We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,900
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 5

Nonlinear Dynamics and Control of Aerial Robots

Mahmut Reyhanoglu and Muhammad Rehan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69641

Abstract

Aerial robotics is one of the fastest growing industry and has a number of evolving applications. Higher agility make aerial robots ideal candidate for applications like rescue missions especially in difficult to access areas. This chapter first derives the complete nonlinear dynamics of an aerial robot consisting of a quadcopter with a two-link robot manipulator. Precise control of such an aerial robot is a challenging task due to the fact that the translational and rotational dynamics of the quadcopter are strongly coupled with the dynamics of the manipulator. We extend our previous results on the control of quadrotor UAVs to the control of aerial robots. In particular, we design a backstepping and Lyapunov-based nonlinear feedback control law that achieves point-to-point control of the aerial robot. The effectiveness of this feedback control law is illustrated through a simulation example.

Keywords: quadcopter, robot manipulator, backstepping method, nonlinear control

1. Introduction

The recent surge of interest in applications involving unmanned aerial vehicles (UAVs) has inspired several research efforts in UAV dynamic modeling and control. In particular, nonlinear control of fixed-wing UAVs has attracted considerable research efforts during recent years both for civilian and military purposes. The control approaches developed for fixed-wing UAVs include gain scheduling, model predictive control, backstepping, sliding mode, nested saturation, fuzzy control, H_∞ control, dynamic inversion based control, model reference adaptive control, and model based fault tolerant control [1–12].

While control applications involving fixed-wing UAVs have been widely investigated in recent literature, quadrotor UAV (quadcopter) control applications are growing in popularity due to their maneuverability and versatility. Quadcopters offer practical advantages over fixed-wing
Aerial robotics is one of the fastest growing industries and has a number of evolving applications. Higher agility makes aerial robots an ideal candidate for applications like rescue missions especially in difficult to access areas. Furthermore, swarm robotics (multiple robots working together) is another exciting application of aerial robotics, for example coordinated assembly at higher altitudes. These robots can behave like individuals working in a group without centralized control. Researchers have developed intelligent control algorithms for the swarms after deep study of animal behavior in herds, bird flocks, and fish schools. In some applications, for an aerial robot, linear control theory works well but these control techniques are effective in a limited operating region. Moreover, the motion of arm induces disturbances to the quadcopter dynamics so the linear controllers lose their effectiveness during operation and sometimes the closed loop system becomes unstable. In order to accomplish complex missions in the presence of uncertainties in the environment, to achieve better maneuverability and precise 3D position and attitude control, nonlinear control techniques have been found effective [20–27]. In Ref. [20] a set of nonlinear control laws have been proposed for aerial manipulator that provide asymptotic attitude and position tracking. Backstepping-based nonlinear control scheme for automatic trajectory tracking for aerial manipulators has been proposed in Refs. [22, 24].

In this chapter, we extend our results on the control of quadcopters to the control of aerial robots. We derive the complete nonlinear dynamics of an aerial robot consisting of a quadcopter with a two-link robot manipulator. Precise control of such a robot is a challenging task because attitude and position dynamics of the quadcopter are strongly coupled with the...
dynamics of the manipulator. We develop nonlinear control laws that ensure the control of position and attitude of the aerial robot. Simulation results are included to demonstrate the effectiveness of the control laws.

2. Mathematical model

This section formulates the dynamics of an aerial robot consisting of a quadcopter with a two-link robot manipulator. The quadcopter is represented as a base body and the links as internal bodies. The equations of motion are expressed in terms of the three dimensional translational velocity vector, the attitude, the angular velocity, and the internal (shape) coordinates representing the configuration of the two links.

2.1. Multibody vehicle dynamics

Following the development in [28], let $v \in \mathbb{R}^3$, $\omega \in \mathbb{R}^3$, and $\eta \in \mathbb{S}^1 \times \mathbb{S}^1$ denote the base body translational velocity vector, the base body angular velocity vector, and the vector of internal coordinates, respectively. In these variables, the kinetic energy has the form $T = T(v, \omega, \eta)$, which is $SE(3)$-invariant in the sense that it does not depend on the base body position and attitude. The equations of motion of the quadrotor with internal dynamics are shown to be given by:

$$\frac{d}{dt} \frac{\partial T}{\partial v} + \dot{\omega} \frac{\partial T}{\partial \omega} = F_t,$$ \hspace{1cm} (1)

$$\frac{d}{dt} \frac{\partial T}{\partial \omega} + \dot{\omega} \frac{\partial T}{\partial \omega} + \dot{v} \frac{\partial T}{\partial v} = \tau_r,$$ \hspace{1cm} (2)

$$\frac{d}{dt} \frac{\partial T}{\partial \eta} - \frac{\partial T}{\partial \dot{\eta}} = \tau_s,$$ \hspace{1cm} (3)

where $F_t \in \mathbb{R}^3$, $\tau_r \in \mathbb{R}^3$ denote the vectors of generalized control forces and generalized control torques, respectively, that act on the base body, and $\tau_s \in \mathbb{R}^3$ is the vector of joint torques. For a given vector $a = [a_1, a_2, a_3]^T \in \mathbb{R}^3$, the skew-symmetric matrix \hat{a} defines the corresponding cross-product operation $a \times$, given by

$$\hat{a} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}.$$ \hspace{1cm} (4)

Note that Eqs. (1) and (2) are identical to Kirchhoff’s equations [29], which can also be expressed in the form of Euler-Poincaré equations.

2.2. Nonlinear equations of motion

Consider an aerial robot that consists of a quadcopter with a two DOF manipulator arm moving in a three-dimensional space as shown in Figure 1, where $p = [x \ y \ z]^T$ denotes the
inertial position of the center of mass of the quadcopter. Denote by xyz axes the inertial frame \mathcal{F}_1 and by $x_By_Bz_B$ axes the body-fixed frame \mathcal{F}_B with the origin at the CM of the quadcopter. Let R denote the attitude matrix of the quadcopter and (v, ω) be the translational and angular velocities of the CM of the quadrotor in \mathcal{F}_B. Then, the translational and rotational kinematics can be expressed as

$$\dot{p} = Rv, \quad (5)$$

$$\dot{R} = R\dot{\omega}. \quad (6)$$

The quadcopter consists of four propellers connected to a rigid frame. Each propeller is mounted on the frame at a distance l from the origin. The quadcopter has a mass m and inertia matrix J defined with respect to the axes of rotation. Due to symmetry of the system, J is diagonal, that is, $J = \text{diag}(J_{xx}, J_{yy}, J_{zz})$. We refer to rotation about the x_B-axis as roll, rotation about the y_B-axis as pitch, and rotation about the z_B-axis as yaw. The propellers generate lift forces

$$F_i = b\Omega_i^2 = bK_i^2V_i^2, \quad (7)$$

where Ω_i, V_i denote, respectively, the angular rate and input voltage for propeller i, and b is the thrust coefficient. The total thrust is given by

$$F_p = \sum_{i=1}^{4} F_i e_3 = bK_i^2(V_1^2 + V_2^2 + V_3^2 + V_4^2)e_3, \quad (8)$$

where $e_3 = [0 \ 0 \ 1]^T \in \mathbb{R}^3$ is the third standard basis vector.

Note that, as shown in Figure 2, propellers 1 and 3 rotate clockwise, and propellers 2 and 4 rotate counter-clockwise. By balancing the torque between opposing propellers, the roll and pitch angle can be controlled. Since all four propellers generate a net torque about the yaw axis, the yaw angle can be controlled by balancing the torque generated by clockwise and counter-clockwise rotating propellers.
The arm is attached at the CM of the quadcopter and it can only move in \(xz\)-plane of the body-fixed frame \(F_B\). The physical constants are the quadcopter mass \(m\), the link masses \(m_i\), \(i = 1,2\), and the payload mass \(m_p\). Let \(l_i\) denote the distance from joint \(i\) to the CM of link \(i\) and \(l_i\) be the length of link \(i\). The position vectors for the CM of the links and the payload with respect to the CM of the base body in \(F_B\) can be written as

\[
\rho_1 = \begin{bmatrix} l_1 \cos \theta_1 & 0 & l_1 \sin \theta_1 \end{bmatrix}^T, \\
\rho_2 = \begin{bmatrix} l_1 \cos \theta_1 + l_2 \cos \theta_2 & l_1 \sin \theta_1 + l_2 \sin \theta_2 \end{bmatrix}^T, \\
\rho_p = \begin{bmatrix} l_1 \cos \theta_1 + l_2 \cos \theta_2 & 0 & l_1 \sin \theta_1 + l_2 \sin \theta_2 \end{bmatrix}^T.
\]

Let \(F_t = F_g + F_p\), where \(F_g\) and \(F_p\) denote, respectively, the gravitational force acting on aerial robot and the total thrust generated by the four propellers. Also let \(\tau_g = \tau_g + \tau_p\) where \(\tau_g\) and \(\tau_p\) are the torque acting on the aerial robot due to gravity and the torque generated by the propellers, respectively.

Clearly, \(F_g\) and \(\tau_g\) can be computed as

\[
F_g = -mgR^T e_3, \\
\tau_g = -g[m_1\rho_1 + m_2\rho_2 + m_p\rho_p] \times R^T e_3,
\]

where \(m_i = m + m_1 + m_2 + m_p\).

The generalized torque vector \(\tau_p\) (expressed in the body frame) comprises the following components:

- Propellers 2 and 4 generate a moment \(l(F_4 - F_2) = blK_v^2(V_4^2 - V_2^2)\) about the roll axis.
- Propellers 1 and 3 generate a moment \(l(F_3 - F_1) = blK_v^2(V_3^2 - V_1^2)\) about the pitch axis.
- The sum of all torques about \(z\)-axis is \(dK_v^2(V_1^2 - V_2^2 + V_3^2 - V_4^2)\) and causes a yaw moment.
- The rotation of the propellers causes the gyroscopic effect \(J_1K_v\omega_y(V_1 - V_2 + V_3 - V_4)\) about the roll-axis and \(-J_2K_v\omega_z(V_1 - V_2 + V_3 - V_4)\) about the pitch-axis.

\[\text{Figure 2. Model of the quadcopter.}\]
Here \(d \) denotes the drag coefficient, \(l \) is the distance from the pivot to the motor, and \(J_r \) is the rotor inertia. Combined, the generalized torque \(\tau_p \) can be expressed as

\[
\tau_p = \begin{bmatrix}
bl K^2_b (V_2^2 - V_2^2) + J_r \omega_2 \Omega_r \\
bl K^2_b (V_3^2 - V_3^2) - J_r \omega_2 \Omega_r \\
dK^2_b (V_1^2 - V_1^2 + V_2^2 - V_4^2)
\end{bmatrix},
\]

where \(\Omega_r := K_r (V_1 - V_2 + V_3 - V_4) \) is the overall residual angular speed of the propellers.

Let \(\eta = [\theta_1 \theta_2]^T \) denote the shape variables. Then, the linear and angular velocities of each link, and the linear velocity of the payload can be expressed in \(F_B \) as

\[
v_i = v + \Omega_i \rho_i + \frac{\partial \rho_i}{\partial \eta} \dot{\eta}, \quad i = 1, 2,
\]

\[
\omega_i = \omega + \theta_i \rho_i + C_i(\eta) \dot{\eta}, \quad i = 1, 2,
\]

\[
u_p = v + \omega_p \rho_p + \frac{\partial \rho_p}{\partial \eta} \dot{\eta} = v - \rho_i \omega + \frac{\partial \rho_p}{\partial \eta} \dot{\eta},
\]

where \(e_2 = [0 \ 1 \ 0]^T \in \mathbb{R}^3 \) is the second standard basis vector. The total kinetic energy can now be expressed as

\[
T(v, \omega, \eta, \dot{\eta}) = \frac{1}{2} m v^T v + \frac{1}{2} \omega^T J^T \omega + \frac{1}{2} \sum_{i=1}^2 (m_i v_i^T v_i + \omega_i^T J_i \omega_i) + \frac{1}{2} m_p v_p^2,
\]

where \(J_i = R_i^T J_i R_i \) is the inertia matrix of the \(i \)th link with respect to the body frame \(F_B \), \(R_i \) is the rotation matrix of the \(i \)th link, which is given by

\[
R_i = \begin{bmatrix}
\cos \theta_i & 0 & \sin \theta_i \\
0 & 1 & 0 \\
-\sin \theta_i & 0 & \cos \theta_i
\end{bmatrix}, \quad i = 1, 2,
\]

and \(J_i \) denotes the inertia matrix of the \(i \)th link with respect to \(x_i, y_i, z_i \) axes attached to the link. Assuming the two links are made up of homogeneous rods, \(J_i \) can be expressed as

\[
J_i = \begin{bmatrix}
0 & 0 & 0 \\
0 & \frac{1}{12} m_i l_i^2 & 0 \\
0 & 0 & \frac{1}{12} m_i l_i^2
\end{bmatrix}.
\]

Applying Kirchhoff’s equations (1) and (2), the complete nonlinear equations of motion can be obtained as
including underactuated space vehicles [33].

methodologies [32] that we applied to several examples of underactuated mechanical systems, from nonlinear control theory. We have also developed effective nonlinear control design and stabilizability results for a large class of underactuated mechanical systems using tools from nonlinear control theory. In our previous research [30–32], we have developed theoretical controllability and stabilizability results for a large class of underactuated mechanical systems using tools from nonlinear control theory. We have also developed effective nonlinear control design methodologies [32] that we applied to several examples of underactuated mechanical systems, including underactuated space vehicles [33].

3. Nonlinear control design

The translational and rotational dynamics of the quadcopter are coupled with the dynamics of its robotic arm; this makes controller design very complicated. The equations of motion in component form are given by

\[
M \dot{\mathbf{v}} + K \dot{\mathbf{w}} + B_t \dot{\mathbf{\eta}} = F_t - \dot{\omega} M \mathbf{v} - (\dot{K} + \dot{\omega} K) \mathbf{w} - (\dot{B}_t + \dot{\omega} B_t) \mathbf{\eta},
\]

\[
K^T \dot{\mathbf{\omega}} + J \dot{\mathbf{w}} + B_a \dot{\mathbf{\eta}} = \tau - (K^T + \dot{\omega} K^T + \dot{\mathbf{\omega}} M) \mathbf{v} - (\dot{J} + \dot{\omega} J + \dot{\mathbf{\omega}} M) \mathbf{w} - (\dot{B}_a + \dot{\omega} B_a + \dot{\mathbf{\omega}} B_a) \mathbf{\eta},
\]

Complete description of the above coefficient matrices are given in the appendix. The objective is to simultaneously control the 6 DOF motion of the quadcopter and the 2 DOF internal dynamics of the robot arm using only 4 propellers and 2 joint torque motors. In this regard, equations of motion given by (21) represents an interesting example of underactuated mechanical systems. In our previous research [30–32], we have developed theoretical controllability and stabilizability results for a large class of underactuated mechanical systems using tools from nonlinear control theory. We have also developed effective nonlinear control design methodologies [32] that we applied to several examples of underactuated mechanical systems, including underactuated space vehicles [33].
\[B_1^T \dot{v} + B_2^T \dot{\omega} + \mathbf{m} \ddot{\eta} = \tau_x - \dot{B}_1^T \dot{v} - \dot{B}_2^T \dot{\omega} + \mathbf{m} \ddot{\eta} + \frac{\partial L}{\partial \eta}. \]
(30)

Eq. (28) can be rewritten as

\[M \dot{v} = F_t - \dot{\omega} M \dot{v} + F_d. \]
(31)

where

\[F_d = -K \dot{\omega} - B_2 \ddot{\eta} - (K + \dot{\omega}K) \omega - (\dot{B}_2 + \ddot{\omega}B_2) \dot{\eta}. \]
(32)

Eq. (31) can be simplified as

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
-\mathbf{g}
\end{bmatrix} + \mathbf{R} \dot{e}_3 u_1 + \mathbf{F_d}.
\]
(33)

where \(\mathbf{F_d} = F_d / m_t \) and

\[u_1 = b K \dot{\omega} (V_1^2 + V_2^2 + V_3^2 + V_4^2) / m_t. \]
(34)

Similarly, Eq. (29) can be rewritten as

\[\mathbf{J} \dot{\omega} = \tau_r - (\mathbf{J} + \dot{\omega} \mathbf{J}) \omega + \tau_d. \]
(35)

where

\[\tau_d = -K \dot{\omega} - B_2 \ddot{\eta} - (K + \dot{\omega}K) \omega - (\dot{B}_2 + \ddot{\omega}B_2) \dot{\eta}. \]
(36)

Eq. (35) can be simplified as

\[\dot{\omega} = \mathbf{J}^{-1} \tau_r - \mathbf{J}^{-1} (\mathbf{J} + \dot{\omega} \mathbf{J}) \omega + \tau_d. \]
(37)

where \(\tau_d = \mathbf{J}^{-1} \tau_d \).

Ignoring \(\mathbf{F_d} \) and \(\tau_d \) in Eqs. (33) and (37), equations of motion can be expressed as

\[\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z} \\
\dot{\omega_x} \\
\dot{\omega_y} \\
\dot{\omega_z}
\end{bmatrix} = \mathbf{J}^{-1} \begin{bmatrix}
\tau_x \\
\tau_y \\
\tau_z \\
\mu_2 \\
\mu_3 \\
\mu_4
\end{bmatrix} + \begin{bmatrix}
\mu_2 \\
\mu_3 \\
\mu_4
\end{bmatrix}, \]
(41)
where

\[
\begin{bmatrix}
 u_2 \\
 u_3 \\
 u_4
\end{bmatrix} = F^{-1} \begin{bmatrix}
 bK_t^2(V_1^2 - V_2^2) \\
 bK_t^2(V_2^2 - V_1^2) \\
 bK_t^2(V_1^2 - V_2^2 + V_3^2 - V_4^2)
\end{bmatrix}.
\]

(42)

We now design a nonlinear controller based on integrator backstepping. If \(\phi, \theta\) and \(\Psi\) are small \((\sin \theta \approx \theta\) and \(\cos \theta \approx \theta\)), then \(\omega = [\dot{\phi} \ \dot{\theta} \ \dot{\Psi}]^T\) and \(\dot{\omega} = [\ddot{\phi} \ \ddot{\theta} \ \ddot{\Psi}]^T\), and hence the equation of motions can be simplified as

\[
\begin{align*}
\ddot{x} &= \theta u_1, \quad (43) \\
\ddot{y} &= -\phi u_1, \quad (44) \\
\ddot{z} &= -g + u_1, \quad (45) \\
\ddot{\phi} &= f_1(\phi, \theta, \Psi) + u_2, \quad (46) \\
\ddot{\theta} &= f_2(\phi, \theta, \Psi) + u_3, \quad (47) \\
\ddot{\Psi} &= f_3(\phi, \theta, \Psi) + u_4, \quad (48)
\end{align*}
\]

where

\[
\begin{bmatrix}
 f_1 \\
 f_2 \\
 f_3
\end{bmatrix} = \tilde{J}^{-1} \begin{bmatrix}
 f_1 \hat{\Omega}_r \\
 -f_1 \hat{\phi} \Omega_r \\
 0
\end{bmatrix} - (\tilde{J} + \tilde{\omega}) \begin{bmatrix}
 \phi \\
 \theta \\
 \Psi
\end{bmatrix}.
\]

(49)

3.1. Controller design

In this section a nonlinear controller is designed to stabilize the system \((43)-(48)\) to the desired equilibrium configuration \((x, y, z, \phi, \theta, \Psi) = (x_d, y_d, z_d, \phi_d, \theta_d, \Psi_d)\).

We choose \(u_1\) as

\[
u_1 = g - |z - z_d|^b \text{sign}(z - z_d) - |\dot{z}|^b \text{sign}(\dot{z}),
\]

(50)

where \(b \in (0, 1), a > b / (2 - b), i = 1,2\), are controller parameters. The feedback law (50) controls the quadcopter z-dynamics to \((z, \dot{z}) = (z_d, 0)\) in finite time [34] so that \(u_1 \rightarrow g\) in finite time.

After reaching the desired altitude, Eqs. (43) and (44) take the following form:

\[
\begin{align*}
\ddot{x} &= g \theta, \\
\ddot{y} &= -g \phi.
\end{align*}
\]

(51)

(52)

We now apply a backstepping method to design the controls \(u_2\) and \(u_3\) to stabilize the system to the equilibrium at \((x, y, \phi, \theta) = (x_d, y_d, \phi_d, \theta_d)\).
Assume that θ and ϕ are virtual inputs for the x and y subsystems, respectively. Stabilizing feedback functions for the x-subsystem is given by

$$
\theta = -k_1(x - x_d) - k_2x, \quad \phi = k_3(y - y_d) + k_4y,
$$

where $k_i > 0$, $i = 1,\ldots,4$, so that

$$
\ddot{x} + gk_2\dot{x} + gk_1(x - x_d) = 0, \\
\dot{y} + gk_3\dot{y} + gk_4(y - y_d) = 0.
$$

Define

$$
y_1 = \theta + k_1(x - x_d) + k_2\dot{x}, \\
y_2 = \phi - k_3(y - y_d) - k_4\dot{y},
$$

and consider the y_1 and y_2 dynamics given by

$$
\dot{y}_1 = \dot{\theta} + k_1\dot{x} + k_2\ddot{x} = \dot{x} + k_2g\theta, \\
\dot{y}_2 = \dot{\phi} - k_3\dot{y} - k_4\ddot{y} = \ddot{y} + k_4\phi.
$$

Define the sliding variables (s_1, s_2)

$$
s_1 = \dot{y}_1 + a_1y_1, \\
s_2 = \dot{y}_2 + a_2y_2,
$$

where $a_i > 0$, $i = 1,2$, which can be simplified as

$$
s_1 = \dot{\theta} + (k_2g + a_1)\dot{\theta} + (k_1 + a_1k_2)\dot{x} + a_1k_1(x - x_d), \\
s_2 = \dot{\phi} + (k_4g + a_2)\dot{\phi} - (k_3 + a_2k_4)\dot{y} - a_2k_3(y - y_d).
$$

The dynamics of sliding variables are found simply by taking time derivative of the sliding variables as

$$
\dot{s}_1 = \ddot{\theta} + (k_2g + a_1)\ddot{\theta} + (k_1 + a_1k_2)\ddot{x} + a_1k_1\dddot{x}, \\
\dot{s}_2 = \ddot{\phi} + (k_4g + a_2)\ddot{\phi} + (k_3 + a_2k_4)\dddot{y} - a_2k_3\dddot{y}.
$$

Substituting the expressions for $\ddot{\phi}$ and $\ddot{\theta}$ from (46) and (47), respectively, we obtain

$$
\dot{s}_1 = f_2(\phi, \theta, \Psi) + u_3 + (k_2g + a_1)\dddot{x} + (k_1 + a_1k_2)\dddot{\theta} + a_1k_1\dddot{x}, \\
\dot{s}_2 = f_4(\phi, \theta, \Psi) + u_2 + (k_4g + a_2)\dddot{y} + (k_3 + a_2k_4)\dddot{\phi} - a_2k_3\dddot{y}.
$$
We choose the inputs \(u_2 \) and \(u_3 \) as
\[
\begin{align*}
\dot{u}_2 &= -\lambda_2 \text{sign}(s_2) - f_1(\phi, \theta, \Psi) - (k_4 \dot{\phi} + \alpha_2) \dot{\phi} - (k_3 + \alpha_2 k_4) \dot{\phi} + \alpha_2 k_3 \dot{y}, \\
\dot{u}_3 &= -\lambda_1 \text{sign}(s_1) - f_2(\phi, \theta, \Psi) - (k_2 \dot{\phi} + \alpha_1) \dot{\phi} - (k_1 + \alpha_1 k_2) \dot{\phi} - \alpha_1 k_1 \dot{x},
\end{align*}
\] (69) (70)
so that the following closed-loop response for the sliding variables is obtained:
\[
\begin{align*}
\dot{s}_1 &= -\lambda_1 \text{sign}(s_1), \\
\dot{s}_2 &= -\lambda_2 \text{sign}(s_2),
\end{align*}
\] (71) (72)
where we choose \(\lambda_1 > 0 \) and \(\lambda_2 > 0 \) large enough so that the terms \(F_d \) and \(\tau_d \) are dominated by the sliding mode terms.

Now consider the \(\Psi \)-dynamics given by (48). The following control law stabilizes the \(\Psi \)-dynamics to \((\Psi, \dot{\Psi}) = (\Psi_d, 0) \):
\[
u = -k_\psi (\Psi - \Psi_d) - k_\psi \dot{\psi} - f_3(\phi, \theta, \Psi),
\] (73)
where \(k_\psi, k_\psi > 0 \).

The voltage inputs \(V_i, i = 1, \ldots, 4 \), are determined by substituting the expressions for the virtual control inputs \(u_i, i = 1, \ldots, 4 \), into Eqs. (34) and (42).

Consider Eqs. (31) and (35), and ignore \(F_d \) and \(\tau_d \). Then we have
\[
\begin{align*}
\dot{\nu} &= M^{-1} F_i - M^{-1} \dot{\omega} M \nu, \\
\dot{\omega} &= T^{-1} \tau_d - T^{-1} (\tilde{J} + \dot{\omega} \tilde{J}) \omega.
\end{align*}
\] (74) (75)
Eq. (30) can be rewritten as
\[
\dot{\eta} = \dot{m}^{-1}\left(-B_i^T \dot{\nu} - B_i^T \dot{\omega} \nu + \tau_s - B_i^T \dot{\nu} - B_i^T \dot{\omega} \nu - \dot{m} \eta + \frac{\partial L}{\partial \eta}\right),
\] (76)
which can be expressed in terms of \(F_i \) and \(\tau_s \) as
\[
\dot{\eta} = \dot{m}^{-1}\left(\tau_s - \frac{B_i^T F_i}{m_t} - B_i^T \dot{\omega} \nu - B_i^T \dot{\omega} \nu - \dot{m} \eta + \frac{\partial L}{\partial \eta}\right).
\] (77)
In order to have exponential convergence of the shape variables \(\eta \) to the desired \(\eta_d \) we choose \(\tau_s \) as
\[
\tau_s = \frac{B_i^T F_i}{m_t} + B_i^T \dot{\omega} \nu + B_i^T \dot{\omega} \nu - \dot{m} \eta + \frac{\partial L}{\partial \eta} - \dot{m} (2\lambda \eta + \lambda^2 (\eta - \eta_d)).
\] (78)
where $\lambda > 0$, so that
\[\ddot{\eta} + 2\lambda \dot{\eta} + \lambda^2 (\eta - \eta_d) = 0. \] (79)

4. Simulation

The controller developed in the previous sections is applied to the full nonlinear model of the aerial robot. The relevant parameter values of the system are listed in Table 1.

A rest-to-rest motion was simulated with initial conditions $(x_0, y_0, z_0) = (0, 0, 0)$, $(\phi_0, \theta_0, \psi_0) = (0, 0, 0)$, and $(\dot{\theta}_{10}, \theta_{20}) = (0, 0)$. The desired position, attitude, and joint angles were set as $(x_d, y_d, z_d) = (30, 50, 40)$ $[\text{m}]$, $(\phi_d, \theta_d, \psi_d) = (0, 0, 0)$, and $(\dot{\theta}_{1d}, \theta_{2d}) = (30, 60)$ $[\text{°}]$, respectively.

The control parameters are chosen as
\[(k_1, k_2, k_3, k_4, k_5, k_6) = (2, 0.1, 2, 0.1, 2, 2), \] (80)
\[(\lambda_1, \lambda_2) = (1, 1), (\alpha_1, \alpha_2) = (0.1, 0.1). \] (81)

As shown in Figures 3–5, the position, attitude, and joint angles converge to their desired values in around 40 s. Figure 6 shows the time responses of the control inputs $u_i, i = 1, \ldots, 4$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_v</td>
<td>Transformation constant</td>
<td>54.945</td>
<td>rad s V$^{-1}$</td>
</tr>
<tr>
<td>J_r</td>
<td>Rotor inertia</td>
<td>6×10^{-3}</td>
<td>kg m2</td>
</tr>
<tr>
<td>J_{xx}</td>
<td>MOI about x axis</td>
<td>0.0552</td>
<td>kg m2</td>
</tr>
<tr>
<td>J_{yy}</td>
<td>MOI about y axis</td>
<td>0.0552</td>
<td>kg m2</td>
</tr>
<tr>
<td>J_{zz}</td>
<td>MOI about z axis</td>
<td>0.1104</td>
<td>kg m2</td>
</tr>
<tr>
<td>b</td>
<td>Thrust coefficient</td>
<td>3.935139×10^{-6}</td>
<td>N V$^{-1}$</td>
</tr>
<tr>
<td>d</td>
<td>Drag coefficient</td>
<td>1.192564×10^{-7}</td>
<td>Nm V$^{-1}$</td>
</tr>
<tr>
<td>l</td>
<td>Distance from pivot to motor</td>
<td>0.1969</td>
<td>m</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
<td>2.85</td>
<td>kg</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration of gravity</td>
<td>9.81</td>
<td>m s$^{-2}$</td>
</tr>
<tr>
<td>V</td>
<td>Maximum input voltage</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>m_1</td>
<td>Mass of link 1</td>
<td>0.1</td>
<td>kg</td>
</tr>
<tr>
<td>m_2</td>
<td>Mass of link 2</td>
<td>0.1</td>
<td>kg</td>
</tr>
<tr>
<td>m_p</td>
<td>Mass of the payload</td>
<td>0.1</td>
<td>kg</td>
</tr>
<tr>
<td>l_1</td>
<td>Length of link 1</td>
<td>0.5</td>
<td>m</td>
</tr>
<tr>
<td>l_2</td>
<td>Length of link 2</td>
<td>0.5</td>
<td>m</td>
</tr>
</tbody>
</table>

Table 1. Parameters of the aerial robot.
Figure 3. Time responses of the aerial robot’s position x, y, and z.

Figure 4. Time responses of the aerial robot’s Euler angles ϕ, θ, and Ψ.
5. Conclusions

This chapter first derives the complete nonlinear dynamics of an aerial robot consisting of a quadcopter with a two-link robot manipulator. Precise control of such an aerial robot is a challenging task since the translational and rotational dynamics of the quadcopter are strongly coupled with the dynamics of the manipulator. We extend our previous results on the control of quadrotor UAVs to the control of aerial robots. In particular, we design a backstepping and
Lyapunov-based nonlinear feedback control law that achieves the point-to-point control of the aerial robot. The effectiveness of this feedback control law is illustrated through a simulation example.

The many avenues considered for future research include problems involving collaborative control of multiple aerial robots. Future research also includes designing nonlinear control laws that achieve robustness, insensitivity to system and control parameters, and improved disturbance rejection. We also plan to explore the use of geometric mechanics formulation of such control problems.

Appendix A

The matrices M and J can be expressed as

$$M = m_{1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad J = \begin{bmatrix} J_{11} & J_{12} & J_{13} \\ J_{21} & J_{22} & J_{23} \\ J_{31} & J_{32} & J_{33} \end{bmatrix},$$

where

$$J_{11} = f_{xx} + \left[m_{1} l_{c1}^{2} + (m_{2} + m_{p}) l_{1}^{2} + \frac{1}{12} m_{1} l_{1}^{3} \right] \sin^{2} \theta_{1} + \left[m_{2} l_{c2}^{2} + m_{p} l_{2}^{2} + \frac{1}{12} m_{2} l_{2}^{3} \right] \sin^{2} \theta_{2}$$

$$+ 2l_{1} (m_{2} l_{c2} + m_{p} l_{2}) \sin \theta_{1} \sin \theta_{2},$$

$$J_{22} = f_{yy} + m_{1} l_{c1}^{2} + (m_{2} + m_{p}) l_{1}^{2} + \left(m_{2} l_{c2}^{2} + m_{p} l_{2}^{2} \right) + 2l_{1} (m_{2} l_{c2} + m_{p} l_{2}) \cos (\theta_{2} - \theta_{1})$$

$$+ \frac{1}{12} [m_{1} l_{1} + m_{2} l_{2}],$$

$$J_{33} = f_{zz} + \left[m_{1} l_{c1}^{2} + (m_{2} + m_{p}) l_{1}^{2} + \frac{1}{12} m_{1} l_{1}^{3} \right] \cos^{2} \theta_{1} + \left[m_{2} l_{c2}^{2} + m_{p} l_{2}^{2} + \frac{1}{12} m_{2} l_{2}^{3} \right] \cos^{2} \theta_{2}$$

$$+ 2l_{1} (m_{2} l_{c2} + m_{p} l_{2}) \cos \theta_{1} \cos \theta_{2},$$

$$J_{12} = J_{21} = J_{23} = J_{32} = 0,$$

$$J_{13} = J_{31} = - \frac{1}{2} \left[m_{1} l_{c1}^{2} + (m_{2} + m_{p}) l_{1} + \frac{1}{12} m_{1} l_{1}^{2} \right] \sin 2 \theta_{1}$$

$$- l_{1} (m_{2} l_{c2} + m_{p} l_{2}) \sin (\theta_{1} + \theta_{2}) - \frac{1}{2} \left[(m_{2} l_{c2}^{2} + m_{p} l_{2}^{2}) + \frac{1}{12} m_{2} l_{2}^{3} \right] \sin 2 \theta_{2}.$$

The matrix \mathbf{m} can be computed as

$$\mathbf{m} = \begin{bmatrix} m_{1} l_{c1}^{2} + (m_{2} + m_{p}) l_{1}^{2} + \frac{1}{12} m_{1} l_{1}^{2} & (m_{2} l_{c2} + m_{p} l_{2}) l_{1} \cos (\theta_{2} - \theta_{1}) \\ (m_{2} l_{c2} + m_{p} l_{2}) l_{1} \cos (\theta_{2} - \theta_{1}) & m_{2} l_{c2}^{2} + m_{p} l_{2}^{2} + \frac{1}{12} m_{2} l_{2}^{3} \end{bmatrix}.$$

The matrices K, B_{n} and B_{i} are given by
\[
K = \begin{bmatrix}
0 & -K_{xy} & 0 \\
K_{xy} & 0 & -K_{xz} \\
0 & K_{xz} & 0 \\
\end{bmatrix}, \quad B_r = \begin{bmatrix}
0 & 0 \\
B_{r1} & B_{r2} \\
0 & 0 \\
\end{bmatrix},
\]

where

\[
K_{xy} = [m_1l_1 + (m_2 + m_p)l_1] \sin \theta_1 + (m_2l_2 + m_p l_2) \sin \theta_2,
K_{xz} = [m_1l_1 + (m_2 + m_p)l_1] \cos \theta_1 + (m_2l_2 + m_p l_2) \cos \theta_2,
B_{r1} = -[m_1l_1^2 + (m_2 + m_p)l_1^2 + (m_2l_2 + m_p l_2)l_1 \cos (\theta_2 - \theta_1)] + \frac{1}{12} ml_1^2,
B_{r2} = -[m_2l_2^2 + m_p l_2^2 + (m_2l_2 + m_p l_2)l_1 \cos (\theta_2 - \theta_1)] + \frac{1}{12} ml_2^2,
\]

and

\[
B_r = \begin{bmatrix}
-(m_1l_1 + m_2l_1 + m_p l_1) \sin \theta_1 & -(m_2l_2 + m_p l_2) \sin \theta_2 \\
0 & 0 \\
(m_1l_1 + m_2l_1 + m_p l_1) \cos \theta_1 & (m_2l_2 + m_p l_2) \cos \theta_2 \\
\end{bmatrix}.
\]

Author details

Mahmut Reyhanoglu* and Muhammad Rehan

*Address all correspondence to: mreyhanoglu@icloud.com

University of North Carolina Asheville, One University Heights, Asheville, NC, USA

References

[34] Haimo VT. Finite time controllers. SIAM Journal on Control and Optimization. 1986;24:760–770