We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,900 Open access books available

116,000 International authors and editors

120M Downloads

154 Countries delivered to

Our authors are among the

TOP 1% most cited scientists

12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 4

Hypothesis Testing for High-Dimensional Problems

Naveen K. Bansal

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.70210

Abstract

For high-dimensional hypothesis problems, new approaches have emerged since the publication. The most promising of them uses Bayesian approach. In this chapter, we review some of the past approaches applicable to only low-dimensional hypotheses testing and contrast it with the modern approaches of high-dimensional hypotheses testing. We review some of the new results based on Bayesian decision theory and show how Bayesian approach can be used to accommodate directional hypotheses testing and skewness in the alternatives. A real example of gene expression data is used to demonstrate a Bayesian decision theoretic approach to directional hypotheses testing with skewed alternatives.

Keywords: multiple directional hypotheses, false discovery rate, familywise error rate, gene expression, skew-normal distribution

1. Introduction

In today’s world, most of the statistical inference problems involve high-dimensional multiple hypothesis testing. Whenever we collect data, we collect data on multiple features, involving very high-dimensional variables in some cases. For example, gene expression data consist of gene expressions on thousands of genes; image data consist of image expressions on multiple voxels. The statistical analysis for these types of data involves multiple hypotheses testing (MHT). It is well known that univariate methods cannot be applied to simultaneously test hypotheses on the multiple features. The reason for this is that the error rates for the univariate analysis get multiplied under MHT, and as a result the actual error rate can be very high. To understand the main issue of multiplicity, consider the following example. Suppose there are, say, 100 misspelled words in a book, and each of these words occurs in 5% of the pages. You pick a page at random. For each misspelled word, the probability is certainly 0.05 of finding that word in the page. However, the probability is much higher that you will find at least one of the 100 misspelled words. If these words were independently
distributed, then the probability of finding at least one misspelled word is \(1 - (0.95)^{100} = 0.995\). If the placements of the misspelled words were positively dependent, then the probability will be lower than 0.995. For example, if we take an extreme case of dependence that they all occur together, then the probability will be 0.05. The same phenomenon occurs in the MHT. The statistical inference, based on the error rate of individual hypothesis testing, can lead to very high error rate for the combined hypotheses. Thus, for the MHT, adjustment in the error rate needs to be made. Note that the adjustment rate may depend on the dependent structure, but due to the complexity of the dependent structure in high dimension, dependency is usually ignored in the literature [1].

The statistical inference depends on how we define the error rate for the combined hypotheses testing. Let us suppose that there are \(m\) hypotheses testing \(H_0^i \text{ vs. } H_a^i\), \(i = 1, 2, \ldots, m\). If we do not want to make even one false discovery, then we should control the familywise error rate (FWER), which is defined as

\[
\text{FWER} = \Pr(\text{Falsely Reject } H_0^i \text{ for at least one } i, i = 1, 2, \ldots, m)
\]

There are many methods for controlling \(\text{FWER} \leq \alpha_F\) (e.g.). A simplest method is the Bonferroni’s procedure. Let \(T_i\) be the test statistics for testing \(H_0^i \text{ vs. } H_a^i\) with the corresponding \(p\)-values \(p_i\). Then, Bonferroni’s procedure rejects \(H_0^i\) if \(p_i < \alpha_i/m\). To see the proof of this, suppose \(I_0\) be the set of all \(i\) for which \(H_0^i\) is true, and suppose \(p_i < \alpha_i/m\) for at least one \(i \in I_0\).

Then using Boole’s inequality, we have, from Eq. (1),

\[
\text{FWER} = \Pr\left(\bigcup_{i \in I_0} \{p_i < \alpha_F/m\}\right) \leq \sum_{i \in I_0} \Pr\{p_i < \alpha_F/m\}
\]

Now, since, under \(H_0^i\), \(p_i \sim U(0, 1)\), \(\Pr(p_i < \alpha_i/m) = \alpha_i/m\). Then, assuming that there are \(m_0\) number of elements in \(I_0\), we have, from Eq. (2),

\[
\text{FWER} \leq \frac{m_0 \alpha_F}{m} \leq \alpha_F
\]

Holm [2] gave a modified version of Bonferroni’s procedure which also controls the familywise error rate. Holm’s Bonferroni Procedure is the following: First rank all the \(p\)-values, \(p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(m)}\), and let \(H_0^{(1)}, H_0^{(2)}, \ldots, H_0^{(m)}\) be their associated null hypotheses. Let \(l\) be the smallest index such that \(p_{(l)} > \alpha_F/(m - l + 1)\). Then, reject only those null hypotheses that are associated with \(H_0^{(1)}, H_0^{(2)}, \ldots, H_0^{(l-1)}\). Note that the selected hypotheses have \(p\)-values with \(p_{(1)} < \alpha_F/m, p_{(2)} < \alpha_F/(m - 1), \ldots, p_{(l-1)} < \alpha_F/(m - l + 2)\), and thus more powerful than Bonferroni’s procedure, since hypotheses that are selected under Bonferroni’s procedure will also be selected under Holm’s procedure.

The above Bonferroni type procedures are not very satisfactory when \(m\) is very high. Let us suppose \(m = 10,000\) (this is actually not very high for most of the high-dimensional problems), and suppose we want to control FWER by \(\alpha_F = 0.05\). Then, for Holm’s procedure, the smallest
p-value has to be lower than 0.000005 in order to reject at least one hypothesis, which may be very hard to achieve. The problem is not really with Holm’s procedure; the problem is with the use of FWER as an error rate. For a high-dimensional problem, it is unrealistic to seek for a procedure which will not make at least one false discovery. Benjamini and Hochberg [1] proposed a new approach called false discovery rate (FDR) and proposed a procedure that works much better for high-dimensional MHT.

In Section 2, we review the FDR procedure and Bayesian procedures for two-sided alternatives. An extension of directional hypotheses is presented in Section 3. In Section 3, we also discuss Bayesian procedures under skewed alternatives. In Section 4, the problem of directional hypotheses is considered by converting p-values to normally distributed test statistics. We also discuss, in Section 4, a Bayes procedure under skew-normal alternatives. An application using real data of gene expressions is also discussed in Section 4. Some concluding remarks are made in Section 5.

2. False discovery rate (FDR), Benjamini and Hochberg’s (BH) procedure, and Bayesian procedures

For each of the hypothesis testing H_0 vs. H_a, suppose a statistical procedure either rejects the null hypothesis H_0 or fails to reject H_0. For the sake of simplicity, we equate fail to reject H_0 as accepting the null H_0. However, for small sample size case, it will be unwise to make a conclusion of accepting H_0. From now on, rejections of the null will be called discoveries.

Table 1 shows the possible outcomes by a procedure, where, for example, V is the total number of discoveries, among them V_0 is the number of false discoveries.

Thus, the proportion of the false discoveries is $V_0 / \max(V, 1)$. The FDR is defined as the expected proportion of false discoveries, that is,

$$FDR = E \left[\frac{V_0}{\max(V, 1)} \right]$$

(3)

If, for example, $FDR = 0.05$, then we can expect on the average 5% of all discoveries to be false. In other words, under repeated experiments on the average, we make 5% of the false discoveries (in a frequentist’s sense). Note that $FDR \leq FWER = P(V_0 \geq 1)$ as the following inequality shows:

<table>
<thead>
<tr>
<th>Accept H_0</th>
<th>Reject H_0</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 is true</td>
<td>U_0</td>
<td>V_0</td>
</tr>
<tr>
<td>H_a is true</td>
<td>U_0</td>
<td>V_0</td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>m</td>
</tr>
</tbody>
</table>

Table 1. Total number of decisions made.
\[FDR = E \left(\frac{V_0}{\max(V, 1)} \right) = E \left(\frac{V_0}{\max(V, 1)} I(V \geq 1) \right) \leq E[I(V \geq 1)] = P(V \geq 1). \]

Thus, we are likely to make a higher number of discoveries under FDR approach than under FWER, since if a procedure controls FWER (\(\leq \alpha \)), then it also controls FDR (\(\leq \alpha \)), but not vice versa.

2.1. Benjamini and Hochberg’s procedure

Benjamini and Hochberg [1] proposed the following BH procedure which controls the FDR.

Let \(p_i \) be the \(p \)-value for the \(i \)th hypothesis under a test statistic \(T_i \). Suppose \(T_1, T_2, ..., T_m \) are independently distributed. Let \(p_1 < p_2 < ... < p_m \) be the ordered \(p \)-values with the corresponding null hypotheses be denoted by \(H_0^{(1)}, H_0^{(2)}, ..., H_0^{(m)} \). Let

\[i_0 = \max \left\{ i : p_i \leq \frac{i}{m} \alpha \right\}, \]

Then, reject \(H_0^{(i)} \) for all \(i \leq i_0 \).

This procedure controls \(FDR \leq \frac{m_0 \alpha}{m} \leq \alpha. \) Since \(m_0 \) is unknown, having the upper bound of \(\frac{m_0 \alpha}{m} \) is not very useful. If \(m_0 \) can be estimated reliably, a better bound is possible. The above result was proven in [1], under the independence of the test statistics. Hochberg and Yekitieli [3] extended the result to positively correlated test statistics, and they also sharpened the BH procedure with new \(i_0 \) defined as

\[i_0 = \max \left\{ i : p_{i_0} \leq \frac{1}{m c(m)} \alpha \right\}, \]

where \(c(m) = \sum_{i=1}^{m} \frac{1}{i} \).

2.2. Bayesian procedures

Under Bayesian setting, we assume that \(H_0^i \) and \(H_a^i, i = 1, 2, ..., m \) are generated probabilistically with

\[P(H_0^i) = p \text{ and } P(H_a^i) = 1 - p. \]

Under this setting, [4] developed a concept of local false discovery rate (fdr). If \(T_i, i = 1, 2, ..., m \) are test statistics with pdf \(T_i|H_0 \sim f_0(t) \) and \(T_i|H_a \sim f_a(t) \). Then, marginally, \(T_i \sim f(t) = pf_0(t) + (1 - p)f_a(t) \), and

\[fdr(t) = P(H_0^i|T_i = t) = \frac{pf_0(t)}{f(t)} \]
The idea is that if $T_i \in [t, t + \delta t]$, where $\delta t \rightarrow 0$, then $fdr(t)$ represents that the proportion of the times H_0^i will be true. If t is very high, then $fdr(t)$ will be very small indicating the probability of H_0^i to be very small (i.e., the false discovery rate will be very small). In Eq. (3), p and $f(t)$ are unknown, which can be estimated (see [4]).

Storey [5] proposed a positive false discovery rate:

$$p_{FDR} = \frac{E[V_0]}{E[V]}$$

where expectation is with respect to the distribution of $(T_i, \theta_i), i = 1, 2, \ldots, m$. Under the assumption that T_1, T_2, \ldots, T_m are identically and independently distributed, [6] proved that

$$p_{FDR}(\Gamma) = P(H_0^\prime | T \in \Gamma)$$

for a procedure that rejects H_0^\prime when $T_i \in \Gamma$. Based on this, $q-value$ for the multiple hypothesis (analogous to p-value for a single hypothesis) is defined as the smallest value of $p_{FDR}(\Gamma)$ such that the observed $T_i = t_i \in \Gamma$, see [6]. Under most cases, $q-value(t_i) = P(H_0^\prime | T_i > t_i)$. This gives a procedure under multiple hypothesis that rejects H_0^\prime if $q-value(t_i) < \alpha$.

3. Directional hypotheses testing

As described earlier, the null hypothesis H_0^\prime is either accepted or rejected. In most cases, however, rejection of null hypotheses is not sufficient. After rejecting H_0^\prime, finding the direction of the alternatives may also be important. A detailed discussion of the directional hypotheses can be found in [7].

Direction hypotheses testing involves testing H_0^\prime against directional hypotheses H_+^\prime and H_-^\prime, and the objective is to obtain selection region $[T_i \in \Gamma_-]$ for selecting H_-^\prime and selection region $[T_i \in \Gamma_+]$ for selecting H_+^\prime. In other words, H_0^\prime will be rejected if $T_i \in \Gamma_-$ or $T_i \in \Gamma_+$, and the direction H_-^\prime or H_+^\prime is determined according to $T_i \in \Gamma_-$ or $T_i \in \Gamma_+$, respectively. Analogous to Table 1, we now have

Table 2 illustrates the number of cases possible when accepting H_0 or selecting H_-^\prime or selecting H_+^\prime. For example, out of V times when selecting H_-^\prime, V_0 times errors are made when in fact H_0 is true.

<table>
<thead>
<tr>
<th></th>
<th>Accept H_0</th>
<th>Select H_-^\prime</th>
<th>Select H_+^\prime</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 is true</td>
<td>U_0</td>
<td>V_0</td>
<td>W_0</td>
<td>m_0</td>
</tr>
<tr>
<td>H_-^\prime is true</td>
<td>U_-^\prime</td>
<td>V_-^\prime</td>
<td>W_-^\prime</td>
<td>m_-^\prime</td>
</tr>
<tr>
<td>H_+^\prime is true</td>
<td>U_+^\prime</td>
<td>V_+^\prime</td>
<td>W_+^\prime</td>
<td>m_+^\prime</td>
</tr>
<tr>
<td>Total</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>m</td>
</tr>
</tbody>
</table>

Table 2. Number of decisions under directional hypotheses.
true, and V_ϵ times errors are made when in fact H_ϵ is true. In other words, when selecting H_ϵ, not only H_0 is falsely rejected V_0 times but the direction is also falsely selected V_ϵ times. This leads to a concept of directional false discovery rate $DFDR$ defined as

$$DFDR = E \left[\frac{V_0 + V_\epsilon + W_0 + W_\epsilon}{\max(V + W, 1)} \right].$$

This is analogous to FDR for two-sided alternatives. For most cases, [8] showed that $DFDR$-controlling procedures for directional hypotheses can be treated as FDR-controlling procedure for two-sided multiple hypotheses with direction determined by the sign of the test statistics.

Bansal and Miescke [9] considered a decision theoretic formulation to multiple hypotheses problems. The approach assumes parametric modeling. Suppose the model for the observed data x be represented by $P(x; \theta, \eta)$, where $\theta = (\theta_1, \theta_2, ..., \theta_m)^T$ is a parameter vector of interest, and η is a nuisance parameter. The problem of interest is to test

$$H_{0i} : \theta_i = 0 \text{ vs. } H_{-i} : \theta_i < 0 \text{ or } H_{+i} : \theta_i > 0$$

Let the loss function of a decision rule $d(x) = (d_1(x), d_2(x), ..., d_m(x))$ is given by

$$L(\theta, d(x)) = \sum_{i=1}^{m} l_i(\theta, d_i(x)),$$

where $l_i(\theta, d_i(x))$ is an individual loss of d_i. Here, $d_i \in \{-1, 0, 1\}$ with $d_i = 0$, $d_i = -1$, and $d_i = 1$ means accepting H_{0i}, selecting H_{-i}, and selecting H_{+i}, respectively. Note that for the “0-1” loss, that is, when $l_i = 0$ for correct decision, and $l_i = 1$ for the incorrect decision, L is the total number of incorrect decisions. Thus, minimizing the $E[L(\theta, d(X))]$ for the “0-1” loss amounts to minimizing the expected number of incorrect decisions.

Now, suppose under the Bayesian setting, $\theta_i, i = 1, 2, ..., m$ are generated from

$$\pi(\theta) = p_- \pi_-(\theta) + p_0 I(\theta = 0) + p_+ \pi_+(\theta),$$

where π_- is the prior density over $(-\infty, 0]$ and π_+ is the prior density over $[0, \infty)$. A special case of prior (9) is that $\pi_-(\theta) = \pi_+(\theta)$. In this case, p_- and p_+ reflect the skewness in the alternative hypotheses. For example, if $p_- = p_+$ then we have a symmetric case. In this case, the selection of H_- or H_+ after rejecting H_0 based on the sign of the test statistics makes sense. On the other hand, if $p_- < p_+$ then it reflects that more of the θ_is are positives than negatives. For many gene expressions data analyses, this presents a useful case when over-expressed genes may occur more frequently than under-expressed genes as a result of gene mutation (naturally or as a result of external factors). For specific examples, see [9, 10].

From now on, we focus on the “0-1” loss. The results can be easily extended to other loss functions. The “0-1” loss can be written as
Let \(D \) be the directional false discovery rate (6) is defined in a frequentist manner, in which expectation is with respect to \(X \mid \theta \). Let us define Eq. (6) as PDFDR when expectation is taken with respect to \(X \mid \theta \) and then further expectation is taken with respect to \(\theta \). We define posterior version of Eq. (6) as PDFDR when the expectation is taken with respect to the posterior distribution of \(\theta \mid X = x \). It can be shown that
\[
PDFDR = 1 - \frac{\sum_{i=1}^m \left(I(d_i = -1)v_i^{(-)} + I(d_i = +1)v_i^{(+)\prime} \right)}{(|D_-| + |D_+|)\nu 1}
\]
(10)
Here, \(|D_-| = \sum_{i=1}^m I(d_i = -1) \) and \(|D_+| = \sum_{i=1}^m I(d_i = 1) \).

A constrained Bayes rule can be obtained by minimizing the posterior expected loss subject to the constraint that PDFDR \(\leq \alpha \). There can be many approaches to obtain the constraint minimization. We present, here, an approach given in [9], which is as follows:

Consider the sets \(D^- \) and \(D^+ \) of indices that selects \(H_i^{(-)} \) and \(H_i^{(+)\prime} \), respectively, according to the unconstrained Bayes rule, that is, when \(v_i^{(-)} = \max\{v_i^{(0)}, v_i^{(+)\prime} \} \) and \(v_i^{(+)\prime} = \max\{v_i^{(0)}, v_i^{(-)} \} \), respectively. Define \(\xi_i = v_i^{(-)} \) for \(i \in D_i^- \), and \(\xi_i = v_i^{(+)\prime} \) for \(i \in D_i^+ \), and then rank all \(\xi_i, i \in D^- \cup D^+ \), from the lowest to the highest. Let the ranked values be denoted by \(\xi_{[1]} \leq \xi_{[2]} \leq \ldots \leq \xi_{[\hat{k}]} \), where \(\hat{k} = |D^- \cup D^+| \). Denote
\[
\hat{\gamma}_0 = \max \left\{ j \leq \hat{k} : \frac{1}{j} \sum_{k=1}^j \xi_{[k-i+1]} \geq 1 - \alpha \right\}
\]

Let \(D_\xi \) denotes the set of indices corresponding to \(\xi_k \geq \xi_{[k-1]} \geq \ldots \geq \xi_{[\hat{k}-i]} \). Now, select \(H_i^l \) for \(i \in D^- \cap D_\xi \).
3.2. Estimating mixture parameters

The above procedure requires estimation of the parameters \((p, p_0, p_+\)) and estimation of the nuisance parameter \(\eta\). Note that marginally,

\[
X_i \sim p \cdot f_-(x_i|\eta) + p_0 f_0(x_i|\eta) + p_+ f_+(x_i|\eta),
\]

while \(f_0(x_i|\eta) = f(x_i|0, \eta)\), and

\[
f_-(x_i|\eta) = \int_{-\infty}^{0} f(x_i|\theta, \eta) \pi_-(\theta) d\theta, f_+(x_i|\eta) = \int_{0}^{\infty} f(x_i|\theta, \eta) \pi_+(\theta) d\theta
\]

and \(X_1, X_2, \ldots, X_m\) are independently distributed. Estimates of the parameters of the mixed density can be obtained by using EM algorithm. It is easy to see that the EM estimators of \((p, p_0, p_+)\) follows the following iterative scheme:

\[
p^{(j+1)}_+ = \frac{1}{m} \sum_{i=1}^{m} \frac{p_0 f_0(x_i|\eta) + p f_+(x_i|\eta)}{p_0 f_0(x_i|\eta) + p f_+(x_i|\eta) + p_0 f_0(x_i|\eta) + p f_+(x_i|\eta)},
\]

\[
p_0^{(j+1)} = \frac{1}{m} \sum_{i=1}^{m} \frac{p_0 f_0(x_i|\eta)}{p_0 f_0(x_i|\eta) + p f_+(x_i|\eta) + p_0 f_0(x_i|\eta) + p f_+(x_i|\eta)},
\]

\[
p_+^{(j+1)} = \frac{1}{m} \sum_{i=1}^{m} \frac{p f_+(x_i|\eta)}{p_0 f_0(x_i|\eta) + p f_+(x_i|\eta) + p_0 f_0(x_i|\eta) + p f_+(x_i|\eta)}
\]

Estimation of \(\eta\) can also be estimated iteratively by using EM algorithm or by different means. See [9] for more details.

4. Bayes rules by converting p-values to normally distributed test statistics

Let \(T_i, i = 1, 2, \ldots, m\) be independently and identically distributed test statistics. Let \(P_i = P(T_i \leq t_i|H_0^e)\) be the corresponding p-values. Note that under \(H_0^e\), \(P_i \sim U(0, 1)\). Let \(X_i = \Phi^{-1}(P_i)\) be the corresponding z-score. Then, under \(H_0^e\), \(X_i \sim N(0, 1)\). Efron [11] suggested using \(X_i \sim N(0, \sigma^2)\) under \(H_0^e\) with \(\sigma^2\) appropriately estimated. Efron pointed out that, in practice, \(\sigma^2\) may not be equal to 1 due to possible correlation among multiple components. Under the alternative, we assume that \(X_i \sim N(\theta, \sigma^2)\), where \(\theta\)s are generated with distribution described in Eq. (9). It is true that this is a big leap in making this assumption. In practice, this assumption can be tested, however, and if true, it can lead to very powerful results. [9] assumed that \(\pi_0(\theta)\) is a truncated normal distribution \(N(0, \omega^2)\), and \(\pi_+(\theta) = \pi_0(-\theta)\), where \(\omega\) is some positive constant depending upon how inflated we believe the alternative \(\theta\)s are. It can be seen that
\begin{align}
\tilde{v}_i^{(-)} &\propto p_\cdot T_-(x_i), \quad \tilde{v}_i^{(+)} \propto p_+ T_+(x_i), \quad \text{and} \quad \tilde{v}_i^{(0)} \propto p_0 \tag{11}
\end{align}

with the proportionality constant \([p_\cdot T_-(x_i) + p_+ T_+(x_i) + p_0]^{-1} \). Also, \(T_-(x_i) = T_+(x_i) \), and

\begin{equation}
T_+(x_i) = \exp \left\{ \frac{x_i^2}{2(1 + \omega)^2} \right\} \Phi \left(\frac{x_i}{\sigma \sqrt{1 + \omega}} \right) \tag{12}
\end{equation}

In order to apply the Bayes procedure as discussed in Section 3, all we need are Eqs. (11) and (12). For computation details, see [9].

4.1. Skew-normal alternatives

In the above discussions, we assumed that \(\theta_i \)s are generated from distribution with pdf (9). [12] considered the case when \(\theta_i \)s are generated from a skew-normal distribution under the alternative hypotheses. The skew-normal distribution was first introduced in [13]. It has an important property that if \((\xi_1, \xi_2)\) \(\sim\) Bivariate Normal with mean 0, then the distribution of \(\xi_1 | \xi_2 > 0 \sim \text{Skew-normal}\). Its pdf is given by

\begin{equation}
g_+(\xi_i) = 2 \frac{1}{\sigma_1} \phi \left(\frac{\xi_i}{\sigma_1} \right) \Phi \left(\frac{\lambda \xi_i}{\sigma_1} \right),
\end{equation}

and is denoted by \(SN(0, \sigma_1, \lambda) \). Here, \(\lambda \) is a skew parameter. If \(\lambda = 0 \), then this distribution is \(N(0, \sigma_1) \). The implication of this result is the following: suppose within a normal system an outcome follows a normal distribution, but if a correlated factor starts exerting a positive effect, then the outcome variable will start following a skew-normal distribution. For example, consider RNAs experiments and assume that genes are in a normal state. Suppose a gene mutation occurs at a later state and it starts exerting positive effect on the affected genes. In this case, based on the above property of skew-normal distribution, we can assume that the expressions of the affected genes will follow a skew-normal distribution.

Under this formulation, we assume that \(\theta_i = 1, 2, \ldots, m \) are generated from

\begin{equation}
\pi_{\lambda}(\theta_i) = p I(\theta_i = 0) + (1 - p) \frac{2}{\sigma_1} \phi \left(\frac{\theta_i}{\sigma_1} \right) \Phi \left(\frac{\lambda \theta_i}{\sigma_1} \right)
\end{equation}

Now, similar to Eq. (11), it can be seen that

\begin{align}
\tilde{v}_i^{(-)} &\propto (1 - p)T_-(x_i), \quad \tilde{v}_i^{(+)} \propto (1 - p)T_+(x_i), \quad \tilde{v}_i^{(0)} \propto p
\end{align}

with proportionality constant \([(1 - p)(T_+(x_i) + T_-(x_i) + p)]^{-1} \), where

\begin{equation}
T_+(x_i) = \frac{2}{\sigma_1} \int_0^\infty \exp \left(\frac{x_i \theta}{\sigma^2} \right) \phi \left(\sqrt{\frac{1}{\sigma_1^2} + \frac{1}{\sigma^2}} \right) \Phi \left(\frac{\lambda \theta}{\sigma_1} \right) d\theta,
\end{equation}

and
\[T_-(x_i) = \frac{2}{\sigma_1^2} \int_{-\infty}^{0} \exp \left(\frac{x_i \theta}{\sigma^2} \right) \phi \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma^2} \right) \Phi \left(\frac{\lambda \theta}{\sigma_1} \right) \, d\theta. \]

The sets \(D_B^0 \) and \(D_B^+ \) can be written as

\[D_B^0 = \{ i : x_i < -c_1 \} \quad \text{and} \quad D_B^+ = \{ i : x_i > c_2 \} \]

where \(c_1 > 0 \) and \(c_2 > 0 \) are determined as shown in Figure 1 by considering the point of intersections of \(y = p/(1 - p) \) and \(y = T_-(x) \), and \(y = p/(1 - p) \) and \(y = T_+(x) \), respectively. Note that when \(\lambda > 0 \), the intersection point \(Q \) (as shown in the figure) will be to the left of \(x = 0 \), and when \(\lambda < 0 \), \(Q \) will be to the right of \(x = 0 \). Thus, when \(\lambda > 0 \), \(c_1 > c_2 \) and the opposite is true when \(\lambda < 0 \). When \(\lambda = 0 \), \(T_-(x) = T_+(x) \) and thus \(c_1 = c_2 \). If \(\lambda \to \infty \), \(T_-(x) \to 0 \) and thus \(D_B^+ \) is an empty set which is equivalent to a one-tailed test. As discussed in Section 3, the procedure based on Eq. (13) by itself does not control \(BDFDR \). However, \(c_1 \) and \(c_2 \) can be further shrunk so that the resulting procedure achieves \(BDFDR < \alpha \); see [12] for details.

To illustrate the above procedure, and to compare it with the standard FDR procedure (BY) of [8], which selects the direction based on the sign of the test statistics, we consider a HIV data described in [14]. For detailed analysis, see [12]. Here, we describe the analysis very briefly. The data consist of eight microarrays, four from cells of HIV-infected subjects and four from uninfected subjects, each with expression levels of 7680 genes. For each gene, we obtained a two-sample \(t \)-statistic, comparing the infected versus the uninfected subjects, which is then transformed to a \(z \)-value, where \(z_i = \Phi^{-1}(F_0(t_i)) \). Here, \(F_0(t) \) denotes the cumulative distribution

![Figure 1. Graph of \(T_+(x) \) and \(T_-(x) \) with cutoff values \(-c_1 \) and \(c_2 \) such that \(T_+(x) \geq \frac{1}{\Phi} \) and \(T_-(x) \geq \frac{1}{\Phi} \).](image)
function (cdf) of \(t \) -distribution with six degrees of freedom. **Figure 2** shows the histogram of the \(z \)-values with a skew-normal fit. Although the null distribution of \(Z \) should be \(N(0,1) \). However, as suggested in [11], we use the null distribution as \(N(-0.11,0.75^2) \). Thus, we formulate our problem as testing hypotheses (7) with test statistics \(Z_i \sim N(-0.11 + \theta, 0.75^2) \).

BY procedure resulted in cutoffs \((-3.94,3.94)\), which resulted in 18 total discoveries with two genes declared as under-expressed and 16 as over-expressed. For the constrained Bayes rule, we first used the EM algorithm to obtain the parameter estimates as \(\hat{p} = 0.99, \hat{d} = 0.79, \hat{\sigma}_1 = 1.54, \) and \(\hat{\lambda} = 0.22 \). The Bayes procedure ended up with cut-off points \((-2.82,2.70)\) with a total of 86 discoveries (under-expressed genes: 23 and over-expressed genes: 63). Note that the number of discoveries by the Bayes rule is much higher than by the BY procedure.

5. Concluding remarks

There are many different methods of testing multiple hypotheses. Methodologies, however, depend on the criteria we choose. When the dimension of multiple hypotheses is not very high, the familywise error rate (FWER) is an appropriate criterion which safeguards against making even one false discovery. However, when the dimension of multiple hypotheses is very high, the FWER is not very useful; instead, a false discover rate (FDR) criterion is a good approach. Although FDR was originally defined as a frequentist’s concept, it can be re-interpreted in a Bayesian framework. The Bayesian framework brings many advantages. For example, a decision-theoretic formulation is easy to implement, directional hypotheses are easy to handle,
and the skewness in the alternatives is easy to implement. Drawback is that we need to make an assumption about the prior distributions under the alternatives. Some work has been done based on nonparametric priors; however, much more work is needed.

Author details

Naveen K. Bansal
Address all correspondence to: naveen.bansal@mu.edu
Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, WI, USA

References

