen, the condition was the same, only

displacement in the stretching direction was allowed. The displacement was defined constantly

to the maximum strain 1%, that is, Ux ¼ k:j
εx¼1%, k: ¼ const:, with strain rate 2 mm min�1.

Boundary conditions are shown in Figure 8 and Table 2. The material properties applied in both

FEM models (I. Continuum Model and the II. Continuum Model with the Structure Unit) are

based on the generally known values reported by fiber and matrix manufacturers. The fiber and

epoxy matrix parameters are listed in Table 3. The results of both numerical simulations have

exhibited approximately the same stress at the defined strain εi ¼ 1% under tensile load in

applied direction for a given fiber reinforcement (carbon or glass). The resulting dependence

of force on the displacement of the samples obtained from the models showed an approximately

linear course, both for carbon and glass fiber-reinforced composite. Figure 9 shows the tensile

test for volume ratio V f ¼ 0:3, where carbon fiber-reinforced composite with the epoxy matrix

Figure 7. Structural FEM model of a composite reinforced with long fibers.
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exhibits approximately 2.2 times higher force response than the glass fiber-reinforced composite

with epoxy matrix.

The obtained results shown in Figures 10 and 11 can be stated that the continuous model (FE

model I) has an approximately steady monotonic course manifested not only in continuous

Figure 8. The boundary conditions of the structural FE model of the composite structure reinforced with long fibers.

Planes in axis x Planes in axis y Planes in axis z

þx �x þy �y þz �z

E11,μ12 Ux ¼ k:j
εx¼1% Ui, Ri ¼ 0 Uy, Rz , Rx ¼ 0 — Uz , Rx, Ry ¼ 0 —

E22,μ23 Ux, Ry, Rz ¼ 0 — Uy ¼ k:
�

�

εy¼1%
Ui, Ri ¼ 0 Uz , Rx, Ry ¼ 0 —

G12 Uy ¼ k:
�

�

εy¼1%
Uz ¼ 0 Uy ¼ 0 Uz ¼ 0 Ux ¼ 0

Uz ¼ 0

Ux ¼ 0

Uz ¼ 0

Uz ¼ 0 Uz ¼ 0

G23 Ux ¼ 0 Ux ¼ 0 Ux ¼ 0

Uz ¼ 0

Ux ¼ 0

Uz ¼ 0
Uy ¼ k:

�

�

εy¼1%

Ux ¼ 0

Ux ¼ 0

Uy ¼ 0

Table 2. FEM model boundary conditions for obtaining elastic constants.

Material Density

[kg m�3]

Modulus of elasticity

[GPa]

Shear module

[GPa]

Poisson’s ratio [�] Tensile strength

[GPa]

Elongation

[%]

E
f ,m
11 E

f ,m
22 G

f ,m
12 G

f ,m
23 ν

f ,m
12 ν

f ,m
23

Carbon fibers 1750 � 150 230 15 24 5.4 0.279 0.49 2.3 � 1.2 1.9 � 0.6

Glass fibers 2370 � 230 72.4 72.4 28.7 28.7 0.22 0.22 1.06 � 0.65 4.8 � 0.7

Epoxy matrix 1150 � 370 3.573 3.573 1.31 1.31 0.345 0.345 0.067 � 0.033 3.6

Table 3. Material and mechanical properties of individual constituent of composite.
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distribution of deformation (Figure 12 above) but also in uniform distribution of the principal

stress σI ¼ σ11 acting in the load direction (Figure 12 center).

Due to the simplicity of the FEM model I, it appears to be very suitable for determining the

mechanical properties of composite structures and their optimization. However, such a

model does not provide information about strain and stress between the fibers and the

matrix, let alone the interphase. The continuous model with the structural unit (FEM model

II) is significantly more complex, and for some elastic constants, its resultant course is not

monotone (G23, ν23); in other words, the resulting dependency is not stable and may not be

accurate enough but more complex in terms of results. FEM model II allows to approximate

the layout distribution of the structure unit in the loading direction (Z axis) as shown in

Figure 12 (left) and also the principal stress distribution. The principal stress can be deter-

mined in isosurfaces or in sequential sections (Figure 12 right), which allow to analyze the

stress distribution between the fibers and the matrix including the interphase. By comparing

the maximum values of the stress of 189.1 and 190.9 MPa at same strain ε11 ¼ 1% and with

the volume ratio V f
¼ 0:5 can be stated that the models have significant agreement. This is

affected not only by the same material parameters and boundary conditions but also appro-

priately selected types of elements of the finite element mesh as discussed earlier. FEM

model II of the composite structure reinforced with longitudinal fibers with the epoxy

matrix is more complex, and the time of the calculation is larger than the FEM model I.

Figure 9. Comparison of experiments and FEM models: Dependence of applied force on sample strain.
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However, it must be added that the FEMmodel II shows valuable scientific knowledge of the

approximate distribution of the maximum stress between the fibers and the matrix, which is

the largest in the interphase (Figure 13 left). This confirms the theoretical assumption of the

system mechanism (fiber-matrix interphase), where the highest stress transmits newly cre-

ated component, that is, the interphase, which causes the synergic effect of the resultant

construction of the composite structure. Figure 13 also shows the information that FEM

model II shows a nonuniform maximum stress in the composite structure (unlike the

FEM model I) and also shows that maximum stress is concentrated only on two fibers

(instead of six in the structural unit) of the structural unit. It will reduce the maximum

synergic effect that theoretically in the composite structure can occur. The distribution of

the interphase in the numerical model and in the real measurement is shown in Figure 13. It

is necessary to add that from the analyses carried out by measurements on real samples was

in all cases evident that the identification of the interphase is very complicated. Due to the

Figure 10. Dependence of modulus G23 (left above), ν12 (left below), ν23(right) on Vf of transversally isotropic composites

with epoxy matrix and carbon fibers and glass fibers.
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unidentifiable technological process, interphase (third component) could not be created.

Also, it is problem to identify and measure the interphase that is important both for verifying

of numerical models and for a statistical evaluation how many fibers are involved in syner-

gistic effect.

Figure 11. Dependence of modulus E11, E22, G12 on Vf of transversally isotropic composites with epoxy matrix and

carbon fibers (left) and glass fibers (right).
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Figure 12. Distribution of deformation (above) and principal stress in the loading direction (center) of the FEMmodel I of

long fiber-reinforced composite with epoxy matrix. The resulting distribution of axial strain (below left) and the principal

stress acting in the loading direction (below right) and the FEM model II of composite reinforced with long carbon fiber

with epoxy matrix.

Figure 13. Distribution of principal stress in direction of loading with maximal stress in interphase (left), real sample with

visible interphase (right).
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5. Conclusion

In this chapter, analyses and numerical simulations of mechanical properties of samples from

composite structures were presented. Several studies and experiments have been carried out

on samples reinforced with carbon and glass fibers, and mechanical properties allow them to

form structural reinforcements of composite materials. Further, analytical models with mathe-

matical relationships (e.g., Voigt, Reuss or Chamis model) allow to determine the unknown

elastic constants E11, E22, G12, G23, ν12, ν23 of the resulting composite structure. This is followed

by a more extensive description of the creation of a numerical model of a composite fiber

structure pattern for determining mechanical properties, both through the description of a

general continuum and a more complex numerical model with a structural arrangement to

allow closer interaction of the fiber and the matrix. From the numerical models, the stress and

strain distribution can be determined over a given time interval under chosen packing density

V f as well as the elastic constants. The course of elastic constants has to be compared in some

cases only with analytical models because unknown constants cannot be appropriately mea-

sured. In summary, the I. continuous model is more user-friendly for numerical simulation and

that is suitable for describing the principal stresses, but it does not allow to analyze and study

the composite on microlevel. Thus, it does not allow the distribution of the stress between the

fiber and the matrix (interphase). This can be done with more complex II. extended continuous

model with a structural unit. The results of numerical models establish valuable knowledge

and information, including the determination of elastic constants for a particular specific

composite design. These results can be used for modeling of large samples and complicated

geometries to optimize the design solution.
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