We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,200
Open access books available

116,000
International authors and editors

125M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Prologue

The first member of the Archaea was described in 1880 [1–3]. Yet, the recognition and formal description of the domain Archaea, as separated from Bacteria and Eukarya, occurred in 1977 during early phylogenetic analyses based upon ribosomal DNA sequences [4–6]. Indeed, members of the archaeal domain are characterized by several distinguishing traits [3] as confirmed later based on the first complete archaeal genome sequence obtained by Bult et al. [7] and the subsequent finished and ongoing archaeal sequencing projects (https://gold.jgi.doe.gov/organisms?Organism.Domain=ARCHAEAL, ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/) [8, 9].

The archaeal domain is composed of the DPANN superphylum [10]—Aenigmarchaeota, Diphtheritrites, Nanoarchaeota, Nanohaloarchaeota, Pacearchaeota, Partarchaeota and Woesarchaeota [11]—excluded from the common branch of the TACK (or TACKL [12]) superphylum [13]—Aigarchaeota [14], Bathyarchaeota [15], Crenarchaeota [16], Korarchaeota [17], Lokiarchaeota [18] and Thaumarchaeota [19]—with the Euryarchaeota phylum [16]—extreme halophilic Archaea, hyperthermophiles such as Thermococcus and Pyrococcus, most acidophilic-thermophilic prokaryotes, the thermophilic-acidophilic cell wall-less Thermoplasma, methanogens [20] and the Altiaarchaeales clade [21].

The Archaea are ubiquitous in most terrestrial, aquatic and extreme environments (acidophilic, halophilic, mesophilic, methanogenic, psychrophilic and thermophilic) [20, 22]. Although very diversified with a great number of species, luckily, no member of the domain Archaea has been described as a pathogen for humans, animals or plants [23–25]. Thus, Archaea are a potentially valuable resource in the development of new biocatalysts, novel pharmaceuticals and various biotechnological applications. Applications of Archaea (for review, see [26–32] and references therein) may be subdivided into four main fields (Figure 1): (i) commercial enzymes and/or molecules, (ii) environment, (iii) food and (iv) health.
Figure 1. Examples of potential applications of Archaea in biotechnology depicted in a 16S rDNA phylogenetic tree visualized via the iTOL (Interactive Tree Of Life) tool [33]. Potential applications of Archaea were subdivided into four fields (commercial enzymes and/or molecules (stars), environment (circles), food (triangles) and health (squares)) based on the reference(s) listed following each species. Thirty eight (n=38) archaeal species were integrated into the above phylogenetic tree (one DPANN species (white color), 21 Euryarchaeota species (dark grey color), 16 TACK species (light grey color)): Acidimans hospitalis W1 (NC_015518) [34, 35], Acidiobolus saccharovorans 345-15 (NC_014374) [36, 37], Aeropyrum acini JCM 12091 (NC_121692) [38], Aeropyrum persis K1 (NC_000854) [39], Archaeoglobus fulgidus DSM 4304 (NC_000947) [40, 41], Caldivirga maquilingensis IC-167 (NC_009954) [42], Desulfurococcus fermentans DSM 16532 (NC_018001) [43], Desulfurococcaceae mobilis DSM 2161 (NC_014961) [44], Ferroglobus placidus DSM 10642 (NC_013849) [45], Ferrovivibacterium fontis Kam940 (NC_017461) [46], Halobacterium salinarum R1 (NC_010364) [47], Halobacterium sp. NRC-1 (NC_002607) [48], Halofexus mediterranei ATCC 33500 (NC_017941) [49], Halogeometricum borinquense DSM 11551 (NC_014729) [50], Halorhabdus utahensis JCM 11049 (NC_013158) [51], Halorhabdus larseni XH-48 (NZ_CP007055) [52], Haloterrigena turkenica DSM 5511 (NC_013743) [53], Metallosphaera sedula DSM 5348 (NC_009440) [55], Methanocaldococcus jannaschii DSM 2663 (NC_000909) [27, 56], Methanotriss igneus DSM 5666 (NC_015962) [57], Natronalba megadii ATCC 43099 (NC_013922) [58], Nanoarchaeum equitans Ks4-M (NC_005213) [59, 60], Pyrococcus aerophilum IM2 (NC_041998) [61, 62], Pyrobaculum caldifontis JCM 11548 (NC_009073) [63], Pyrobaculum sp. 1860 (NC_016645) [64, 65], Pyrococcus horikoshii OT3 (NC_009861) [66], Pyrodictium sp. ST04 (NC_017946) [67], Pyrococcus yunanosii CH1 (NC_015680) [68], Sulfolobus acidocaldarius DSM 639 (NC_007181) [69], Sulfolobus solfataricus P2 (NZ_LT549890) [70], Thermococcus gammatolerans EJ3 (NC_012804) [71], Thermococcus litoralis DSM 5473 (NC_022084) [72], Thermococcus onnurineus NA1 (NC_011529) [73], Thermococcus sp. CL3 (NC_018015) [74], Thermoplasma acidophilum DSM 1728 (NC_002578) [75, 76], Thermoplasma volcanium GSS1 (NC_002689) [77], Vulcanseta moutnovskii 768-28 (NC_015151) [78].

The first chapter is an Introductory Chapter, where editors give a general overview of the content of the book.

The second chapter by Castro-Fernandez et al., entitled ‘Evolution, metabolism and molecular mechanisms underlying extreme adaptation of Euryarchaeota and its biotechnological potential’, provides an interesting depiction of the phylum Euryarchaeota in terms of evolutive history, metabolic strategies, lipid composition, proteic structural adaptations and its biotechnological applications.

The third chapter ‘Archaebiotics: archaea as pharmabiotics for treating chronic disease in humans?’ was written by Ben Hania and co-authors. It promotes the idea that some specific archaea are potential next-generation probiotics.

The fourth chapter ‘Biocompounds from haloarchaea and their uses in biotechnology’ by Torregrosa-Crespo et al., emphasizes the main characteristics of biocompounds from haloarchaea and their potential uses in biomedicine, pharmacy and industry.

The book concludes with a (fifth) chapter by Mizuno et al., entitled ‘Plasmid curing is a promising approach to improve thermophiles for biotechnological applications: perspectives in archaea’, providing a new tip based on the plasmid-curing approach for improving the potential of thermophiles in various biotechnological applications.

Finally, we would like to thank all authors for their contributions. We are also grateful to InTech Publishing Process Managers, particularly Ms. Mirena Čalmić, Ms. Romina Rovan and Ms. Ana Pantar, who assisted us with patience until the publication of this book.

Author details

Haïtham Sghaier1,2,3,*, Afef Najjari3,4 and Kais Ghedira4,5

*Address all correspondence to: sghaier.haitham@gmail.com

1 Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet, Tunisia

2 Laboratory "Biotechnology and Nuclear Technology" (LR16CNSTN01), CNSTN, Sidi Thabet, Tunisia

3 Univ. Manouba, ISBST, BVBGR-LR11ES31, Ariana, Tunisia

4 University of Tunis El Manar, Tunis, Tunisia

5 Laboratory of BioInformatics bioMathematics and bioStatistics (BIMS, LR16IPT09), Pasteur Institute of Tunis, Tunis, Tunisia
References

[64] Shao H, Xu L, Yan Y. Biochemical characterization of a carboxylesterase from the archaeon *Pyrobaculum* sp. 1860 and a rational explanation of its substrate specificity and thermostability. International Journal of Molecular Sciences. 2014;15(9):16885-16910

