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1. Introduction     
 

1.1 Adaptive Filtering Review 

There are a number of possible degradations that can be found in a speech recording and 
that can affect its quality. On one hand, the signal arriving the microphone usually 
incorporates multiple sources: the desired signal plus other unwanted signals generally 
termed as noise. On the other hand, there are different sources of distortion that can reduce 
the clarity of the desired signal: amplitude distortion caused by the electronics; frequency 
distortion caused by either the electronics or the acoustic environment; and time-domain 
distortion due to reflection and reverberation in the acoustic environment.  
Adaptive filters have traditionally found a field of application in noise and reverberation 
reduction, thanks to their ability to cope with changes in the signals or the sound 
propagation conditions in the room where the recording takes place. This chapter is an 
advanced tutorial about multichannel adaptive filtering techniques suitable for speech 
enhancement in multiple input multiple output (MIMO) very long impulse responses. 
Single channel adaptive filtering can be seen as a particular case of the more complex and 
general multichannel adaptive filtering. The different adaptive filtering techniques are 
presented in a common foundation. Figure 1 shows an example of the most general MIMO 
acoustical scenario. 

 

 
Fig. 1. Audio application scenario. 
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The box, on the left, represents a reverberant room. V  is a LIP×  matrix that contains the 

acoustic impulse responses (AIR) between the  I  sources and P  microphones (channels); L  
is a filters length. Sources can be interesting or desired signals (to enhance) or noise and 
interference (to attenuate). The discontinuous lines represent only the direct path and some 

first reflections between the ( )ns1  source and the microphone with output signal ( )nx1 . Each 

( )npiv  vector represents the AIR between Ii K1=  and Pp K1=  positions and is constantly 

changing depending on the position of both: source or microphone, angle between them, 
radiation pattern, etc. 
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vpi=[ vpi1  vpi2 ···  vpiL].  (1) 

 
( )nr is an additive noise or interference signal. ( )nxp , Pp K1=  is a corrupted or poor quality 

signal that wants to be improved. The filtering goal is to obtain a W  matrix so that 

( ) ( )nsny io
ˆ≈  corresponds to the identified signal. The signals in the Fig. 1 are related by 

 

( ) ( ) ( )nrnn += Vsx , (2) 

y(n) = Wx(n). (3) 

 
( )ns  is a 1×LI  vector that collects the source signals, 

 

( ) ( ) ( ) ( )[ ]TT

I

TT nnnn ssss L21= , 
(4) 

( ) ( ) ( ) ( )[ ]Tiiii Lnsnsnsn 11 +−−= Ls .  

 
( )nx  is a 1×P  vector that corresponds to the convolutive system output excited by ( )ns  

and the adaptive filter input of order LPO× . ( )nxp  is an input corresponding to the channel 

p  containing the last L  samples of the input signal x , 

 

( ) ( ) ( ) ( )[ ]TT

P

TT nnnn xxxx L21= , 
(5) 

xp(n)=[ xp(n)  xp(n-1) ···  xp(n-L+1)]T .  
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W  is an LPO×  adaptive matrix that contains an AIRs between the P inputs and O outputs 
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,  

wop = [wop1   wop2  ···   wopL]. (6) 

 
For a particular output Oo K1= , normally matrix W  is rearranged as column vector 

 

[ ]TPwwww L21= . (7) 

 
Finally, ( )ny  is an 1×O  target vector, ( ) ( ) ( ) ( )[ ]TO nynynyn L21=y . 

The used notation is the following: a  or α  is a scalar, a  is a vector and A  is a matrix in 

time-domain a  is a vector and A  is a matrix in frequency-domain. Equations (2) and (3) are 

in matricial form and correspond to convolutions in a time-domain. The index n  is the 

discrete time instant linked to the time (in seconds) by means of a sample frequency sF  

according to snTt = , ss FT 1= . sT  is the sample period. Superscript T  denotes the transpose 

of a vector or a matrix, ∗  denotes the conjugate of a vector or a matrix and superscript H  
denotes Hermitian (the conjugated transpose) of a vector or a matrix. Note that, if adaptive 

filters are 1×L  vectors, L  samples have to be accumulated per channel (i.e. delay line) to 
make the convolutions (2) and (3). 
The major assumption in developing linear time-invariant (LTI) systems is that the 
unwanted noise can be modeled by an additive Gaussian process. However, in some 
physical and natural systems, noise can not be modelled simply as an additive Gaussian 
process, and the signal processing solution may also not be readily expressed in terms of 
mean squared errors (MSE)1.  
From a signal processing point of view, the particular problem of noise reduction generally 
involves two major steps: modeling and filtering. The modelling step generally involves 
determining some approximations of either the noise spectrum or the input signal spectrum. 
Then, some filtering is applied to emphasize the signal spectrum or attenuate/reject the 
noise spectrum (Chau, 2001). Adaptive filtering techniques are used largely in audio 
applications where the ambient noise environment has a complicated spectrum, the statistics 
are rapidly varying and the filter coefficients must automatically change in order to 
maintain a good intelligibility of the speech signal. Thus, filtering techniques must be 

                                                 
1 MSE is the best estimator for random (or stochastic) signals with Gaussian distribution (normal 
process). The Gaussian process is perhaps the most widely applied of all stochastic models: most error 
processes, in an estimation situation, can be approximated by a Gaussian process; many non-Gaussian 
random processes can be approximated with a weighted combination of a number of Gaussian densities 
of appropriated means and variances; optimal estimation methods based on Gaussian models often 
result in linear and mathematically tractable solutions and the sum of many independent random 
process has a Gaussian distribution (central limit theorem) (Vaseghi, 1996). 
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powerful, precise and adaptive. Most non-referenced noise reduction systems have only one 
single input signal. The task of estimating the noise and/or signal spectra must then make 
use of the information available only from the single input signal and the noise reduction 
filter will also have only the input signal for filtering. Referenced adaptive noise 
reduction/cancellation systems work well only in constrained environments where a good 
reference input is available, and the crosstalk problem is negligible or properly addressed. 

 
2. Multichannel Adaptive Filters 
 

In a multichannel system ( 1>P ) it is possible to remove noise and interference signals by 
applying sophisticated adaptive filtering techniques that use spatial or redundant 
information. However there are a number of noise and distortion sources that can not be 
minimized by increasing the number of microphones. Examples of this are the surveillance, 
recording, and playback equipment. There are several classes of adaptive filtering (Honig & 
Messerschmitt, 1984) that can be useful for speech enhancement, as will be shown in Sect. 4. 
The differences among them are based on the external connections to the filter. In the 
estimator application [see Fig. 2(a)], the internal parameters of the adaptive filter are used as 
estimate. In the predictor application [see Fig. 2(b)], the filter is used to filter an input signal, 

( )nx , in order to minimize the output signal, ( ) ( ) ( )nynxne −= , within the constrains of the 

filter structure. A predictor structure is a linear weighting of some finite number of past input 
samples used to estimate or predict the current input sample. In the joint-process estimator 

application [see Fig. 2(c)] there are two inputs, ( )nx  and ( )nd . The objective is usually to 

minimize the size of the output signal,  ( ) ( ) ( )nyndne −= , in which case the objective of the 

adaptive filter itself is to generate an estimate of ( )nd , based on a filtered version of ( )nx , 

( )ny  (Honig & Messerschmitt, 1984). 

 

 
Fig. 2. Classes of adaptive filtering. 
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2.1 Filter Structures 

Adaptive filters, as any type of filter, can be implemented using different structures. There 
are three types of linear filters with finite memory: the transversal filter, lattice predictor and 
systolic array (Haykin, 2002). 

 
2.1.1 Transversal 

The transversal filter, tapped-delay line filter or finite-duration impulse response filter (FIR) is the 
most suitable and the most commonly employed structure for an adaptive filter. The utility 
of this structure derives from its simplicity and generality. 
The multichannel transversal filter output used to build a joint-process estimator as 
illustrated in Fig. 2(c) is given by 
 

( ) ( ) ( ) ( )
1 1 1

1 , ,
P L P

pl p p p

p l p

y n w x n l n n
= = =

= − + = =∑∑ ∑ w x w x . 
(8) 

 
Where ( )nx  is defined in (5) andw in (7). Equation (8) is called finite convolution sum. 

 

 
Fig. 3. Multichannel transversal adaptive filtering. 

 
2.1.2 Lattice 

The lattice filter is an alternative to the transversal filter structure for the realization of a 

predictor (Friedlander, 1982).  
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Fig. 4. Multichannel adaptive filtering with lattice-ladder joint-process estimator. 

 
The multichannel version of lattice-ladder structure (Glentis et al., 1999) must consider 

the interchannel relationship of the reflection coefficients in  each stage l . 

 

( ) ( ) ( ) ( ) ( )1 1 11 ,∗
− −= + − =l l l ln n n n nf f K b f x , (9) 

( ) ( ) ( ) ( ) ( )1 1 11 ,l l l ln n n n n− −= − + =b b K f b x . (10) 

 
Where ( ) ( ) ( ) ( )[ ]TPllll nfnfnfn L21=f , ( ) ( ) ( ) ( )[ ]TPllll nbnbnbn L21=b , 

 

( ) ( ) ( ) ( )[ ]TP nxnxnxn L21=x , and 
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The joint-process estimation of the lattice-ladder structure is especially useful for the adaptive 
filtering because its predictor diagonalizes completely the autocorrelation matrix. The transfer 
function of a lattice filter structure is more complex than a transversal filter because the 
reflexion coefficients are involved, 
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( ) ( ) ( )11n n n= − +b Ab K f , (11) 

( ) ( ) ( )11y n n n= − +wAb wKf . (12) 

 
Where [ ]TT

L
TT wwww L21=  is a 1×LP  vector of the joint-process estimator coefficients,  

[ ]TPllll www L21=w . ( ) ( ) ( ) ( )[ ]TT
L

TT nnnn bbbb L21= is a 1×LP  backward predictor 

coefficients vector. A is a LPLP ×  matrix obtained with a recursive development of (9) and 
(10), 
 

 
P P×I  is a matrix with only ones in the main diagonal and P P×0  is a PP×  zero matrix. 

[ ]1 2 1

T

P P L× −=K I K K KL  is a PLP ×  reflection coefficients matrix.  

 
2.2 Adaptation Algorithms  

Once a filter structure has been selected, an adaptation algorithm must also be chosen. From 
control engineering point of view, the speech enhancement is a system identification 

problem that can be solved by choosing an optimum criteria or cost function ( )wJ  in a block 

or recursive approach. Several alternatives are available, and they generally exchange 
increased complexity for improved performance (speed of adaptation and accuracy of the 

transfer function after adaption or misalignment defined by 
22

vwv −=ε ). 

 
2.2.1 Cost Functions 

Cost functions are related to the statistics of the involved signals and depend on some error 
signal 
 

( ) ( ){ }nefJ =w . (14) 

The error signal ( )ne  depends on the specific structure and the adaptive filtering strategy 

but it is usually some kind of similarity measure between the target signal ( )nsi  and the 
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estimated signal ( ) ( )nsny io
ˆ≈ , for OI = . The most habitual cost functions are listed in 

Table1.  
 

( )wJ  Comments 

( ) 2
ne  Mean squared error (MSE). Statistic mean operator 

( )∑
−1

21 N

ne
N

 
MSE estimator. MSE is normally unknown 

( )ne2  Instantaneous squared error 

( )ne  Absolute error. Instantaneous module error 

( )∑ −
n

mn me2λ  
Least squares (Weighted sum of the squared error) 

( ) ( ){ }22
nnE ll bf +  Mean squared predictor errors (for a lattice structure) 

Table 1. Cost functions for adaptive filtering. 

 
2.2.2 Stochastic Estimation 

Non-recursive or block methods apply batch processing to a transversal filter structure. The 
input signal is divided into time blocks, and each block is processed independently or with 
some overlap. This algorithms have finite memory. 
The use of memory (vectors or matrice blocks) improves the benefits of the adaptive 
algorithm because they emphasize the variations in the crosscorrelation between the 
channels. However, this requires a careful structuring of the data, and they also increase the 
computational exigencies: memory and processing. For channel p , the input signal vector 

defined in (5) happens to be a matrix of the form 
 

( ) ( ) ( )( ) ( )1 1 1
T

T T T

p p p pn n N n N n⎡ ⎤= − + − − +⎣ ⎦X x x xL , 
(15) 

( )

( ) ( )( ) ( )
( ) ( )( ) ( )

( ) ( )( ) ( )

1 1 1

1 1

2 1 2 1

p p p

p p p

p

p p p

x n N x n N x n

x n N x n N x n
n

x n N L x n N L x n L

⎡ ⎤− + − − +
⎢ ⎥

− − − −⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥− − + − − − + − +⎣ ⎦

X

L

L

M M O M

L

, 

 

( ) ( ) ( )( ) ( )1 1 1
T

n d n N d n N d n⎡ ⎤= − + − − +⎣ ⎦d L , 
(16) 

 
where N  represents the memory size. The input signal matrix to the multichannel adaptive 

filtering has the form 
 

( ) ( ) ( ) ( )1 2

T
T T T

Pn n n n⎡ ⎤= ⎣ ⎦X X X XL . (17) 
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In the most general case (with order memory N ), the input signal ( )nX  is a matrix of size  

NLP× . For 1=N  (memoryless) and 1=P  (single channel) (17) is reduced to (5). 

There are adaptive algorithms that use memory 1>N  to modify the coefficients of the filter, 

not only in the direction of the input signal ( )nx , but within the hyperplane spanned by the  

( )nx  and its 1−N  immediate predecessors  ( ) ( ) ( )[ ]11 +−− Nnxnxnx L  per channel. 

The block adaptation algorithm updates its coefficients once every N samples as 

 

( ) ( ) ( )1m m m+ = + Δw w w , (18) 

 

( ) ( )arg minm JΔ =w w . 

 

 
The matrix defined by (15) stores 1−+= NLK samples per channel. The time index m  

makes reference to a single update of the weights from time n  to Nn + , based on the K  

accumulated samples. 
The stochastic recursive methods, unlike the different optimization deterministic iterative 
algorithms, allow the system to approach the solution with the partial information of the 
signals using the general rule 
 

( ) ( ) ( )1n n n+ = + Δw w w , (19) 

 

( ) ( )arg minn JΔ =w w . 

 

 
The new estimator ( )1n +w  is updated from the previous estimation ( )nw  plus the 

adapting-step or gradient obtained from the cost function minimization ( )J w . These 

algorithms have an infinite memory. The trade-off between convergence speed and the 
accuracy is intimately tied to the length of memory of the algorithm. The error of the joint-
process estimator using a transversal filter with memory can be rewritten like a vector as 
 

( ) ( ) ( ) ( ) ( ) ( )Tn n n n n n= − = −e d y d X w . (20) 

 
The unknown system solution, applying the MSE as the cost function, leads to the normal or 
Wiener-Hopf equation. The Wiener filter coefficients are obtained by setting the gradient of 
the square error function to zero, this yields 
 

1
1

− ∗ −⎡ ⎤= =⎣ ⎦
H

w XX Xd R r . (21) 

 
R  is a correlation matrix and r  is a cross-correlation vector defined by 
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1 1 1 2 1

2 1 2 2 2

1 2

P

PH

P P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

X X X X X X

X X X X X X
R XX

X X X X X X

L

L

M M O M

L

, 

(22) 

1 2

∗∗ ∗ ∗⎡ ⎤= = ⎣ ⎦L
T

Pr Xd X d X d X d . 
(23) 

 
For each Ii K1=  input source, ( ) 21−PP  relations are obtained: p

H
qq

H
p wxwx =  for 

Pqp K1, = , with qp ≠ . Given vector [ ]TTTP

p

T

p 112
wwwu −−= ∑ =

L , due to the nearness 

with which microphones are placed in scenario of Fig. 1, it is possible to verify that 

1×= PL0Ru , thus R  is not invertible and no unique problem solution exists. The adaptive 

algorithm leads to one of many possible solutions which can be very different from the 
target v . This is known as a non-unicity problem. 
For a prediction application, the cross-correlation vector r  must be slightly modified as 

( )1−= nXxr , ( ) ( ) ( ) ( )[ ]TNnxnxnxn −−−=− L211x  and 1=P . 

The optimal Wiener-Hopf solution rRw 1

opt

−=  requires the knowledge of both magnitudes: 

the correlation matrix R  of the input matrix X  and the cross-correlation vector r  between 

the input vector and desired answer d . That is the reason why it has little practical value. So 

that the linear system given by (21) has solution, the correlation matrix R  must be 
nonsingular. It is possible to estimate both magnitudes according to the windowing method 
of the input vector. 

The sliding window method uses the sample data within a window of finite length N . 

Correlation matrix and cross-correlation vector are estimated averaging in time, 
 

( ) ( ) ( ) Nnnn HXXR = , (24) 

 

( ) ( ) ( ) Nnnn ∗= dXr . 

 

 
The method that estimates the autocorrelation matrix like in (24) with samples organized as 
in (15) is known as the covariance method. The matrix that results is positive semidefinite but 
it is not Toeplitz. 
The exponential window method uses a recursive estimation according to certain forgetfulness 

factor λ  in the rank 10 << λ , 

 

( ) ( ) ( ) ( )nnnn HXXRR +−= 1λ , (25) 

 

( ) ( ) ( ) ( )nnnn ∗+−= dXrr 1λ . 
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When the excitation signal to the adaptive system is not stationary and the unknown system 
is time-varying, the exponential and sliding window methods allow the filter to forget or to 
eliminate errors happened farther in time. The price of this forgetfulness is deterioration in 
the fidelity of the filter estimation (Gay & Benesty, 2000). 
A recursive estimator has the form defined in (19). In each iteration, the update of the 

estimator is made in the ( )nΔw  direction. For all the optimization deterministic iterative 

schemes, a stochastic algorithm approach exists. All it takes is to replace the terms related to 
the cost function and calculate the approximate values by each new set of input/output 
samples. In general, most of the adaptive algorithms turn a stochastic optimization problem 
into a deterministic one and the obtained solution is an approximation to the one of the 
original problem. 
 

The gradient ( ) ( )
2 2∗∂

= ∇ = = − +
∂

H
J

J
w

g w Xd XX w
w

, can be estimated by means of 

( )2= − +g r Rw , or by the equivalent one ∗= −g Xe , considering R  and r  according to (24) 

or (25). It is possible to define recursive updating strategies, per each l  stage, for lattice 

structures as 
 

( ) ( ) ( )1l l ln n n+ = + ΔK K K , (26) 

 

( ) ( )arg minl ln JΔ =K K . 

 

 
2.2.3 Optimization strategies 

Several strategies to solve ( )arg min JΔ =w w  are proposed (Glentis et al., 1999) (usually of 

the least square type). It is possible to use a quadratic (second order) approximation of the 

error-performance surface around the current point denoted ( )nw . Recalling the second-

order Taylor series expansion of the cost function ( )J w  around ( )nw , with ( )nΔ = −w w w , 

you have 
 

( ) ( ) ( ) ( )+ Δ ≅ + Δ ∇ + Δ ∇ Δ21

2
H HJ J J Jw w w w w w w w   

(27) 

 
Deterministic iterative optimization schemes require the knowledge of the cost function, the 
gradient (first derivatives) defined in (29) or the Hessian matrix (second order partial 
derivatives) defined in (45,52) while stochastic recursive methods replace these functions by 
impartial estimations. 
 

( ) ( ) ( ) ( )⎡ ⎤∂ ∂ ∂
∇ = ⎢ ⎥∂ ∂ ∂⎣ ⎦

L
1 2

T

L

J J J
J

w w w
w

w w w
, 

(28) 
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( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥

∇ = ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

L

L

M M O M

L

2 2 2

1 1 1 2 1

2 2 2

2

2 1 2 2 2

2 2 2

1 2

T

L

L

L L L L

J J J

J J J

J

J J J

w w w

w w w w w w

w w w

w w w w w w w

w w w

w w w w w w

. 

(29) 

 
The vector ( ) ( )= ∇n Jg w  is the gradient evaluated at ( )nw , and the matrix ( ) ( )= ∇2n JH w  

is the Hessian of the cost function evaluated at ( )nw .  

Several first order adaptation strategies are: to choose a starting initial point ( )0w , to 

increment election ( ) ( ) ( )μΔ =n n nw g ; two decisions are due to take: movement direction 

( )ng  in which the cost function decreases fastest and the step-size in that direction ( )μ n . 

The iteration stops when a certain level of error is reached ( ) ξΔ <nw , 

 

( ) ( ) ( ) ( )1n n n nμ+ = +w w g . (30) 

 
Both parameters ( )nμ , ( )ng  are determined by a cost function. The second order methods 

generate values close to the solution in a minimum number of steps but, unlike the first 
order methods, the second order derivatives are very expensive computationally. The 

adaptive filters and its performance are characterized by a selection criteria of ( )nμ  and 

( )ng  parameters. 

 

Method Definition Comments 

SD ( )
2

H
nμ = −

g

g Rg
 Steepest-Descent 

CG (See below) Conjugate Gradient 

NR ( )nμ α= Q  Newton-Raphson 

Table 2. Optimization methods. 

 
The optimization methods are useful to find the minimum or maximum of a quadratic 
function. Table 2 summarizes the optimization methods. SD is an iterative optimization 
procedure of easy implementation and computationaly very cheap. It is recommended with 
cost functions that have only one minimum and whose gradients are isotropic in magnitude 
respect to any direction far from this minimum. NR method increases SD performance using 

a carefully selected weighting matrix. The simplest form of NR uses 1−=Q R . Quasy-Newton 
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methods (QN) are a special case of NR with Q  simplified to a constant matrix. The solution 

to ( )J w  is also the solution to the normal equation (21). The conjugate gradient (CG) (Boray & 

Srinath, 1992) was designed originally for the minimization of convex quadratic functions 
but, with some variations, it has been extended to the general case. The first CG iteration is 
the same that the SD algorithm and the new successive directions are selected in such a way 
that they form a set of vectors mutually conjugated to the Hessian matrix (corresponding to 

the autocorrelation matrix, R ), 0, H

i j i j= ∀ ≠q Rq . In general, CG methods have the form 

 

1

, 1

, 1

l

l

l l l

l

lβ −

− =⎧
= ⎨− + >⎩

g
q

g q
 

(31) 

,

,

l l

l

l l l

μ =
−

g q

q g p
, (32) 

2

2

1

l

l

l

β
−

=
g

g
, 

(33) 

( ) ( ) ( )1l l l ln n nμ+ = +w w q . (34) 

CG spans the search directions from the gradient in course, g , and a combination of 

previous R -conjugated search directions. β  guarantees the R -conjugation. Several 

methods can be used to obtain β . This method (33) is known as Fleetcher-Reeves. The 

gradients can be obtained as ( )= ∇Jg w  and ( )= ∇ −Jp w g . 

The memoryless LS methods in Table 3 use the instantaneous squared error cost function 

( ) ( )= 2J e nw . The descent direction for all is a gradient ( ) ( ) ( )n n e n∗=g x . The LMS 

algorithm is a stochastic version of the SD optimization method. NLMS frees the 
convergence speed of the algorithm with the power signal. FNLMS filters the signal power 

estimation; 0 1β< <  is a weighting factor. PNLMS adaptively controls the size of each 

weight. 
 

Method Definition Comments 

LMS ( )nμ α=  Least Means Squares 

NLMS ( )
( ) 2

n
n

αμ
δ

=
+x

 Normalized LMS 

FNLMS ( ) ( )
n

n

αμ =
p

 Filtered NLMS 

PNLMS ( ) ( ) ( )H
n

n n

αμ
δ

=
+

Q

x Qx
 Proportionate NLMS 

Table 3. Memoryless Least-Squares (LS) methods. 
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Method Definition Comments 

RLS 

( ) ( )1n nμ −=R  

( ) ( ) ( )n n e n∗=g x  

 

Recursive Least-Squares 

LMS-SW 

( ) ( )
( ) ( ) ( ) ( )

2

H H

n
n

n n n n
μ

δ
=

+

g

g X X g
 

( ) ( ) ( )= *n n e ng X  

 

Sliding-Window LMS 

APA 

( ) ( ) ( )H
n

n n

αμ
δ

=
+X X I

 

( ) ( ) ( )n n e n∗=g X  

 

Affine Projection Algorithm 

PRA 

( ) ( ) ( ) ( )1 1n n N n nμ+ = − + +w w g  

( ) ( ) ( )H
n

n n

αμ
δ

=
+X X I

 

( ) ( ) ( )n n e n∗=g X  

 

Partial Rank Algorithm 

DLMS 

( ) ( ) ( )
1

,
n

n n
μ =

x z
 

( ) ( ) ( )= *n n e ng z  

( ) ( )
( ) ( )
( )

( )
−

= + −
−

2

, 1
1

1

n n
n n n

n

x x
z x x

x
 

 
 

Decorrelated LMS 

TDLMS 

( )
( )
αμ =

2
n

n

Q

x
, = 1HQ Q  

( ) ( ) ( )n n e n∗=g x  

 
 

Transform-Domain DLMS 

Table 4. Least-Squares with memory methods. 

 
Q  is a diagonal matrix that weights the individual coefficients of the filters, α  is a relaxation 

constant and δ  guarantees that the denominator never becomes zero. These algorithms are 

very cheap computationally but their convergence speed depends strongly on the spectral 

condition number of the autocorrelation matrix R  (that relate the extreme eigenvalues) and 

can get to be unacceptable as the correlation between the P  channels increases. 
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The projection algorithms in Table 4 modify the filters coefficients in the input vector direction 

and on the subspace spanned by the 1−N  redecessors. RLS is a recursive solution to the 

normal equation that uses MSE as cost function. There is an alternative fast version FRLS. 
LMS-SW is a variant of SD that considers a data window. The step can be obtained by a 
linear search. APA is a generalization of RLS and NLMS. APA is obtained by projecting the 
adaptive coefficients vector w  in the affine subspace. The affine subspace is obtained by 

means of a translation from the orthogonal origin to the subspace where the vector w  is 

projected. PRA is a strategy to reduce the computational complexity of APA by updating the 

coefficients every N samples. DLMS replaces the system input by an orthogonal component 

to the last input (order 2). These changes the updating vector direction of the correlated 
input signals so that these ones correspond to uncorrelated input signals. TDLMS 

decorrelates into transform domain by means of a Q  matrix. 

The adaptation of the transversal section of the joint-process estimator in the lattice-ladder 

structure depends on the gradient ( )ng  and, indirectly, on the reflection coefficients, 

through the backward predictor, ( ) ( )=n ng b . However, the reflection coefficient adaptation 

depends on the gradient of ( )y n  with respect to them 

 

( ) ( ) ( ) ( )⎡ ⎤∂ ∂ ∂
∇ = ⎢ ⎥∂ ∂ ∂⎣ ⎦

L
1 2

T

L

J J J
J

K K K
K

K K K
, 

(35) 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥

∇ = ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

L

L

M M O M

L

2 2 2

1 1 1 2 1

2 2 2

2

2 1 2 2 2

2 2 2

1 2

L

L

L L L L

J J J

J J J

J

J J J

K K K

K K K K K K

K K K

K K K K K K K

K K K

K K K K K K

. 

(36) 

 
In a more general case, concerning to a multichannel case, the gradient matrix can be 

obtained as ( )= ∇JG K . Two recursive updatings are necessary 

 

( ) ( ) ( ) ( )1l l l ln n n nμ+ = +w w g , 
(37) 

( ) ( ) ( ) ( )1l l l ln n n nλ+ = +K K G  (38) 

 
Table 5 resumes the least-squares for lattice. 
GAL is a NLMS extension for a lattice structure that uses two cost functions: instantaneous 
squared error for the tranversal part and prediction MSE for the lattice-ladder part, 

( ) ( ) ( ) ( ) ( )( )2 2
1 1 1l l l ln n n nβ β= − + − + −B B f b , where α  and σ  are relaxation factors. 
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Method Definition Comments 

GAL 

( )
( ) 2

αμ =l

l

n
nb

 

( ) ( ) ( )l ln n e n∗=g b  

( )
( )1

l

l

n
n

σλ
−

=
B

 

( ) ( ) ( ) ( ) ( )1 11 1H H
l l l l ln n n n n− −= − + −G b f b f  

Gradient Adaptive Lattice 

CGAL (See below) CG Adaptive Lattice 

Table 5. Least-Squares for lattice. 

 
For CGAL, the same algorithm described in (31-34) is used but it is necessary to rearrange 
the gradient matrices of the lattice system in a column vector. It is possible to arrange the 

gradients of all lattice structures in matrices. ( ) ( ) ( ) ( )1 2

TT T T
Pn n n n⎡ ⎤= ⎣ ⎦U g g gL  is the 

LP×  gradient matrix with respect to the transversal coefficients, 

( ) 1 2

T

p p p pLn g g g⎡ ⎤= ⎣ ⎦g L , Pp K1= . ( ) ( ) ( ) ( )1 2

T

Pn n n n= ⎡ ⎤⎣ ⎦V G G GL  is a 

( )PLP 1−×  gradient matrix with respect to the reflection coefficients; and rearranging these 

matrices in one single column vector, 
TT T⎡ ⎤⎣ ⎦u v  is obtained with 

[ ]11 1 21 2 1

T

L L P PLg g g g g g=u L L L L , 

( )111 1 1 11 1 112 1

T

P P PP PP LG G G G G G −
⎡ ⎤= ⎣ ⎦v L L L L . 

 

1

, 1

, 1

l

l

l l l

l

lβ −

− =⎧
= ⎨− + >⎩

g
q

g q
 

(39) 

( )

T
T

T
T

1

, 1

1 , 1α α−

⎧⎡ ⎤ =⎪⎣ ⎦= ⎨
⎪ ⎡ ⎤+ − >⎣ ⎦⎩

T

l
T

l

l

l

u v
g

g u v
 

(40) 

2

2

1

l

l

l

β
−

=
g

g
, 

(41) 

wl+1 = wl + μ ul , (42) 

1 λ+ = +l l l lK K V . (43) 
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The time index n  has been removed by simplicity. 10 <<α  is a forgetfulness factor which 

weights the innovation importance specified in a low-pass filtering in (40). The gradient 
selection is very important. A mean value that uses more recent coefficients is needed for 
gradient estimation and to generate a vector with more than one conjugate direction (40). 

 
3. Multirate Adaptive Filtering 
 

The adaptive filters used for speech enhancement are probably very large (due to the AIRs). 
Multirate adaptive filtering works at a lower sampling rate that allows reducing the 
complexity (Shynk, 1992). Depending on how the data and filters are organized, these 
approaches may upgrade in performance and avoid end-to-end delay. Multirate schemes 
adapt the filters in smaller sections at lower computational cost. This is only necessary for 
real-time implementations. Two approaches are considered. The subband adaptive filtering 
approach splits the spectra of the signal in a number of subbands that can be adapted 
independently and afterwards the filtering can be carried out in a fullband. The frequency-
domain adaptive filtering partitions the signal in time-domain and projects it into a 
transformed domain (i.e. frequency) using better properties for adaptive processing. In both 
cases the input signals are transformed into a more desirable form before adaptive 
processing and the adaptive algorithms operate in transformed domains, whose basis 
functions orthogonalize the input signal, speeding up the convergence. The partitioned 
convolution is necessary for fullband delayless convolution and can be seen as an efficient 
frequency-domain convolution. 
 

3.1 Subband Adaptive Filtering 

The fundamental structure for subband adaptive filtering is obtained using band-pass filters 
as basis functions and replacing the fixed gains for adaptive filters. Several implementations 
are possible. A typical configuration uses an analysis filter bank, a processing stage and a 
synthesis filter bank. Unfortunately, this approach introduces an end-to-end delay due to the 
synthesis filter bank. Figure 5 shows an alternative structure which adapts in subbands and 
filters in full-band to remove this delay (Reilly et al., 2002). 

K  is the decimation ratio, M  is the number of bands and N  is the prototype filter length. k  

is the low rate time index. The sample rate in subbands is reduced to KFs . The input signal 

per channel is represented by a vector ( ) ( ) ( ) ( )1 1
T

p n x n x n x n L= − − +⎡ ⎤⎣ ⎦x L , 

Pp K1= . The adaptive filter in full-band per channel 1 2

T

p p p PLw w w⎡ ⎤= ⎣ ⎦w L  is 

obtained by means of the T  operator as  
 

( )
2

1
K

M

p m pm m
K

m
↓ ↑

=

⎧ ⎫
= ℜ ∗ ∗⎨ ⎬

⎩ ⎭
∑w h w g , 

(44) 

 
from the subband adaptive filters per each channel pmw , Pp K1= , 21 Mm K=  (Reilly et 

al., 2002). The subband filters are very short, of length 1
1

L N N
C

K K

+ −⎡ ⎤ ⎡ ⎤= − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
, which 
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allows to use much more complex algorithms. Although the input signal vector per channel 

( )p nx  has size 1×L , it acts as a delay line which, for each iteration k , updates K  samples. 

K↓  is an operator that means downsampling for a K  factor and K↑  upsampling for a K  

factor. mg  is a synthesis filter in subband m  obtained by modulating a prototype filter. H  

is a polyphase matrix of a generalized discrete Fourier transform (GDFT) of an oversampled 

( MK < ) analysis filter bank (Crochiere & Rabiner, 1983). This is an efficient implementation 

of a uniform complex modulated analysis filter bank. This way, only a prototype filter p  is 

necessary; the prototype filter is a low-pass filter.  
The band-pass filters are obtained modulating a prototype filter. It is possible to select 
different adaptive algorithms or parameter sets for each subband. For delayless 
implementation, the full-band convolution may be made by a partitioned convolution. 
 

 
Fig. 5. Subband adaptive filtering. This configuration is known as open-loop because the error 
is in the time-domain. An alternative closed-loop can be used where the error is in the 
subband-domain. Gray boxes correspond to efficient polyphase implementations. See 
details in (Reilly et al., 2002). 
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3.2 Frequency Domain Adaptive Filtering 

The basic operation in frequency-domain adaptive filtering (FDAF) is to transform the input 
signal in a “more desirable” form before the adaptation process starts (Shynk, 1992) in order 
to work with matrix multiplications instead of dealing with slow convolutions.  

The frequency-domain transform employs one or more discrete Fourier transforms (DFT), T  
operator in Fig. 6, and can be seen as a pre-processing block that generates decorrelated 
output signals. In the more general FDAF case, the output of the filter in the time-domain (3) 
can be seen as the direct frequency-domain translation of the block LMS (BLMS) algorithm. 
That efficiency is obtained taking advantage of the equivalence between the linear 
convolution and the circular convolution (multiplication in the frequency-domain).  
 

 
Fig. 6. Partitioned block frequency-domain adaptive filtering. 

 
It is possible to obtain the linear convolution between a finite length sequence (filter) and an 
infinite length sequence (input signal) with the overlapping of certain elements of the data 
sequence and the retention of only a subgroup of the DFT. 
The partitioned block frequency-domain adaptive filtering (PBFDAF) was developed to deal 
efficiently with such situations (Paez & Otero, 1992). The PBFDAF is a more efficient 
implementation of the LMS algorithm in the frequency-domain. It reduces the 
computational burden and bounds the user-delay. In general, the PBFDAF is widely used 
due to its good trade-off between speed, computational complexity and overall latency. 
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However, when working with long AIRs, the convergence properties provided by the 
algorithm may not be enough. This technique makes a sequential partition of the impulse 
response in the time-domain prior to a frequency-domain implementation of the filtering 
operation. 
This time segmentation allows setting up individual coefficient updating strategies 
concerning different sections of the adaptive canceller, thus avoiding the need to disable the 
adaptation in the complete filter. In the PBFDAF case, the filter is partitioned transversally 

in an equivalent structure. Partitioning pw  in Q  segments ( K  length) we obtain 

 

( ) ( ) ( )

1

1 1 0

QP K

p p qK m
p q m

y n x n qK m w
−

+
= = =

= − −∑∑∑ , 

(45) 

 
Where the total filter length L , for each channel, is a multiple of the length of each segment 

QKL = , LK ≤ . Thus, using the appropriate data sectioning procedure, the Q  linear 

convolutions (per channel) of the filter can be independently carried out in the frequency-

domain with a total delay of K  samples instead of the QK  samples needed by standard 

FDAF implementations. Figure 6 shows the block diagram of the algorithm using the 
overlap-save method. In the frequency-domain with matricial notation, (45) can be 
expressed as 
 

= ⊗Y X W , (46) 

 
where X = FX  represents a matrix of dimensions PQM ××  which contains the Fourier 

transform of the Q  partitions and P  channels of the input signal matrix X . F  represents 

the DFT matrix defined as −= mn

MWF  of size MM ×  and 1−F  as its inverse. Of course, in the 

final implementation, the DFT matrix should be substituted by much more efficient fast 

Fourier transform (FFT). Being X , PK ×2 -dimensional (supposing 50% overlapping between 
the new block and the previous one). It should be taken into account that the algorithm 

adapts every K  samples. W  represents the filter coefficient matrix adapted in the 

frequency-domain (also PQM ×× -dimensional) while the ⊗  operator multiplies each of 

the elements one by one; which, in (46), represents a circular convolution. The output vector 

y  can be obtained as the double sum (rows) of the Y  matrix. First we obtain a PM ×  

matrix which contains the output of each channel in the frequency-domain yP , Pp K1= , 

and secondly, adding all the outputs we obtain the whole system output, y . Finally, the 

output in the time-domain is obtained by using 1last  components of −= yKy F . Notice that the 

sums are performed prior to the time-domain translation. This way we reduce ( )( )11 −− QP  

FFTs in the complete filtering process. As in any adaptive system the error can be obtained 
as 
 

= −e d y  (47) 

www.intechopen.com



Multichannel Speech Enhancement 

 

47 

with ( ) ( ) ( )( )1 1 1
T

d mK d mK d m K⎡ ⎤= + + −⎣ ⎦d L . The error in the frequency-domain (for 

the actualization of the filter coefficients) can be obtained as 
 

1×⎡ ⎤
= ⎢ ⎥

⎣ ⎦
e

K0
F

e
. 

(48) 

 

As we can see, a block of K  zeros is added to ensure a correct linear convolution 
implementation. In the same way, for the block gradient estimation, it is necessary to 
employ the same error vector in the frequency-domain for each partition q  and channel p . 

This can be achieved by generating an error matrix E with dimensions PQM ×× which 

contains replicas of the error vector, defined in (48), of dimensions P  and Q  ( ←E e  in the 

notation). The actualization of the weights is performed as 
 

( ) ( ) ( ) ( )1 μ+ = +W W Gm m m m . (49) 

 
The instantaneous gradient is estimated as 
 

∗= − ⊗G X E . (50) 

 
This is the unconstrained version of the algorithm which saves two FFTs from the 
computational burden at the cost of decreasing the convergence speed. The constrained 
version basically makes a gradient projection. The gradient matrix is transformed into the 

time-domain and is transformed back into the frequency-domain using only the first K  

elements of G  as 

 

× ×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
G

K Q P

G
F
0

. 
(51) 

 
A conjugate gradient version of PBFDAF is possible by transforming the gradient matrix to 
vectors and reverse (García, 2006). The vectors g  and p  in (31,32) should be changed by 

←l lg G , ( )= ∇l lJG W  and ←l lp P , ( )= ∇ −l l lJP W G , with gradient estimation obtained by 

averaging the instantaneous gradient estimates over N  past values 

( )
1 , ,

2

− −

−
=

= ∇ = ∑
l l k l k

N

l l l k

k

J
N

W X d

G W G . 

 
3.3 Partitioned Convolution 

For each input i , the AIR matrix, V , is reorganized in a column vector 

[ ]TPvvvv L21=  of size 1×= LPN  and initially partitioned in a reasonable number Q  

of equally-sized blocks qv , Qq K1= , of length K . Each of these blocks is treated as a 
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separate impulse response, and convolved by a standard overlap-and-save process, using T  

operator (FFT windows of length L ). All input data are processed in overlapped blocks of 

L  samples (each block at KL −  samples to the last). Each block is zero-padded to length L  

(typically equal to K2 ), and transformed with FFT so that a collection of Q  frequency-

domain filters qv  is obtained. The results of the multiplications of these Q  filters qv  with 

the FFTs of the Q  input blocks are summed, producing the same result as the unpartitioned 

convolution, by means of proper delays applied to the blocks of convolved data. Finally an 
1−T  operator (IFFT) of the first acummulator is made to submmit an output data block 

(obviosly only the last KL −  block samples). Each block of input data needs to be FFT 
transformed just once, and thus the number of forward FFTs is minimized (Armelloni et al., 
2003). The main advantage compared to unpartitioned convolution is that the latency of the 

whole filtering processing is just M  points instead of N2 , and thus the I/O delay is kept to 

a low value, provided that the impulse response is partitioned in a sensible number of 
chunks (8-32). Figure 7 outlines the whole process. 

Suposse that ( )1 2, , , QA A A A= K  is a set of multiplications of the first data block and 

( )1 2, , , QB B B B= K  the second, then for time-index 1  it is only necessary to consider 1A . At 

the next index-time, corresponding to 1+K  samples, the sum is formed with 

( )1 2 2 3 1, , , ,Q Q QB B A B A B A−+ + +K . If ( )1 2, , , QC C C C= K  corresponds to the third block the  s 

formed with ( )1 2 3 2 3 4 1, , , ,Q Q QC C B A C B A C B−+ + + + +K . An efficient implementation f this 

sum can be implemented using a double buffering technique (Armelloni et al., 2003). 
 

 
Fig. 7. Partitioned convolution. Each output signal block is produced taking only the KL −  
last samples of the block. 
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3.4 Delayless Approach for Real-Time Applications 

The filtering operation can be made delayless by operating the first block in the time-domain 
(direct convolution) while the rest of the blocks continue to operate in the frequency domain 
(Morgan & Thi, 1995). The fast convolution starts after the samples have been processed for 
direct convolution. The direct convolution allows giving samples to the output while data is 
incomming. This approach is applicable to the multirate frameworks described. 

 
4. Applications 
 

Once the theoretical foundations of the adaptive filtering have been reviewed, the most 
important techniques that can be applied to speech enhancement are introduced. 
 

4.1 Spectral Equalization 

The adaptive spectral equalization is widely used for noise suppression and corresponds to 
the single-input and single-output (SISO) estimator application (class a, Fig. 2); a single 

microphone, 1=P , is employed. This approach estimates a noiseprint spectra and subtracts it 
from the whole signal in the frequency-domain. The Wiener filter estimator is the result of 

estimating ( )ny  from ( )ns  that minimizes the MSE ( ) ( ) 2
y n s n−  given by =y Qx , 

= +x s r , and that results.  

 
2 2

2

−
≅

x d
q

x
, 

(52) 

 
[ ]{ }1 2diag=Q q q qL M

 is a diagonal matrix which contains the spectral gain in the 

frequency-domain; normally T  is a short-time Fourier transform (STFT), suitable for not 

stationary signals, and 1−T  its inverse. In this case this algorithm is known as short-time 

spectral attenuation (STSA). The 1×M  vector q  contains the main diagonal components of 

Q . d  is the noise spectrum (normaly unknown). In this case an estimation of the noiseprint 

spectra ˆ=d r  from the mixture x  (noisy signal) is necessary (in intervals when the speech is 

absent and only the noise is present). The STFT is defined as 

( ) ( )
1

−
=

= −∑x
N mk

k Mn
h n x m n W , 10 −= Mm K , where k  is the time index about 

which the short-time spectrum is computed, m  is the discrete frequency index, ( )nh  is an 

analysis window, N  dictates the duration over which the transform is computed, and M  is 

the number of frequency bins at which the STFT is computed.  
For stationary signals the squared-magnitude of the STFT provides a sample estimate of the 
power spectrum of the underlying random process. This form (53) is basic to nearly all the 
noise reduction methods investigated over last forty years (Gay & Benesty, 2000). The 

specific form to obtain Q  is known as the suppresion rule.  
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Fig. 8. Spectral equalization. 

 
Power Subtraction 
 
An alternative estimate from Wiener’s theory is achieved assuming that s  can be estimated 

if its magnitud is estimated as 
 

ˆ
α αα β= −s x d , 

(53) 

 
and the phase of the noisy signal x  can be used, if its SNR is reasonably high, in place of the 

phase of s . α  is an exponent and β  is a parameter introduced to control the amount of 

noise to be subtracted ( 1=β for full subtraction and 1>β  for over subtraction). A 

paramount issue in spectral subtraction is to obtain a good noise estimate; its accuracy 
greatly affects the noise reduction performance (Benesty & Huang, 2003). 

 
4.2 Linear Prediction  

The adaptive linear prediction (ALP) is employed in an attempt to separate the deterministic 

( ) ( )nsny ˆ≈  and stochastic part ( ) ( )nrne ˆ≈  assuming that the noise and interference signal 

has a broadband spectra. ALP corresponds to single-input and single-ouput (SISO) predictor 

application (class b, Fig. 2) with a single microphone, 1=P . 
Most signals, such as speech and music, are partially predictable and partially random. The 
random input models the unpredictable part of the signal, whereas the filter models the 
predictable structure of the signal. The aim of linear prediction is to model the mechanism 
that introduces the correlation in a signal (Vaseghi, 1996). The solution to this system 
corresponds to a Wiener solution (21) with the cross-correlation vector, r , slighty modified. 

The delay Dz−  in the ALP filter should be selected in such a way that ( ) ( ) ( )nrnxnd +=  and 

( )Dnd −  are still correlated. If D  is too long, the correlation in ( )nd  and ( )Dnd −  is weak 

and unpredictable for the ALP filter; for that reason it cannot be canceled suitably. If D  is 
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too short, the deterministic part of signal in ( )nd  and ( )Dnd −  remains correlated after D ; 

for that reason it can be predicted and cancelled by the ALP filter. 1=D  causes that the 

voice in ( )nd  and ( )Dnd −  is strongly correlated. A cascade of ALP filters of lower order 

independently adapted improves the modeling of the general ALP filter. In this case, the 
prediction is performed in successive refinements, the adaptation steps μ  can be greater, 

and thus each stage is less affected by the disparity of eigenvalues which results in a faster 
convergence.  

 

 
Fig. 9. Adaptive linear predictor. 

 
4.3 Noise Cancellation 

The adaptive noise cancellation (ANC) cancels the primary unwanted noise ( )nr  by 

introducing a canceling antinoise of equal amplitude but opposite phase using a reference 
signal. This reference signal is derived from one or more sensors located at points near the 
noise and interference sources where the interest signal is weak or undetectable.  
 

 
Fig. 10. Adaptive noise cancellation. 

 
A typical ANC configuration is depicted in Fig. 10. Two  microphones  are  used, 2=P . The 
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primary input ( ) ( ) ( )nrnsnd +=  collects the sum of unwanted noise ( )nr  and speech signal 

( )ns , and the auxiliary or reference input measures the noise signal ( ) ( )nrnx = . ANC 

corresponds to multiple-input and single-output (MISO) joint-process estimator application 

(class c, Fig. 2) with at least two microphones, 2=P . 

 
4.4 Beamforming 

Beamforming  is  a   multiple-input  and   single-output   (MISO)  application  and  consists  of 
multichannel advanced multidimensional (space-time domain) filtering techniques that 
enhance the desired signal as well as suppress the noise signal.  
 

 
Fig. 11. Adaptive beamforming. Robust generalized sidelobe canceller (RGSC). Fixed 
beamforming (FB) allow conforming determined directivity pattern. The adaptive block 
matrix (ABM) or blocking matrix, with coefficient-constrained adaptive filters, prevents the 
target signal from leaking into the adaptive interference canceller (AIC). The AIC uses 
norm-constrained adaptive filters that can further improve the robustness against target 
signal cancellation. 

 
In beamforming, two or more microphones are arranged in an array of some geometric 
shape. A beamformer is then used to filter the sensor outputs and amplifies or attenuates the 

signals depending on their direction of arrival (DOA), θ . The spatial response, or beampattern, 

of a beamformer generally features a combination of mainlobes that may be aimed at the 
target sources, and smaller sidelobes and null points aimed at the interference sources. 
Beampatterns are generally frequency-dependent, unless the beamformer is specifically 
designed to be frequency independent. 
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The sound sources are assumed to be in the far-field of the microphone array, i.e. the distance 
of the source from the array is much greater than the distance between the microphones (the 
spherical wavefronts emanating from the sources can be approximated as plane 

wavefronts). Each source ( )nsi  arrives to microphone 1 with delay vii θδκ cos=  relative to 

its arrival to 2 because it has to travel an extra distance iθδ cos ; iθ  is the DOA of ( )nsi  and 

≈v 355ms−1 is a velocity of sound. sFv≤δ  represents the spatial sampling interval of the 

wavefield; it has to fulfill this inequality to avoid spatial aliasing. The generalized sidelobe 
canceller (GSC) is an adaptive beamformer that keeps track of the characteristics of the 

interfering signal, leading to a high interference rejection performance. Initially, the P  

microphone inputs ( )nxP , Pp K1= , go through the FB that directs the beam towards the 

expected DOA. The beamformer output ( ) ( )nny xh ,=  contains the enhanced signal 

originating from the pointed direction, which is used as a reference by the ABM. The 

coefficient vector h  has to fulfill both spatial and temporal constrains =Ch c , 
1H −

⎡ ⎤= ⎣ ⎦h C C C c . The ABM adaptively subtracts the signal of interest, represented by the 

reference signal ( )ny , from each channel input ( )nxP , and provides the interference signals. 

The columns of C  must be pairwise orthogonal to the columns of the blocking matrix B , 

0H =C B . The quiescent vector h  is a component independent of data and Bghw −=  is a 

filter that satisfies the linear constrains ( )H H H= − = =C w C h B g C h c . The upper signal path 

in Fig. 11 has to be orthogonal to the lower signal path. In order to suppress only those 
signals that originate from a specific tracking region, the adaptive filter coefficients are 
constrained within predefined boundaries (Benesty & Huang, 2003). These boundaries are 
specified based on the maximum allowed deviation between the expected DOA and the 
actual DOA. The interference signals, obtained from the ABM, are passed to the AIC, which 
adaptively removes the signal components that are correlated to the interference signals 

from the beamformer output ( )ny . The norm of the filter coefficients in the AIC is 

constrained to prevent them from growing excessively large. This minimizes undesirable 
target signal cancellation, when the target signal leaks into the AIC, further improving the 
robustness of the system (Yoon et al., 2007). 
In noise reduction systems, the beamformer can be used to either reject the noise 
(interference) by attenuating signals from certain DOAs, or focus on the desired signal 
(target) by amplifying signals from the target DOA and attenuating all signals that are not 
from the target DOAs. For non real-time speech enhancement applications it is possible to 
select a set of DOAs to be tested. Therefore adaptive algorithms with directional constrains, 
like a RGSC, can be exploited to achieve better noise reduction performance. 

 
4.5 Deconvolution 

Both blind signal separation (BSS), also known as blind source separation, and multichannel blind 
deconvolution (MBD) problems are a type of inverse problems with similarities and subtle 
differences between them: in the MBD only one source is considered, and thus the system is 
single-input single-output (SISO), while in BSS there are always multiple independent 
sources and the mixing system is MIMO; the interest of MBD is to deconvolve the source 
from the AIRs, while the task of BSS is double: on the one hand the sources must be 
separated, on the other hand the sources must be deconvolved from the multiple AIRs since 
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each sensor collects a combination of every original source convolved by different filters 
(AIRs) according to (2) (Gkalelis, 2004). 
 

 
Fig. 12. Multichannel blind deconvolution. 

 
In both cases, the blind deconvolution or equalization approach as well as the blind separation 
one, must estimate adaptively the inverse of the convolutive system that allows recovering 

the input signals and suppressing the noise. The goal is to adjust W  so that PDWV = , 

where P  is a permutation matrix and D  is a diagonal matrix whose ( )pp, th is pzp

κα −
; pα  is 

a nonzero scalar weigthing, and 
P

κ  is an integer delay.  

 

 
Fig. 13. Blind source factor separation. 

 
BSS deals with the problem of separating I  unknown sources by observing P  microphone 

signals. In the underdetermined case ( IP < ) there are infinitely possible vectors ( )ns  that 

satisfy (3). There are mainly two ways to achieve the minimum norm solution. In the first, 
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the right generalized inverse of V  is estimated and then applied to the set of microphone 

signals ( )nx . Another class of algorithms employ the sparseness of speech signal to design 

better inversion strategies and identify the minimum norm solution. Many techniques of 
convolutive BSS have been developed by extending methods originally designed for blind 
deconvolution of just one channel. A usual practice is to use blind source factor separation 
(BSFS) technique, where one source (factor) is separated from the mixtures, and combine it 
with a deflationary approach, where the sources are extracted one by one after deflating, i.e. 

removing, them from the mixed signals. The MIMO FIR filter W  used for BSS becomes a 

multiple-input single-output (MISO) depicted in Fig. 13. The output ( )ny  corresponds to (8) 

and the tap-stacked column vector containing all demixing filter weights defined in (7) is 
obtained as 
 

=u Rp  (54) 

 

H
=

u
w

u Ru
 

 

 
where R  is a block matrix where its blocks are the correlation matrices pqR  between the p -

th channel and q -th channel defined in (22) and p  is a block vector where its blocks are the 

cross-cumulant vector ( ) ( ) ( ){ }cum n ,y n y n=p x K  (Gkalelis, 2004). The second step in (54) 

is just the normalization of the output signal ( )ny . This is apparent left multiplying by ( )nx . 

The deflationary BSS algorithm for Ii K1=  sources can be summarized as following: one 

source is extracted with the BSFS iterative scheme till convergence (54) and the filtering of 
the microphone signals with the estimated filters from the BSFS method (8) is performed; 

the contribution of the extracted source into the mixtures px , Pp K1= , is estimated (with 

the LS criterion) and the contribution of the o -th source into i -th mixture is computed by 

using the estimated filter b , ( ) ( )nnc yb,=  with ( ) ( ) ( ) ( )[ ]11 +−−= Bnynynyn Ly , 

B L<< ; deflate the contribution ( )nc  from the p -th mixture, ( ) ( ) ( )p px n x n c n= − , Pp K1= . 

This method is very suitable for speech enhancement application where only one source 
should be extracted, i.e. speech.  
It is possible to consider the deflationay BSFS (DBSFS) structure as a GSC. ABM exactly 
corresponds to the deflating filters of the deflationary approach. By comparing the different 
parts, i.e. the BSFS block and the fixed beamformer, it is concluded that it may be possible to 
construct similar algorithms to those of GSC. 

 
5. Conclusion 
 

This chapter is an advanced tutorial about multichannel adaptive filtering for speech 
enhancement. Different techniques have been examined in a common foundation. Several 
approaches of filtering techniques were presented as the number of channels increases.  
The spectral equalization (power subtraction), in general, can achieve more noise reduction 
than an ANC and a beamformer method. However, it is based on the noise spectrum 
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estimator instead of the unknown noise spectra at each time, producing a distortion known 
as “musical noise” (because of the way it sounds). The performance of ANC depends on the 
coherence between the input noisy signal and the reference noise signal. Only if the 
coherence is very high the results are spectacular, therefore, this fact limits its application to 
particular cases. The amount of noise that can be canceled by a beamformer relies on the 
number of microphones in the array and on the SNR of the input signal. More microphones 
can lead to more noise reduction. However, the effectiveness of a beamformer in 
suppressing directional noise depends on the angular separation between signal and the 
noise source (Benesty & Huang, 2003). The ALP method is very simple because only second 
order statistics are required, but the estimation is only optimal if the residue is i.i.d. 
Gaussian (Solé-Casals et al., 2000). 

All these techniques are narrowly connected. The linear prediction of ( )nx  is nothing but 

the deconvolution of ( )nx  (Solé-Casals et al., 2000). In (Taleb et al., 1999), the problem of 

Wiener system blind inversion using source separation methods is addressed. This 
approach can also be used for blind linear deconvolution. In (Gkalelis, 2004) the link 
between the deflationary approach (the extension of the single channel blind deconvolution 
algorithm) and the traditional GSC structure is showed. Several strategies between different 
approaches are also possible, i.e. in (Yi & Philipos, 2007), a Wiener filter, that uses linear 
prediction to estimate the signal spectrum, is presented. 
The best filter to enhance a particular recording will be chosen based on experience and 
experimentation (Koenig et al., 2007). Nevertheless, the algorithm developer would find it 
useful to have a quality measure that helps to compare, in general terms, the performance of 
different implementations of a certain algorithm (Yi & Philipos, 2007). One substantial 
ingredient of this performance is the intelligibility attained after processing the recording, or 
even better the increase of intelligibility compared to the unprocessed sample. Therefore, 
one possible way to measure the performance of an enhancement algorithm, and probably 
the best, would be to use a panel of listeners and subjective tests. To attain significant 
results, different speech recordings with different types and degrees of noise and distortion 
should be used as inputs to the algorithm, and therefore the task would probably become 
unapproachable in terms of time and effort, setting aside the fact that the experiment would 
hardly be repeatable. 
In order to properly monitor the performance of the algorithms, different types and degrees 
of degradations should be imposed to the test signal. The model used to deal with 
degradations can be as simple as an additive noise, for a mono version of the test signal 
corrupted by random noise or a second talker speech, or as complex as a virtual room 
simulator for early reflexions and a stocastic reverberation generator, for a detailed acoustic 
model of the recording room, where several noise sources can be placed in different places. 
Measured impulse responses of a real chamber is another option to obtain very realistic 
mono or multi-channel virtual recordings. 
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