We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,100
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

Proton exchange membrane (PEM) fuel cells revive a significant state in the energy industry and others. Enhancement fuel cell design will solve many problems for the energy issues. However, some issues are waiting to be solved. Solving issues of the fuel cells will lead to enhance other new technologies. Thus, enhancement of alternative technologies can reply to human poverty. As a result, fuel cells and types were discovered since in the 1970s, institutions, scientists and industries executed many enhancements. These enhancements involve proton exchange membrane (PEM) and other fuel cells.

These developments have not finished yet because of some known issues. NASA and similar organizations provide support to fuel cells with the contribution of several organizations in Europe and the World. Parallel to targeted efforts aimed at solving fuel cell durability, energy and wastewater.

This book intends to provide the reader with a comprehensive overview of the fuel cells for an alternative energy results in the enhancement of the fuel cells as well as its use by finding solutions to these problems.

2. Brief of PEM fuel cell

Prior to the PEM fuel cell book chapters, brief technical information of PEM fuel cell has been given in this chapter. In addition, it is necessary to explain the working principle by defining what the PEM fuel cell means.
The hydrogen activated to form the proton ion with the catalyst is injected in the Proton exchange membrane fuel cell (PEMFC). When the electron is forced to flow out, the proton passes through the membrane and produces electric energy. The electron interferes with the oxygen as the electron returns back to the cathode. The proton ion turns into water. Figure 1 shows chemical reactions in every electrode [1, 2].

The reaction of anode can be activated in Eq. 1 as below:

$$H_2 (\text{gas}) \rightarrow 2H^+ + 2e^-$$  \hspace{1cm} (1)

The reaction of cathode can be activated in Eq. 2 as below:

$$\frac{1}{2}O_2 (\text{gas}) + 2H^+ + 2e^- \rightarrow H_2O \text{ (litre)}$$ \hspace{1cm} (2)

Overall the reaction can be determined in Eq. 3 as below:

$$H_2 \text{ (gas)} + \frac{1}{2}O_2 \text{ (gas)} \rightarrow H_2O \text{ (litre)}$$ \hspace{1cm} (3)

Furthermore, PEMFC’s advantages and disadvantages should be figured out according to the literature. PEM fuel cell’s advantages are mentioned such as the heat and water waste management, the reaction of electrode kinetics, a power with high density, an alternative catalyst and a low study temperature [3–9].

Proton exchange membrane fuel cell’s disadvantages are also mentioned such as a very high sensitivity, too expensive material, a gas diffusion layer (GDL) and flow field layer, catalyst issue, degradation and difficulties of production of membrane electrode assembly (MEA) [2–4, 10–12].

PEMFC’s advantages and disadvantages should be known very well because of enhancement of alternative energy resources.

Figure 1. A general schematic drawn of PEMFC [1, 2].
In addition, a mass transport and water management is a very significant issue to be solved [13–16]. When mass transport and water management issues are solved, PEMFC will become an alternative energy resource in the future.

3. Conclusion

Alternative energy options have gained importance owing to the depletion of fossil fuels. These options require considerable experimental and prototyping efforts for realizing new energy resources. The enhancement of modeling and simulation of PEMFC are invented to find new alternative remedies. Therefore, PEM fuel cells might be investigated for enhancements of PEM fuel cell modeling and simulations. PEM fuel cell voltage, current, temperature, pressure, thickness and other parameters depend on the experimental run time. PEMFC with anodic or cathodic plates, which can be produced as a part of the cell’s membrane electrode assembly (MEA), can take O₂ gas directly from the air by natural convection.

Its cathodic or anodic plates determine the performance of PEMFC. Due to these similar experiment study measurements, the effects of hydrogen feeding and performance-based optimizations were figured out by optimization of experimental works. The observed voltage, temperature, pressure, layer, current and other parameters are characterized all of similar experimental works. This study presents performance and efficiency enhancement methods for PEM fuel cells and developments related to the management of waste water in the fuel cell.

This book poses proton exchange membrane fuel cell and technology in terms of enhancement with new technologies. The main idea of this study is to scrutinize the performance efficiency and enhancement of modeling and simulations of fuel cells. Besides, the research of fuel cell performance can figure out many critical issues for an alternative resource of energy. Furthermore, compared to all types of fuel cells, advantage and disadvantage aspects of PEMFCs are also investigated. This book may be a model for future similar work because of the durability of PEM fuel cell, by discussing the energy production, waste water problems and the propose of solution.

Author details

Tolga Taner

Address all correspondence to: tolgataner@aksaray.edu.tr

Department of Motor Vehicles and Transportation Technology, Aksaray University, Turkey

References


