We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,600 Open access books available
178,000 International authors and editors
195M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 5

Solubility Products and Solubility Concepts

Anna Maria Michałowska-Kaczmarczyk, Aneta Spórna-Kucab and Tadeusz Michałowski

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67840

Abstract

The chapter refers to a general concept of solubility product K_{sp} of sparingly soluble hydroxides and different salts and calculation of solubility of some hydroxides, oxides, and different salts in aqueous media. A (criticized) conventional approach, based on stoichiometry of a reaction notation and the solubility product of a precipitate, is compared with the unconventional/correct approach based on charge and concentration balances and a detailed physicochemical knowledge on the system considered, and calculations realized according to generalized approach to electrolytic systems (GATES) principles. An indisputable advantage of the latter approach is proved in simulation of static or dynamic, two-phase nonredox or redox systems.

Keywords: electrolytic two-phase systems, solubility, dissolution, static systems, dynamic systems, computer simulation, GATES, GEB

1. Introduction

The problem of solubility of various chemical compounds occupies a prominent place in the scientific literature. This stems from the fact that among various properties determining the use of these compounds, the solubility is of the paramount importance. Among others, this issue has been the subject of intense activities initiated in 1979 by the Solubility Data Commission V.8 of the IUPAC Analytical Chemistry Division established and headed by S. Kertes [1], who conceived the IUPAC-NIST Solubility Data Series (SDS) project [2, 3]. Within 1979–2009, the series of 87 volumes, concerning the solubility of gases, liquids, and solids in liquids or...
solids, were issued [3]; one of the volumes concerns the solubility of various oxides and hydroxides [4]. An extensive compilation of aqueous solubility data provides the Handbook of Aqueous Solubility Data [5].

A remark. Precipitates are marked in bold letters; soluble species/complexes are marked in normal letters.

The distinguishing feature of a chemical compound sparingly soluble in a particular medium is the solubility product K_{sp} value. In practice, the known K_{sp} values are referred only to aqueous media. One should note, however, that the expression for the solubility product and then the K_{sp} value of a precipitate depend on the notation of a reaction in which this precipitate is involved. From this it follows the apparent multiplicity of K_{sp}’s values referred to a particular precipitate. Moreover, as will be stated below, the expression for K_{sp} must not necessarily contain ionic species; On the other hand, factual or seeming lack of K_{sp}’s value for some precipitates is perceived; the latter issue be addressed here to MnO$_2$, taken as an example.

Solubility products refer to a large group of sparingly soluble salts and hydroxides and some oxides, e.g., Ag$_2$O, considered overall as hydroxides. Incidentally, other oxides, such as MnO$_2$, ZrO$_2$, do not belong to this group, in principle. For ZrO$_2$, the solubility measurements showed quite low values even under a strongly acidic condition [6]. The solubility depends on the prior history of these oxides, e.g., prior roasting virtually eliminates the solubility of some oxides. Moderately soluble iodine (I$_2$) dissolves due to reduction or oxidation, or disproportionation in alkaline media [7–12]; for I$_2$, minimal solubility in water is a reference state. For 8-hydroxyquinoline, the solubility of the neutral molecule HL is a reference state; a growth in solubility is caused here by the formation of ionic species: H$_2$L$^{+1}$ in acidic and L$^{-1}$ in alkaline media.

The K_{sp} is the main but not the only parameter used for calculation of solubility s of a precipitate. The simplifications [13] practiced in this respect are unacceptable and lead to incorrect/false results, as stated in [14–18]; more equilibrium constants are also involved with two-phase systems. These objections, formulated in the light of the generalized approach to electrolytic systems (GATES) [8], where s is the “weighed” sum of concentrations of all soluble species formed by the precipitate, are presented also in this chapter, related to nonredox and redox systems.

Calculation of s gives an information of great importance, e.g., from the viewpoint of gravimetry, where the primary step of the analysis is the quantitative transformation of a proper analyte into a sparingly soluble precipitate (salt, hydroxide). Although the precipitation and further analytical operations are usually carried out at temperatures far greater than the room temperature, at which the equilibrium constants were determined, the values of s obtained from the calculations made on the basis of equilibrium data related to room temperature are helpful in the choice of optimal a priori conditions of the analysis, ensuring the minimal, summary concentration of all soluble forms of the analyte, remaining in the solution, in equilibrium with the precipitate obtained after addition of an excess of the precipitating agent; this excess is referred to as relative to the stoichiometric composition of the precipitate. The ability to perform appropriate calculations, based on all available physicochemical knowledge, in accordance with the basic laws of matter conservation, deepens our knowledge of the relevant systems. At the same time, it produces the ability to acquire relevant knowledge in
an organized manner—not just imitative, but focused on heuristics. This viewpoint is in accordance with constructivist teaching, based on the belief that learning occurs, as learners are actively involved in a process of meaning and knowledge construction, as opposed to passively receiving information [19].

2. Definitions and formulation of solubility products

The K_{sp} value refers to a two-phase system where the equilibrium solid phase is a sparingly soluble precipitate, whose K_{sp} value is measured/calculated according to defined expression for the solubility product. This assumption means that the solution with defined species is saturated against this precipitate, at given temperature and composition of the solution. However, often a precipitate, when introduced into aqueous media, is not the equilibrium solid phase, and then this fundamental requirement is not complied, as indicated in examples of the physicochemical analyses of the systems with struvite MgNH_4PO_4 [20, 21], dolomite $\text{CaMg(CO}_3\text{)}_2$ [22, 23], and Ag_2CrO_7.

The values of solubility products K_{sp} (usually represented by solubility constant $pK_{sp} = -\log K_{sp}$ value) are known for stoichiometric precipitates of A_aB_b or $A_aB_bC_c$ type, related to dissociation reactions:

$$K_{sp} = [A]^a[B]^b$$ for $A_aB_b = aA + bB$, or

$$K_{sp} = [A]^a[B]^b[C]^c$$ for $A_aB_bC_c = aA + bB + cC$ (1)

where A and B or A, B, and C are the species forming the related precipitate; charges are omitted here, for simplicity of notation. The solubility products for more complex precipitates are unknown in the literature. The precipitates $A_aB_bC_c$ are known as ternary salts [24], e.g., struvite, dolomite, and hydroxyapatite $\text{Ca}_5(\text{PO}_4)_3\text{OH}$.

The solubility products for precipitates of A_aB_b type are most frequently met in the literature. In these cases, for A are usually put simple cations of metals, or oxycations [25]; e.g., BiO^{+1} and UO_2^{2-} form the precipitates: BiOCl and $(\text{UO}_2\text{)}_2(\text{OH})_2$. As B, simple or more complex anions are considered, e.g., Cl^{-}, S^{2-}, PO_4^{3-}, Fe(CN)_6^{3-}, in AgCl, HgS, $\text{Zn}_6(\text{PO}_4)_2$ and $\text{Zn}_2\text{Fe(CN)}_6$.

In different textbooks, the solubility products are usually formulated for dissociation reactions, with ions as products, also for HgS

$$\text{HgS} = \text{Hg}^{+2} + \text{S}^{2-} (K_{sp} = [\text{Hg}^{+2}][\text{S}^{2-}])$$ (3)

although polar covalent bond exists between its constituent atoms [26]. Very low solubility product value ($pK_{sp} = 52.4$) for HgS makes the dissociation according to the scheme presented by Eq. (3) impossible, and even verbal formulation of the solubility product is unreasonable. Namely, the ionic product $x = [\text{Hg}^{+2}][\text{S}^{2-}]$ calculated at $[\text{Hg}^{+2}] = [\text{S}^{2-}] = 1/N_A$ exceeds $K_{sp}/N_A^2 > K_{sp}/(N_A - \text{Avogadro's number})$; the concentration $1/N_A = 1.66 \times 10^{-23}$ mol/L corresponds to 1 ion in 1 L of the solution. The scheme of dissociation into elemental species [14]
HgS = Hg + S \ (K_{sp1} = [Hg][S]) \ (4)

is far more favored from thermodynamic viewpoint; nonetheless, the solubility product \((K_{sp}) \) for HgS is commonly formulated on the basis of reaction (3). We obtain \(pK_{sp1} = pK_{sp} - 2A \ (E_{01} - E_{02}) \), where \(E_{01} = 0.850 \) V for Hg\(^{2+} + 2e^- \rightarrow Hg \), \(E_{02} = -0.48 \) V for S\(^2- + 2e^- \rightarrow S \), \(1/A = RT/F \ln10 \), \(A = 16.92 \) for 298 K; then \(pK_{sp1} = 7.4 \).

Equilibrium constants are usually formulated for the simplest reaction notations. However, in this respect, Eq. (4) is simpler than Eq. (3). Moreover, we are “accustomed” to apply solubility products with ions (cations and anions) involved, but this custom can easily be overthrown. A similar remark may concern the notation referred to elementary dissociation of mercuric iodide precipitate

Hgl\(_2\) = Hg + I\(_2\) \((K_{sp1} = [Hg][I_2]) \) \ (5)

where I\(_2\) denotes a soluble form of iodine in a system. From

Hgl\(_2\) = Hg\(^{2+} + 2I^- \ (K_{sp} = [Hg\(^{2+}][I^-]^2\), \(pK_{sp} = 28.55) \) \ (6)

we obtain \(pK_{sp1} = pK_{sp} - 2A(E_{01} - E_{03}) \), where

\(E_{01} = 0.850 \) V for Hg\(^{2+} + 2e^- \rightarrow Hg \), \(E_{02} = 0.621 \) V for I\(_2\) + 2e\(^-\) \rightarrow 2I\(^-\); then \(pK_{sp1} = 20.80 \).

The species in the expression for solubility products do not predominate in real chemical systems, as a rule. However, the precipitation of HgS from acidified (HCl) solution of mercury salt with H\(_2\)S solution can be presented in terms of predominating species; we have

HgCl\(_4^{2-}\) + H\(_2\)S = HgS + 4Cl\(^-\) + 2H\(^+\) \ (7)

Eq. (7) can be applied to formulate the related solubility product, \(K_{sp2} \), for HgS. To be online with customary requirements put on the solubility product formulation, Eq. (7) should be rewritten into the form

HgS + 4Cl\(^-\) + 2H\(^+\) = HgCl\(_4^{2-}\) + H\(_2\)S \ (7a)

Applying the law of mass action to Eq. (7a), we have

\[K_{sp2} = \frac{[HgCl_4^{2-}][H_2S]}{[Cl^-]^4[H^+]^2}, \quad (pK_{sp2} = 17.33) \] \ (8)

where \([HgCl_4^{2-}] = 10^{15.07}[Hg^{2+}][Cl^-]^4\), \([H_2S] = 10^{20.0}[H^+][S^-]^2\), \(K_{sp} \) (Eq. (3)).

The solubility product for MgNH\(_4\)PO\(_4\) can be formulated on the basis of reactions:

MgNH\(_4\)PO\(_4\) = Mg\(^{2+} + NH_4\(^{+}\) + PO\(_4^{3-}\) \((K_{sp} = [Mg^{2+}][NH_4^{+}][PO_4^{3-}]\) \ (9)

MgNH\(_4\)PO\(_4\) = Mg\(^{2+} + NH_3 + HPO_4^{2-} \ (K_{sp1} = [Mg^{2+}][NH_3][HPO_4^{2-}] = K_{spK_{IN/K_3P}} \) \ (10)
MgNH₄PO₄ + H₂O = MgOH⁺⁺ + NH₃ + H₂PO₄⁻ (K_{sp2} = [MgOH⁺⁺][NH₃][H₂PO₄⁻])

\[K_{sp1}K_{1OH}K_{1N}K_{w} / (K_{sp2}K_{sp3}) \]

where \(K_{1N} = [H^+]^1[HN₃] / [NH₄^+]^1 \), \(K_{sp2} = [H^+][HPO₄^{2-}] / [H₂PO₄^{-}] \), \(K_{sp3} = [H^+][PO₄^{3-}] / [HPO₄^{2-}] \).

Note that only uncharged (elemental) species are involved in Eqs. (4) and (5); H₂S enters Eq. (8), and NH₃ enters Eqs. (10) and (11). This is an extension of the definition/formulation commonly met in the literature, where only charged species were involved in expression for the solubility product. Note also that small/dispersed mercury drops are neutralized with powdered sulfur, according to thermodynamically favored reaction [27]

\[\text{Hg} + \text{S} = \text{HgS} \]

reverse to Eq. (4). Some precipitates can be optionally considered as the species of \(A_2B_2 \) or \(A_2B_3C_4 \) type. For example, the solubility product for MgHPO₄ can be written as \(K_{sp} = [\text{Mg}^{2+}] / [\text{HPO}_4^{2-}] \) or \(K_{sp1} = [\text{Mg}^{2+}] / [\text{H}^+][\text{PO}_4^{3-}] = K_{sp2}K_{sp3} \).

The ferrocyanide ion \(\text{Fe(CN)}_6^{3-} \) (with evaluated stability constant \(K_a \), ca. 10³⁷) can be considered as practically undissociated, i.e., \(\text{Fe(CN)}_6^{3-} \) is kinetically inert [28], and then it does not give \(\text{Fe}^{2+} \) and \(\text{CN}^{-1} \) ions. The solubility product of \(\text{Zn}_2\text{Fe(CN)}_6 \) is \(K_{sp} = [\text{Zn}^{2+}]^2[\text{Fe(CN)}_6^{3-}] \). Therefore, consideration of \(\text{Zn}_2\text{Fe(CN)}_6 \) as a ternary salt with \(K_{sp1} = [\text{Zn}^{2+}]^2[\text{Fe}^{2+}][\text{CN}^{-1}]^6 = K_{sp2} / K_a \) is not acceptable.

In principle, the solubility product values are formulated for stoichiometric compounds, and specified as such in the related tables. However, some precipitates obtained in laboratory have nonstoichiometric composition, e.g., dolomite \(\text{Ca}_{32+4}\text{Mg}_{72+4}(\text{CO}_3)_{28} \) [22, 23], Fe₂S [29]. In particular, Fe₂S can be rewritten as \(\text{Fe}^{2+}_p\text{Fe}^{3+}_q\text{S} \) from the relations: \(2p + 3q - 2 = 0 \) and \(p + q = x \), we get \(q/p = 2(1 - x)/(3x - 2) \).

In this context, some remark needs a formulation of \(K_{sp} \) for some hydroxyoxides (e.g., \(\text{FeOOH} \)) and oxides (e.g., \(\text{AgO} \)). The related solubility products are formulated after completion of the corresponding reactions with water, e.g., \(\text{FeOOH} + \text{H}_2\text{O} = \text{Fe(OH)}_2 \), \(\text{FeOOH}_x \text{H}_2\text{O} + (3 - x)\text{H}_2\text{O} = 2\text{Fe(OH)}_3 \Rightarrow \text{Fe(OH)}_2 + \text{Fe}^{3+} + 3\text{OH}^{-1} \Rightarrow K_{sp} = [\text{Fe}^{2+}][\text{OH}^{-1}]^2 \); \(\text{AgO} + \text{H}_2\text{O} = 2\text{AgOH} \Rightarrow \text{AgOH} = \text{Ag}^{+1} + \text{OH}^{-1} \Rightarrow K_{sp} = [\text{Ag}^{+1}][\text{OH}^{-1}] \), see it in the context with \(\text{gcd}(a,b) = 1 \).

The solubility product can be involved not only with dissociation reaction. For example, the dissolution reaction \(\text{Ca(OH)}_2 + 2\text{H}^{+1} = \text{Ca}^{2+} + 2\text{H}_2\text{O} \) [30], characterized by \(K_{sp1} = [\text{Ca}^{2+}][\text{H}^{+1}]^2 \), is involved with \(K_{sp} = [\text{Ca}^{2+}][\text{OH}^{-1}]^2 \) in the relation \(K_{sp1} = K_{sp}K_{w}^2 \). In Ref. [31], the solubility product is associated with formation (not dissociation) of a precipitate.

3. Solubility product(s) for MnO₂

The scheme presented above cannot be extended to all oxides. For example, one cannot recommend the formulation of this sequence for MnO₂, i.e., \(\text{MnO}_2 + 2\text{H}_2\text{O} = \text{Mn(OH)}_4 \Rightarrow \)
\[
\text{Mn(OH)}_4 = \text{Mn}^{+4} + 4\text{OH}^{-} \Rightarrow K_{\text{sp0}} = [\text{Mn}^{+4}][\text{OH}^{-}]^4; \text{ Mn}^{+4} \text{ ions do not exist in aqueous media, and MnO}_2 \text{ is the sole Mn(+4) species present in such systems. In effect, } K_{\text{sp0}} \text{ for MnO}_2 \text{ is not known in the literature, compare with Ref. [32]. However, the } K_{\text{sp}} \text{ for MnO}_2 \text{ can be formally calculated according to an unconventional approach, based on the disproportionation reaction}
\]

\[
5\text{MnO}_2 + 4\text{H}^{+1} = 2\text{MnO}_4^{-1} + 3\text{Mn}^{+2} + \text{H}_2\text{O} \quad (12)
\]

(reverse to the symproportionation reaction \[
2\text{MnO}_4^{-1} + 3\text{Mn}^{+2} + \text{H}_2\text{O} = 5\text{MnO}_2 + 4\text{H}^{+1} \]

The \(K_{\text{sp}} = K_{\text{sp0}} \) value can be found there on the basis of \(E_01 \) and \(E_02 \) values [33], specified for reactions:

\[
\begin{align*}
\text{MnO}_4^{-1} + 4\text{H}^{+1} + 3\text{e}^{-1} &= \text{MnO}_2 + 2\text{H}_2\text{O} (E_01 = 1.692 \text{ V}) \quad (13) \\
\text{MnO}_2 + 4\text{H}^{+1} + 2\text{e}^{-1} &= \text{Mn}^{+2} + 2\text{H}_2\text{O} (E_{02} = 1.228 \text{ V}) \quad (14)
\end{align*}
\]

Eqs. (13) and (14) are characterized by the equilibrium constants:

\[
K_{e1} = \frac{[\text{MnO}_4^{-1}][\text{H}_2\text{O}]}{[\text{MnO}_2][\text{H}^{+1}][\text{e}^{-1}]^3}, \quad K_{e2} = \frac{[\text{Mn}^{+2}][\text{H}_2\text{O}]}{[\text{MnO}_2][\text{H}^{+1}][\text{e}^{-1}]^2} \quad (15)
\]

defined on the basis of mass action law (MAL) [14], where \(\log K_{e1} = 3 \cdot A \cdot E_{01} \), \(\log K_{e2} = 2 \cdot A \cdot E_{02} \), \(A = 16.92 \). From Eqs. (13) and (14), we get

\[
2\text{MnO}_2 + 4\text{H}_2\text{O} + 3\text{MnO}_2 + 12\text{H}^{+1} + 6\text{e}^{-1} = 2\text{MnO}_4^{-1} + 8\text{H}^{+1} + 6\text{e}^{-1} + 3\text{Mn}^{+2} + 6\text{H}_2\text{O} \quad (16)
\]

Assuming \([\text{MnO}_2] = 1\) and \([\text{H}_2\text{O}] = 1\) on the stage of the \(K_{\text{sp1}} \) formulation for reaction (16), equivalent to reaction (12), we have

\[
K_{\text{sp1}} = \frac{[\text{MnO}_4^{-1}]^2[\text{Mn}^{+2}]^3}{[\text{H}^{+1}]^4} \quad (17)
\]

and then

\[
K_{\text{sp1}} = (K_{e2})^3 \cdot (K_{e1})^{-2} \quad (18)
\]

\[
pK_{\text{sp1}} = 3\log K_{e2} - 2\log K_{e1} = 6(A(E_{01} - E_{02}) = 6 \cdot 16.92 \cdot (1.692 - 1.228) = 47.11 \quad (19)
\]

The solubility products with MnO\(_2\) involved can be formulated on the basis of other reactions. For example, addition of

\[
\text{Mn}^{+2} = \text{Mn}^{+3} + \text{e}^{-1} \quad (20)
\]

to Eq. (14) gives
\[
\text{MnO}_2 + 4\text{H}^{+} + 2e^{-} + \text{Mn}^{2+} = \text{Mn}^{2+} + 2\text{H}_2\text{O} + \text{Mn}^{3+} + e^{-}
\] (21)

Multiplication of Eq. (21) by 3, and then addition to Eq. (13a)

\[
\text{MnO}_2 + 2\text{H}_2\text{O} = 3\text{MnO}_4^{-1} + 4\text{H}^{+} + 3e^{-}
\]

(reverse to Eq. (13)) gives the equation

\[
3\text{MnO}_2 + 12\text{H}^{+} + 6e^{-} + 3\text{Mn}^{2+} + \text{MnO}_2 + 2\text{H}_2\text{O} = 3\text{Mn}^{2+} + 6\text{H}_2\text{O} + 3\text{Mn}^{3+} + 3e^{-} + \text{MnO}_4^{-1} + 4\text{H}^{+} + 3e^{-}
\] (22)

and its equivalent form, obtained after simplifications,

\[
4\text{MnO}_2 + 8\text{H}^{+} = 3\text{Mn}^{3+} + \text{MnO}_4^{-1} + 4\text{H}_2\text{O}
\] (22a)

Eq. (22) and then Eq. (22a) is characterized by the solubility product

\[
K_{sp2} = \frac{[\text{MnO}_4^{-1}]^{[\text{Mn}^{3+}]^3}}{[\text{H}^{+}]^8} = (K_{e2})^3 \cdot (K_{e3})^{-3} \cdot (K_{e1})^{-1}
\] (23)

where

\[
K_{e3} = \frac{[\text{Mn}^{2+}]}{[\text{Mn}^{3+}][e^{-}]}
\] (24)

for \(\text{Mn}^{3+} + e^{-} = \text{Mn}^{2+}\) \((E_{03} = 1.509 \text{ V})\) (reverse to Eq. (20)), \(\log K_{e3} = \Delta E_{03}\). Then

\[
pK_{sp2} = 3\Delta E_{01} - 2E_{02} + E_{03} + 37.82
\] (25)

Formulation of \(K_{spi}\) for other combinations of redox and/or nonredox reactions is also possible. This way, some derivative solubility products are obtained. The choice between the “output” and derivative solubility product values is a matter of choice. Nevertheless, one can choose the \(K_{sp3}\) value related to the simplest expression for the solubility product \(K_{sp3} = [\text{Mn}^{2+}][\text{MnO}_4^{-2}]\) involved with reaction \(2\text{MnO}_2 = \text{Mn}^{2+} + \text{MnO}_4^{-2}\).

As results from calculations, the low \(K_{spi}\) \((i = 1,2,3)\) values obtained from the calculations should be crossed, even in acidified solution with the related manganese species presented in Figure 1. In the real conditions of analysis, at \(C_a = 1.0 \text{ mol/L}\), the system is homogeneous during the titration, also after crossing the equivalence point, at \(\Phi = \Phi_{eq} > 0.2\); this indicates that the corresponding manganese species form a metastable system [34], unable for the symproportionation reactions.
4. Calculation of solubility

In this section, we compare two options applied to the subject in question. The first/criticized option, met commonly in different textbooks, is based on the stoichiometric considerations, resulting from dissociation of a precipitate, characterized by the solubility product \(K_{sp} \) value, and considered \textit{a priori} as an equilibrium solid phase in the system in question; the solubility value obtained this way will be denoted by \(s^{*} \) [mol/L]. The second option, considered as a correct resolution of the problem, is based on full physicochemical knowledge of the system, not limited only to \(K_{sp} \) value (as in the option 1); the solubility value thus obtained is denoted as \(s \) [mol/L]. The second option fulfills all requirements expressed in GATES and involved with basic laws of conservation in the systems considered. Within this option, we check, among others, whether the precipitate is really the equilibrium solid phase. The results (\(s^{*}, s \)) obtained according to both options (1 and 2) are compared for the systems of different degree of complexity. The unquestionable advantages of GATES will be stressed this way.

4.1. Formulation of the solubility \(s^{*} \)

The solubility \(s^{*} \) will be calculated for a pure precipitate of: (1°) \(A_aB_b \) or (2°) \(A_aB_bC_c \) type, when introduced into pure water. Assuming \([A] = a \cdot s^{*} \) and \([B] = b \cdot s^{*} \), from Eq. (1), we have

![Figure 1. The log[X] versus Φ relationships for different manganese species \(X_i \), plotted for titration of \(V_0 = 100 \) mL solution of FeSO\(_4\) (\(C_0 = 0.01 \) mol/L) + H\(_2\)SO\(_4\) (\(C_a = 1.0 \) mol/L) with \(V \) mL of \(C = 0.02 \) mol/L KMnO\(_4\): \(Φ = C \cdot V/(C_0 \cdot V_0) \). The species \(X_i \) are indicated at the corresponding lines.](image-url)
and assuming $[A] = a \cdot s^*$, $[B] = b \cdot s^*$, $[C] = c \cdot s^*$, from Eq. (2), we have

$$s^* = \left(\frac{K_{sp}}{a^a \cdot b^b} \right)^{1/(a+b)} \quad (26)$$

As a rule, the formulas (26) and (27) are invalid for different reasons, indicated in this chapter. This invalidity results, among others, from inclusion of the simplest/minor species in Eq. (26) or (27) and omission of hydroxo-complexes + other soluble complexes formed by A, and proto-complexes + other soluble complexes, formed by B. In other words, not only the species entering the expression for the related solubility product are present in the solution considered. Then the concentrations: $[A]$, $[B]$ or $[A]$, $[B]$, and $[C]$ are usually minor species relative to the other species included in the respective balances, considered from the viewpoint of GATES [8].

4.2. Dissolution of hydroxides

We refer first to the simplest two-phase systems, with insoluble hydroxides as the solid phases. In all instances, s^* denotes the solubility obtained from stoichiometric considerations, whereas s relates to the solubility calculated on the basis of full/attainable physicochemical knowledge related to the system in question where, except the solubility product (K_{sp}), other physico-chemical data are also involved.

Applying formula (26) to hydroxides ($B = OH^{-1}$): Ca(OH)_2 ($pK_{sp1} = 5.03$) and Fe(OH)_3 ($pK_{sp2} = 38.6$), we have [35]

$$\text{Ca(OH)}_2 = \text{Ca}^{+2} + 2\text{OH}^{-1} (K_{sp1} = [\text{Ca}^{+2}] [\text{OH}^{-1}]^2), \quad s^* = (K_{sp1}/4)^{1/3} \approx 0.0133 \text{ mol/L} \quad (28)$$

$$\text{Fe(OH)}_3 = \text{Fe}^{+3} + 3\text{OH}^{-1} (K_{sp2} = [\text{Fe}^{+3}] [\text{OH}^{-1}]^3), \quad s^* = (K_{sp2}/27)^{1/4} \approx 0.98 \times 10^{-10} \text{ mol/L} \quad (29)$$

respectively. However, Ca^{+2} and Fe^{+3} form the related hydroxo-complexes: $[\text{CaOH}^{+1}] = 10^{1.3} [\text{Ca}^{+2}] [\text{OH}^{-1}]$ and: $[\text{FeOH}^{+2}] = 10^{11.0} [\text{Fe}^{+3}] [\text{OH}^{-1}]$, $[\text{Fe(OH)}_2^{+1}] = 10^{21.7} [\text{Fe}^{+3}] [\text{OH}^{-1}]^2$; $[\text{Fe}_2(\text{OH})_3^{+4}] = 10^{25.1} [\text{Fe}^{+3}]^2 [\text{OH}^{-1}]^2$ [31]. The corrected expression for the solubility of Ca(OH)_2 is as follows

$$s = [\text{Ca}^{+2}] + [\text{CaOH}^{+1}] \quad (30)$$

Inserting $[\text{Ca}^{+2}] = K_{sp1}/[\text{OH}^{-1}]^2$ and $[\text{OH}^{-1}] = K_W/[\text{H}^{+1}]$, $[\text{H}^{+1}] = 10^{-pH}$ ($pK_W = 14.0$ for ionic product of water, K_W) into the charge balance
The alkaline reaction in the system with value $[\text{OH}^-]_{10}$ immediately from Eq. (30), and pH Eq. (32) zeroes at pH Eq. (32) and then is close to $s = C_0 / [\text{OH}^-]_{10}$ where pH we get, by turns, At pH = 7, Fe(OH)$_3$ \[\text{Ca(OH)}_2\] results immediately from Eq. (29): $[\text{OH}^-] - [\text{H}^+] = 2[\text{Ca}^{2+}] + [\text{OH}^-] > 0$. Analogously, for the system with Fe(OH)$_3$ we have the charge balance $3[\text{Fe}^{3+}] + 2[\text{FeOH}^{2+}] + [\text{Fe(OH)}_2^{+}] + [\text{H}^+] - [\text{OH}^-] = 0$ (33) and then $y(\text{pH}) = 3 \cdot 3 \cdot 10^{3.4 - 3\text{pH}} + 2 \cdot 10^{0.4 - 2\text{pH}} + 10^{-2.9 - \text{pH}} + 4 \cdot 10^{3.9 - 4\text{pH}} + 10^{-3\text{pH} - 10\text{pH} - 14} = 0$ (34) Eq. (32) zeroes at pH$_0$ = 7.0003 (Table 2), where the value $s = [\text{Fe}^{3+}] + [\text{FeOH}^{2+}] + [\text{Fe(OH)}_2^{+}] + 2[\text{Fe}_2(\text{OH})_2^{+}]$ (35) is close to $s \cong [\text{Fe}^{3+}] = 10^{-9.9}$. Alkaline reaction for this system, i.e., $[\text{OH}^-] > [\text{H}^+]$, results immediately from Eq. (30), and pH$_0$ = 7.0003 (>7). At pH = 7, Fe(OH)$_3$ \[\text{Ca(OH)}_2\] (not Fe$^{3+}$) is the predominating species in the system, [Fe(OH)$_2^{+}$$]$$[\text{Fe}^{3+}] = 10^{21.7 - 14} = 5 \cdot 10^7$, i.e., the equality/assumption $s' = [\text{Fe}^{3+}]$ is extremely invalid. Moreover, the value $[\text{OH}^-] = 3 \cdot s = 2.94 \cdot 10^{-10} = 10^{-9.332}$, i.e., pH = 4.468; this pH-value is contradictory with the inequality $[\text{OH}^-] > [\text{H}^+]$ resulting from Eq. (31). Similarly, extremely invalid result was

\[
\begin{align*}
2[\text{Ca}^{2+}] + [\text{CaOH}^{+}] + [\text{H}^+] - [\text{OH}^-] &= 0 \quad (31) \\
\Rightarrow 2 \cdot 10^{-5.03}/[\text{OH}^-]^2 + 10^{1.3} \cdot 10^{-5.03}/[\text{OH}^-][\text{H}^+] - [\text{OH}^-] &= 0 \\
y(\text{pH}) &= 2 \cdot 10^{22.97 - 2\text{pH}} + 10^{10.17 - \text{pH}} + 10^{-\text{pH} - 10\text{pH} - 14} = 0 \quad (32)
\end{align*}
\]

where pH = \(-\log[\text{H}^+]\). Applying the zeroing procedure to Eq. (30), we get pH$_0$ = 12.453 (Table 1), where: \([\text{Ca}^{2+}] = 0.0116, [\text{CaOH}^{+}] = 0.00656, s = 0.0182 \text{ mol/L (Eq. (28))}. As we see, [CaOH$^{+}$] is comparable with [Ca$^{2+}$], and there are none reasons to omit [CaOH$^{+}$] in Eq. (28).

The alkaline reaction in the system with Ca(OH)$_2$ results immediately from Eq. (29): $[\text{OH}^-] - [\text{H}^+] = 2[\text{Ca}^{2+}] + [\text{CaOH}^{+}] > 0$. The value $[\text{OH}^-] = 10^{-9.9}$. Alkaline reaction for this system, i.e., $[\text{OH}^-] > [\text{H}^+]$, results immediately from Eq. (30), and pH$_0$ = 7.0003 (>7).

<table>
<thead>
<tr>
<th>pH</th>
<th>y(pH)</th>
<th>$[\text{OH}^-]$</th>
<th>$[\text{Ca}^{2+}]$</th>
<th>$[\text{CaOH}^{+}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.451</td>
<td>0.000377</td>
<td>0.02825</td>
<td>0.01169</td>
<td>0.006592</td>
</tr>
<tr>
<td>12.452</td>
<td>0.000193</td>
<td>0.02831</td>
<td>0.01164</td>
<td>0.006577</td>
</tr>
<tr>
<td>12.453</td>
<td>8.30E-06</td>
<td>0.02838</td>
<td>0.01159</td>
<td>0.006561</td>
</tr>
<tr>
<td>12.454</td>
<td>-0.000176</td>
<td>0.02844</td>
<td>0.01153</td>
<td>0.006546</td>
</tr>
<tr>
<td>12.455</td>
<td>-0.000359</td>
<td>0.02851</td>
<td>0.01148</td>
<td>0.006531</td>
</tr>
</tbody>
</table>

Table 1. Zeroing the function (30) for the system with Ca(OH)$_2$ precipitate introduced into pure water (copy of a fragment of display).
obtained in Ref. [36], where the strong hydroxo-complexes were totally omitted, and weak chloride complexes of Fe\(^{+3}\) ions were included into considerations.

Taking only the main dissociating species formed in the solution saturated with respect to Fe(OH)\(_3\), we check whether the reaction

\[
\text{Fe(OH)}_3 = \text{Fe(OH)}^2+ + \text{OH}^- + \text{C}_0
\]

with \(K_{sp1} = [\text{Fe(OH)}^2+] [\text{OH}^-] / [\text{C}_0] = 10^{-21.7} \cdot 10^{-38.8} = 10^{-16.9}\) can be used for calculation of solubility \(s^*\) based solely on the \(K_{sp}\) value. The answer is also negative. Simply, the main part of OH\(^-\) ions originates here from dissociation of water, where the precipitate has been introduced, and then Fe(OH)\(^{2+}\) and OH\(^-\) differ significantly. As we see, the diversity in \(K_{sp}\) value related to a precipitate depends on its dissociation reaction notation, which disqualifies the calculation of \(s^*\) based solely on the \(K_{sp}\) value. This fact was not stressed in the literature issued hitherto.

Concluding, the application of the option 1, based on the stoichiometry of the reaction (29), leads not only to completely inadmissible results for \(s^*\), but also to a conflict with one of the fundamental rules of conservation obligatory in electrolytic systems, namely the law of charge conservation.

Similarly, critical/disqualifying remarks can be related to the series of formulas considered in the chapter [37], e.g., \(K_{sp} = 27(s^*)^4\) for precipitates of \(A_2B\) and \(AB_3\) type, and \(K_{sp} = 108(s^*)^5\) for \(A_2B_3\) and \(A_3B_2\). For \(Ca_3(PO_4)_2\cdotOH\), the formula \(K_{sp} = 84375(s^*)^9\) (!) was applied [38].

As a third example let us take a system, where an excess of Zn(OH)\(_2\) precipitate is introduced into pure water. It is usually stated that Zn(OH)\(_2\) dissociates according to the reaction

\[
\text{Zn(OH)}_2 = \text{Zn}^{+2} + 2 \text{OH}^-
\]

applied to formulate the expression for the solubility product

\[
K_{sp3} = [\text{Zn}^{+2}] [\text{OH}^-]^2 (pK_{sp3} = 15.0)
\]

The soluble hydroxo-complexes Zn(OH)\(_{i-1}\) \((i=1,\ldots,A)\), with the stability constants, \(K_{sp}^{i\text{OH}^-}\), expressed by the values log\(K_{sp}^{i\text{OH}^-}\) = 4.4, 11.3, 13.14, 14.66, are also formed in the system in question. The charge balance (ChB) has the form

\[
\begin{align*}
\text{pH} & \quad \text{ypH} & \quad [\text{Fe}^{+3}] & \quad [\text{FeOH}^{2+}] & \quad [\text{Fe(OH)}_{2}^{+1}] & \quad [\text{Fe}_2(\text{OH})_{2}^{-4}] \\
7.0001 & \quad 7.99E-11 & \quad 2.510E-18 & \quad 2.511E-14 & \quad 1.259E-10 & \quad 7.936E-25 \\
7.0002 & \quad 3.38E-11 & \quad 2.508E-18 & \quad 2.510E-14 & \quad 1.258E-10 & \quad 7.929E-25 \\
7.0003 & \quad 1.23E-11 & \quad 2.507E-18 & \quad 2.508E-14 & \quad 1.258E-10 & \quad 7.921E-25 \\
7.0004 & \quad 5.84E-11 & \quad 2.505E-18 & \quad 2.507E-14 & \quad 1.258E-10 & \quad 7.914E-25 \\
7.0005 & \quad 1.04E-10 & \quad 2.503E-18 & \quad 2.506E-14 & \quad 1.257E-10 & \quad 7.907E-25
\end{align*}
\]

Table 2. Zeroing the function (32) for the system with Fe(OH)\(_3\) precipitate introduced into pure water (copy of a fragment of display).
Descriptive Inorganic Chemistry Researches of Metal Compounds

2[Zn$^{+2}$] + [ZnOH$^{-1}$] + [Zn(OH)$_3$]$^{-1}$ = 2[Zn(OH)$_4$]$^{2-}$ + [H$^{+1}$] + [OH$^{-1}$] = 0 \hspace{1cm} (38)

i.e., $2 \cdot 10^{-15}/[OH^{-1}]^2 + 10^{4.4} \cdot 10^{-15}/[OH^{-1}] - 10^{13.4} \cdot 10^{-15} [OH^{-1}] - 2 \cdot 10^{14.6} \cdot 10^{-15} [OH^{-1}]^2 = 0$

$y(pH) = 2 \cdot 10^{13-2pH} + 10^{3.4-pH} \cdot 10^{-15.86+pH} - 2 \cdot 10^{-28.34+2pH} + 10^{-pH} \cdot 10^{pH-14} = 0 \hspace{1cm} (39)$

The function (39) zeroes at pH$_0$ = 9.121 (see Table 3). The basic reaction of this system is not immediately stated from Eq. (38) (there are positive and negative terms in expression for [OH$^{-1}$] - [H$^{+1}$]). The solubility s value calculated at this point is different from $s^* = (K_{w03}/4)^{1/3}$ = 6.3 \times 10$^{-6}$, and [OH$^{-1}$]/[Zn$^{2+}$] \neq 2; such incompatibilities contradict application of this formula.

4.3. Dissolution of MeL$_2$-type salts

Let us refer now to dissolution of precipitates MeL$_2$ formed by cations Me$^{2+}$ and anions L$^{-1}$ of a strong acid HL, as presented in Table 4. When an excess of MeL$_2$ is introduced into pure water, the concentration balances and charge balance in two-phase system thus formed are as follows:

$$y(pH) = s \cdot [mol/L]$$

<table>
<thead>
<tr>
<th>pH</th>
<th>[OH$^{-1}$]</th>
<th>[Zn$^{2+}$]</th>
<th>[ZnOH$^{+1}$]</th>
<th>[Zn(OH)$_2$]</th>
<th>[Zn(OH)$_3$]$^{-1}$</th>
<th>[Zn(OH)$_4$]$^{2-}$</th>
<th>y(pH)</th>
<th>s [mol/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.118</td>
<td>1.3122E-05</td>
<td>5.8076E-06</td>
<td>1.9143E-06</td>
<td>0.0002</td>
<td>1.8113E-07</td>
<td>7.8705E-11</td>
<td>2.2702E-07</td>
<td>0.00020743</td>
</tr>
<tr>
<td>9.119</td>
<td>1.3152E-05</td>
<td>5.7810E-06</td>
<td>1.9099E-06</td>
<td>0.0002</td>
<td>1.8155E-07</td>
<td>7.9068E-11</td>
<td>1.3858E-07</td>
<td>0.00020740</td>
</tr>
<tr>
<td>9.120</td>
<td>1.3183E-05</td>
<td>5.7544E-06</td>
<td>1.9055E-06</td>
<td>0.0002</td>
<td>1.8197E-07</td>
<td>7.9433E-11</td>
<td>5.0322E-08</td>
<td>0.00020737</td>
</tr>
<tr>
<td>9.121</td>
<td>1.3213E-05</td>
<td>5.7280E-06</td>
<td>1.9011E-06</td>
<td>0.0002</td>
<td>1.8239E-07</td>
<td>7.9800E-11</td>
<td>3.7750E-08</td>
<td>0.00020734</td>
</tr>
<tr>
<td>9.122</td>
<td>1.3243E-05</td>
<td>5.7016E-06</td>
<td>1.8967E-06</td>
<td>0.0002</td>
<td>1.8261E-07</td>
<td>8.0168E-11</td>
<td>1.2564E-07</td>
<td>0.00020731</td>
</tr>
<tr>
<td>9.123</td>
<td>1.3274E-05</td>
<td>5.6755E-06</td>
<td>1.8923E-06</td>
<td>0.0002</td>
<td>1.8323E-07</td>
<td>8.0538E-11</td>
<td>2.1335E-07</td>
<td>0.00020728</td>
</tr>
</tbody>
</table>

Table 3. Zeroing the function (39) for the system with Zn(OH)$_3$ precipitate introduced into water; pH$_{wp}$ = 14.

<table>
<thead>
<tr>
<th>Me$^{2+}$</th>
<th>MeOH$^{+1}$</th>
<th>MeOH$_2$</th>
<th>MeOH$_3$</th>
<th>L$^{-1}$</th>
<th>MeL$^{+1}$</th>
<th>MeL$_2$</th>
<th>MeL$_3$</th>
<th>MeL$_4$</th>
<th>MeL$_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>logK_1</td>
<td>logK_2</td>
<td>logK_3</td>
<td>logK_4</td>
<td>logK_5</td>
<td>logK_6</td>
<td>logK_7</td>
<td>logK_8</td>
<td>logK_9</td>
<td>logK_{10}</td>
</tr>
<tr>
<td>Hg$^{2+}$</td>
<td>10.3</td>
<td>21.7</td>
<td>21.2</td>
<td>1$^{-1}$</td>
<td>12.87</td>
<td>23.82</td>
<td>27.60</td>
<td>29.83</td>
<td>28.54</td>
</tr>
<tr>
<td>Pb$^{2+}$</td>
<td>6.9</td>
<td>10.8</td>
<td>13.3</td>
<td>1$^{-1}$</td>
<td>1.26</td>
<td>2.80</td>
<td>3.42</td>
<td>3.92</td>
<td>8.98</td>
</tr>
<tr>
<td>Cl$^{-1}$</td>
<td>1.62</td>
<td>2.44</td>
<td>2.04</td>
<td>1.0</td>
<td>4.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. logK_i values and K_i values for the stability constants K_i and K_0 of soluble complexes Me(OH)$_i$$^{2+}$ and MeL$_i$$^{2+}$ and pK_{wp} values for the precipitates MeL$_2$ [MeL$_2$$^{2+}$] = K_0[Me$^{2+}$][L$^{-1}$]; K_{wp} = [Me$^{2+}$][L$^{-1}$]2.

...
\[[\text{MeL}_2] + [\text{Me}^{+2}] + \sum_{i=1}^{J} [\text{Me(OH)}_i^{2-i}] + \sum_{j=1}^{J} [\text{MeL}_j^{2-j}] = C_{\text{Me}} \quad (40) \]

\[2[\text{MeL}_2] + [L^{-1}] + \sum_{j=1}^{J} j[\text{MeL}_j^{2-j}] = C_L \quad (41) \]

\[[\text{H}^{+}] - [\text{OH}^{-}] + 2[\text{Me}^{+2}] + \sum_{j=1}^{J} (2-j)[\text{Me(OH)}_j^{2-j}] + \sum_{j=1}^{J} (2-j)[\text{MeL}_j^{2-j}] - [L^{-1}] = 0 \quad (42) \]

where \([\text{MeL}_2]\) denotes the concentration of the precipitate \(\text{MeL}_2\). At \(C_L = 2C_{\text{Me}}\), we have

\[2[\text{Me}^{+2}] + 2 \sum_{i=1}^{J} [\text{Me(OH)}_i^{2-i}] + \sum_{j=1}^{J} (2-j)[\text{MeL}_j^{2-j}] = [L^{-1}] \quad (43) \]

From Eqs. (40) and (41)

\[\alpha = [\text{H}^{+}] - [\text{OH}^{-}] = \sum_{j=1}^{J} j[\text{Me(OH)}_j^{2-j}] \quad (44) \]

i.e., reaction of the solution is acidic, \([\text{H}^{+}] > [\text{OH}^{-}]\). Applying the relations for the equilibrium constants:

\[[\text{Me}^{+2}] [L^{-1}] = K_{\text{sp}} [\text{Me(OH)}_i^{2-i}] = K_{i\text{OH}} [\text{Me}^{+2}] [\text{OH}^{-}] (i = 1, \ldots, I), [\text{MeL}_j^{2-j}] = K_j [\text{Me}^{+2}] [L^{-1}](j = 1, \ldots, J) \]

from Eqs. (43) and (44) we have

\[2[\text{Me}^{+2}]^{3/2} \cdot (1 + \sum_{i=1}^{J} x_i) + K_{\text{sp}}^{1/2} \cdot [\text{Me}^{+2}] \cdot \sum_{j=1}^{J} (2-j)K_j [L^{-1}] - K_{\text{sp}}^{1/2} = 0 \quad (45) \]

where

\[[\text{Me}^{+2}] = \frac{\alpha}{\sum_{i=1}^{J} x_i} ; \alpha = [\text{H}^{+}] - [\text{OH}^{-}] = 10^{-pH} - 10^{pH-pK_W} [L^{-1}] \]

\[(\frac{K_{\text{sp}}}{[\text{Me}^{+2}]})^{1/2} ; x_i = K_{i\text{OH}} \cdot (K_W/[\text{H}^{+}])^J \]

In particular, for \(I = 3, J = 4\) (Table 4), we have
\[2 \cdot \left(1 + \sum_{j=1}^{3} x_j\right) \cdot \frac{[\text{Me}]^2}{K_{\text{Me}^{2+}}} + K_1 \cdot [\text{Me}]^{3/2} - (K_3 \cdot K_{\text{sp}} + 1) \cdot [\text{Me}]^{3/2} - 2 \cdot K_4 \cdot K_{\text{sp}}^{3/2} = 0\] (46)

Applying the zeroing procedure to Eq. (46) gives the pH = pH\text{sp} of the solution at equilibrium. At this pH value, we calculate the concentrations of all species and solubility of this precipitate recalculated on s_{\text{Me}} and s_{\text{L}}. When zeroing Eq. (46), we calculate pH = pH\text{sp} of the solution in equilibrium with the related precipitate. The solubilities are as follows:

\[s = s_{\text{Me}} = [\text{Me}^{2+}] + \sum_{i=1}^{3} [\text{Me(OH)}_{3-i}] + \sum_{j=1}^{4} [\text{MeL}_{j}^{2-j}]\] (47)

\[s = s_{\text{L}} = [\text{L}^{-1}] + \sum_{j=1}^{4} [\text{MeL}_{j}^{2-j}]\] (48)

The calculations of s_{\text{Me}} and s_{\text{L}} for the precipitates specified in Table 4 can be realized with use of Excel spreadsheet, according to zeroing procedure, as suggested above (Table 1).

For PbI\text{2}: pH\text{sp} = 5.1502, s_{\text{sp}} = 6.5276-10^{-5}, s_i = 1.3051-10^{-3}, see Table 6. The difference between s_i and 2s_{\text{sp}} = 1.3055-10^{-5} results from rounding the pH\text{sp}-value.

For HgI\text{2}: pH\text{sp} = 6.7769, s_{\text{sp}} = 1.91217-10^{-5}, s_i = 3.82435-10^{-5}, see Table 7. The difference between s_i and 2s_{\text{sp}} = 3.82434-10^{-5} results from rounding the pH-value. The concentration [HgI\text{2}] = K_{2}K_{sp} = 1.90546-10^{-5} is close to the s_{\text{sp}} value. For comparison, 4(s_i)^{3} = K_{sp} \Rightarrow s_i = 1.93-10^{-10}, i.e., s_i/s = 10^{-5}.

<table>
<thead>
<tr>
<th>pH</th>
<th>[Pb\text{2+}]</th>
<th>[PbOH\text{3-}]</th>
<th>[PbOH\text{2-}]</th>
<th>[PbCl\text{3-}]</th>
<th>[PbCl\text{2-}]</th>
<th>[PbCl\text{1-}]</th>
<th>[Cl\text{2-}]</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.534</td>
<td>0.010749606</td>
<td>2.92208E-05</td>
<td>7.94315E-11</td>
<td>6.98723E-05</td>
<td>0.004466936</td>
<td>3.54953E-09</td>
<td>1.44576E-11</td>
<td>0.00138249</td>
</tr>
<tr>
<td>4.534</td>
<td>0.010744657</td>
<td>2.92141E-05</td>
<td>7.94315E-11</td>
<td>6.98723E-05</td>
<td>0.004466936</td>
<td>3.54953E-09</td>
<td>1.44576E-11</td>
<td>0.00138249</td>
</tr>
<tr>
<td>4.534</td>
<td>0.01073971</td>
<td>2.92074E-05</td>
<td>7.94315E-11</td>
<td>6.98723E-05</td>
<td>0.004466936</td>
<td>3.54953E-09</td>
<td>1.44576E-11</td>
<td>0.00138249</td>
</tr>
<tr>
<td>4.534</td>
<td>0.010734654</td>
<td>2.92008E-05</td>
<td>7.94315E-11</td>
<td>6.98723E-05</td>
<td>0.004466936</td>
<td>3.54953E-09</td>
<td>1.44576E-11</td>
<td>0.00138249</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH</th>
<th>[Pb\text{2+}]</th>
<th>[PbOH\text{3-}]</th>
<th>[PbOH\text{2-}]</th>
<th>[PbCl\text{3-}]</th>
<th>[PbCl\text{2-}]</th>
<th>[PbCl\text{1-}]</th>
<th>[Cl\text{2-}]</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.15</td>
<td>0.00630817</td>
<td>7.07848E-06</td>
<td>7.94515E-11</td>
<td>6.60963E-07</td>
<td>3.54853E-09</td>
<td>1.44576E-11</td>
<td>0.00128893</td>
<td>0.00138249</td>
</tr>
<tr>
<td>5.15</td>
<td>0.00630527</td>
<td>7.07832E-06</td>
<td>7.94515E-11</td>
<td>6.60963E-07</td>
<td>3.54853E-09</td>
<td>1.44576E-11</td>
<td>0.00128893</td>
<td>0.00138249</td>
</tr>
<tr>
<td>5.15</td>
<td>0.00630236</td>
<td>7.07808E-06</td>
<td>7.94515E-11</td>
<td>6.60963E-07</td>
<td>3.54853E-09</td>
<td>1.44576E-11</td>
<td>0.00128893</td>
<td>0.00138249</td>
</tr>
<tr>
<td>5.15</td>
<td>0.00629846</td>
<td>7.07853E-06</td>
<td>7.94515E-11</td>
<td>6.60963E-07</td>
<td>3.54853E-09</td>
<td>1.44576E-11</td>
<td>0.00128893</td>
<td>0.00138249</td>
</tr>
<tr>
<td>5.15</td>
<td>0.00629564</td>
<td>7.07853E-06</td>
<td>7.94515E-11</td>
<td>6.60963E-07</td>
<td>3.54853E-09</td>
<td>1.44576E-11</td>
<td>0.00128893</td>
<td>0.00138249</td>
</tr>
</tbody>
</table>

Table 5. Fragment of display for PbCl\text{2}.

Table 6. Fragment of display for PbI\text{2}.
4.4. Dissolution of CaCO₃ in the presence of CO₂

The portions 0.1 g of calcite CaCO₃ (M = 100.0869 g/mol, d = 2.711 g/cm³) are inserted into 100 mL of pure water (task A) or aqueous solutions of CO₂ specified in the tasks: B1, B2, B3, and equilibrated. Denoting the starting (t = 0) concentrations [mol/L]: Cₐ for CaCO₃ and C₂O₃ for CO₂ in the related systems, on the basis of equilibrium data collected in Table 8:

(A) we calculate pH = pH₀₁ and solubility s = s(pH₀₁) of CaCO₃ at equilibrium in the system;

(B1) we calculate pH = pH₀₂ and solubility s = s(pH₀₂) of CaCO₃ in the system, where C₂O₃ refers to saturated (at 25 °C) solution of CO₂, where 1.45 g CO₂ dissolves in 1 L of water [39];

(B2) we calculate minimal C₂O₃ in the starting solution needed for complete dissolution of CaCO₃ in the system and the related pH = pH₀₃ value, where s = s(pH₀₃) = C₂O₃;

(B3) we plot the logSCaCO₃ versus V, pH versus V and logSCa versus pH relationships for the system obtained after addition of V mL of a strong base MOH (C₀ = 0.1) into V₀ = 100 mL of the system with CaCO₃ presented in (B1). The quasistatic course of the titration is assumed.

The volume 0.1/2.711 = 0.037 cm³ of introduced CaCO₃ is negligible when compared with V₀ at the start (t = 0) of the dissolution. Starting concentration of CaCO₃ in the systems: A, B1, B2, B3 is C₀ = (0.1/100)/0.1 = 10⁻² mol/L. At t > 0, concentration of CaCO₃ is c₀ mol/L. The balances are as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Reaction</th>
<th>Expression for the equilibrium constant</th>
<th>Equilibrium data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CaCO₃ = Ca²⁺ + CO₃⁻²</td>
<td>[Ca²⁺][CO₃⁻²] = Kₛₚ</td>
<td>pKₛₚ = 8.48</td>
</tr>
<tr>
<td>2</td>
<td>Ca²⁺ + OH⁻ = CaOH⁻¹</td>
<td>[CaOH⁻¹] = K₁₁[Ca²⁺][OH⁻¹]</td>
<td>logK₁₁ = 1.3</td>
</tr>
<tr>
<td>3</td>
<td>H₂CO₃ = H⁺¹ + HCO₃⁻¹</td>
<td>[H⁺¹][HCO₃⁻¹] = K₁[H₂CO₃]</td>
<td>pK₁ = 6.38</td>
</tr>
<tr>
<td>4</td>
<td>HCO₃⁻¹ = H⁺¹ + CO₂⁻²</td>
<td>[H⁺¹][CO₂⁻²] = K₂[HCO₃⁻¹]</td>
<td>pK₂ = 10.33</td>
</tr>
<tr>
<td>5</td>
<td>Ca²⁺ + H₂CO₃⁻¹ = CaHCO₃⁻¹</td>
<td>[CaHCO₃⁻¹] = K₁₂[Ca²⁺][H₂CO₃⁻¹]</td>
<td>logK₁₂ = 3.22</td>
</tr>
<tr>
<td>6</td>
<td>Ca²⁺ + CO₂⁻² = CaCO₃</td>
<td>[CaCO₃] = K₁₂[Ca²⁺][CO₂⁻²]</td>
<td>logK₁₂ = 3.22</td>
</tr>
<tr>
<td>7</td>
<td>Ca(OH)₂ = Ca²⁺ + 2OH⁻¹</td>
<td>[Ca²⁺][OH⁻¹²] = Kₛₚ</td>
<td>pKₛₚ = 5.03</td>
</tr>
<tr>
<td>8</td>
<td>H₂O = H⁺¹ + OH⁻¹</td>
<td>[H⁺¹][OH⁻¹] = Kₗₚ</td>
<td>pKₗₚ = 14.0</td>
</tr>
</tbody>
</table>

Table 8. Equilibrium data.
\[C^0 = c^0 + [\text{Ca}^{1+}] + [\text{CaOH}^{1+}] + [\text{CaHCO}_3^{-}] + [\text{CaCO}_3] \quad \text{(for A, B1, B2, B3)} \quad (49) \]

\[C^0 = c^0 + [\text{CaHCO}_3^{-}] + [\text{CaCO}_3] + [\text{H}_2\text{CO}_3] + [\text{HCO}_3^{-}] + [\text{CO}_3^{2-}] \quad \text{(for A)} \quad (50) \]

\[C^0 + C_{\text{CO}_2} = c^0 + [\text{CaHCO}_3^{-}] + [\text{CaCO}_3] + [\text{H}_2\text{CO}_3] + [\text{HCO}_3^{-}] + [\text{CO}_3^{2-}] \quad \text{(for B1, B2, B3)} \quad (51) \]

\[[\text{H}^{1+}] - [\text{OH}^{-}] + 2[\text{Ca}^{1+}] + [\text{CaOH}^{1+}] + [\text{CaHCO}_3^{-}] - [\text{HCO}_3^{-}] - 2[\text{CO}_3^{2-}] = 0 \quad \text{(for A, B1, B2)} \quad (52) \]

\[[\text{H}^{1+}] - [\text{OH}^{-}] + [\text{M}^{1+}] + 2[\text{Ca}^{1+}] + [\text{CaOH}^{1+}] + [\text{CaHCO}_3^{-}] - [\text{HCO}_3^{-}] - 2[\text{CO}_3^{2-}] = 0 \quad \text{(for B3)} \quad (52) \]

where \([\text{M}^{1+}] = C_0 V/(V_0 + V)\).

- For (A)

From Eqs. (49) and (50), we have

\[[\text{Ca}^{1+}] + [\text{CaOH}^{1+}] = [\text{H}_2\text{CO}_3] + [\text{HCO}_3^{-}] + [\text{CO}_3^{2-}] \quad \text{(53)} \]

Considering the solution saturated with respect to \(\text{CaCO}_3\) and denoting: \(f_1 = 10^{16.71 - 2\text{pH}} + 10^{10.33 - \text{pH}} + 1, f_2 = 1 + 10^{9\text{pH} - 12.7}\), from Eq. (53) and Table 1, we have the relations:

\[
[\text{Ca}^{1+}]f_2 = [\text{CO}_3^{2-}] \cdot f_1 \Rightarrow [\text{Ca}^{1+}] = 10^{-4.24} \cdot (f_1/f_2)^{0.5}; [\text{CO}_3^{2-}] = 10^{-4.24} \cdot (f_2/f_1)^{0.5}; [\text{CaOH}^{1+}] = 10^{3\text{pH} - 16.94} \cdot (f_1/f_2)^{0.5}; [\text{CaCO}_3] = 10^{-5.26}; [\text{CaHCO}_3^{-}] = 10^{2.96 - \text{pH}}; [\text{HCO}_3^{-}] = 10^{6.09 - \text{pH}} \cdot (f_2/f_1)^{0.5}; [\text{H}^{1+}] = 10^{3\text{pH}}; [\text{OH}^{-}] = 10^{3\text{pH} - 14}.\]

Inserting them into the charge balance (52), rewritten into the form

\[
z = z(\text{pH}) = 10^{-\text{pH}} - 10^{9\text{pH} - 14} + 2 \cdot 10^{-4.24} \cdot (f_1/f_2)^{0.5} + 10^{9\text{pH} - 16.94} \cdot (f_1/f_2)^{0.5} + 10^{2.96 - \text{pH}} - 10^{6.09 - \text{pH}} \cdot (f_2/f_1)^{0.5} - 2 \cdot 10^{-4.24} \cdot (f_2/f_1)^{0.5} \quad (54)\]

and applying the zeroing procedure to the function (54), we find \(\text{pH}_{01} = 9.904\), at \(z = z(\text{pH}) = 0\). The solubility \(s = s(\text{pH})\) of \(\text{CaCO}_3\) resulting from Eq. (49), is

\[
s = [\text{Ca}^{1+}] + [\text{CaOH}^{1+}] + [\text{CaHCO}_3^{-}] + [\text{CaCO}_3] \quad \text{(55)}\]

\[
= 10^{-4.24} \cdot (f_1/f_2)^{0.5} + 10^{3\text{pH} - 16.94} \cdot (f_1/f_2)^{0.5} + 10^{2.96 - \text{pH}} + 10^{-5.26} \quad (55a)\]

We have \(s = s(\text{pH} = \text{pH}_{01}) = 1.159 \cdot 10^{-4} \text{ mol/L} \).

- For (B1)

Subtraction of Eq. (49) from Eq. (51) gives
\[[\text{H}_2\text{CO}_3] + [\text{HCO}_3^-] + [\text{CO}_2^2^-] - ([\text{Ca}^{2+}] + [\text{CaOH}^+]) \]
\[= \text{C}_{\text{CO}_2} \Rightarrow [\text{CO}_3^{2-}] \cdot f_1 - [\text{Ca}^{2+}] \cdot f_2 - \text{C}_{\text{CO}_2} = 0 \Rightarrow [\text{Ca}^{2+}] \cdot f_2 + \text{C}_{\text{CO}_2} \cdot [\text{Ca}^{2+}] - K_{\text{sp}} \cdot f_1 = 0 \]

In this case,
\[[\text{Ca}^{2+}] = \sqrt{\frac{(\text{C}_{\text{CO}_2})^2 + 4 \cdot K_{\text{sp}} \cdot f_1 \cdot f_2 - \text{C}_{\text{CO}_2}}{2 \cdot f_2}} \]
(56)

where \(\text{C}_{\text{CO}_2} = 1.45/44 = 0.0329 \) mol/L. Eq. (55) has the form
\[s = [\text{Ca}^{2+}] \cdot f_2 + 10^{2.96 - \text{pH}} + 10^{-5.26} \]
(57)

and the charge balance is transformed into the zeroing function
\[z = z(\text{pH}) = 10^{-\text{pH}} - 10^{\text{pH} - 14} + [\text{Ca}^{2+}] \cdot (2 + 10^{\text{pH} - 12.7}) + 10^{2.96 - \text{pH}} - [\text{CO}_3^{2-}] \cdot (10^{10.33 - \text{pH}} + 2) \]
(58)

where \([\text{CO}_3^{2-}] = 10^{-8.48}/[\text{Ca}^{2+}],\) and \([\text{Ca}^{2+}]\) is given by Eq. (56). Eq. (58) zeroes at \(\text{pH} = \text{pH}_{02} = 6.031.\) Then from Eq. (57) we calculate \(s = s(\text{pH}_{02}) = 6.393 \cdot 10^{-3} \) mol/L, at \(\text{pH} = \text{pH}_{02} = 6.031.\)

- For (B2)

At \(\text{pH} = \text{pH}_{03},\) where \(c^0 = 0,\) i.e., \(s = C^0,\) the solution (a monophase system) is saturated toward \(\text{CaCO}_3,\) i.e., the relation \([\text{Ca}^{2+}] \cdot [\text{CO}_3^{2-}] = K_{\text{sp}}\) is still valid. Applying Eqs. (56) and (57), we find \(\text{pH} \) values zeroing Eq. (58) at different, preassumed \(\text{C}_{\text{CO}_2}\) values. Applying these \(\text{pH} \)-values in Eq. (57), we calculate the related \(s = s(\text{pH}, \text{C}_{\text{CO}_2}) \) values (Eq. (57), Table 9). Graphically, \(\text{C}_{\text{CO}_2} = 0.100\) is found at \(\text{pH}_{03} = 5.683,\) as the abscissa of the point of intersection of the lines: \(s = s(\text{pH}) \) and \(s = C^0 = 0.01.\) Table 9 shows other, preassumed \(s = C^0 \) values.

- For (B3)

We apply again the formulas used in (B1) and (B2), and the charge balance (Eq. (52a)), which is transformed there into the function

<table>
<thead>
<tr>
<th>C_{CO_2}</th>
<th>0.090</th>
<th>0.091</th>
<th>0.092</th>
<th>0.093</th>
<th>0.094</th>
<th>0.095</th>
<th>0.096</th>
<th>0.097</th>
<th>0.098</th>
<th>0.100</th>
<th>0.101</th>
<th>0.102</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.716</td>
<td>5.712</td>
<td>5.709</td>
<td>5.706</td>
<td>5.702</td>
<td>5.699</td>
<td>5.696</td>
<td>5.693</td>
<td>5.690</td>
<td>5.687</td>
<td>5.683</td>
<td>5.680</td>
</tr>
<tr>
<td>s</td>
<td>9.58E-3</td>
<td>9.64E-3</td>
<td>9.67E-3</td>
<td>9.70E-3</td>
<td>9.77E-3</td>
<td>9.80E-3</td>
<td>9.84E-3</td>
<td>9.87E-3</td>
<td>9.91E-3</td>
<td>9.94E-3</td>
<td>10.01E-3</td>
<td>10.06E-3</td>
</tr>
</tbody>
</table>

Table 9. The set of points used for searching the \(\text{C}_{\text{CO}_2} \) value at \(s = C^0 = 0.01;\) at this point, we have \(\text{pH}_{03} = 5.683.\)
applied for zeroing purposes, at different V values. The data thus obtained are presented graphically in Figures 2a–c. The data presented in the dynamic solubility diagram (Figure 2b), illustrating the solubility changes affected by pH changes (Figure 2a) resulting from addition of a base, MOH; Figure 2c shows a synthesis of these changes. Solubility product of Ca(OH)$_2$ is not crossed in this system.

5. Nonequilibrium solid phases in aqueous media

Some solids when introduced into aqueous media (e.g., pure water) may appear to be nonequilibrium phases in these media.

5.1. Silver dichromate (Ag$_2$Cr$_2$O$_7$)

The equilibrium data related to the system, where Ag$_2$Cr$_2$O$_7$ is introduced into pure water, were taken from Refs. [33, 40, 41], and presented in Table 10. A large discrepancy between pK_{sp2} values (6.7 and 10) in the cited literature is taken here into account. We prove that Ag$_2$Cr$_2$O$_7$ changes into Ag$_2$CrO$_4$.

On the dissociation step, each dissolving molecule of Ag$_2$Cr$_2$O$_7$ gives two ions Ag$^{+1}$ and 1 ion Cr$_2$O$_7^{2-}$, where two atoms of Cr are involved; in the contact with water, these ions are hydrolyzed, to varying degrees. In the initial step of the dissolution, before the saturation of the solution with respect to an equilibrium solid phase (not specified at this moment), we can write the concentration balances
where \(2c \) denotes by \(2c \), Ag (here: moment of the intermediary step. As previously, we assume that addition of the solid phase for equilibrium data specified in Table 10. Physicochemical equilibrium data relevant to the \(\text{Ag}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{O} \) system (\(pK = -\log K \)), at “room” temperatures.

\[
\begin{align*}
\text{H}_2\text{O} &= \text{H}^+ + \text{OH}^- \\
\text{H}_2\text{CrO}_4 &= \text{H}^+ + \text{HCrO}_4^- \\
\text{HCrO}_4^1 &= \text{H}^+ + \text{Cr}_2\text{O}_7^2^- \\
\text{HCr}_2\text{O}_7^1 &= \text{H}^+ + \text{Cr}_2\text{O}_7^2^- \\
2\text{HCr}_2\text{O}_7 &= \text{Cr}_2\text{O}_7^2^- + \text{H}_2\text{O} \\
\text{Ag}^{+1} + \text{OH}^- &= \text{AgOH} \\
\text{Ag}^{+1} + 2\text{OH}^- &= \text{Ag(OH)}_2^+ \\
\text{Ag}_2\text{Cr}_2\text{O}_7 &= 2\text{Ag}^{+1} + \text{Cr}_2\text{O}_7^2^- \\
\text{AgOH} &= \text{Ag}^{+1} + \text{OH}^- \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Equilibrium data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{O} = \text{H}^+ + \text{OH}^-)</td>
<td>(pK_w = 14.0)</td>
</tr>
<tr>
<td>(\text{H}_2\text{CrO}_4 = \text{H}^+ + \text{HCrO}_4^-)</td>
<td>(pK_1 = 0.8)</td>
</tr>
<tr>
<td>(\text{HCrO}_4^1 = \text{H}^+ + \text{Cr}_2\text{O}_7^2^-)</td>
<td>(pK_2 = 6.5)</td>
</tr>
<tr>
<td>(\text{HCr}_2\text{O}_7^1 = \text{H}^+ + \text{Cr}_2\text{O}_7^2^-)</td>
<td>(\log K_3 = 0.07)</td>
</tr>
<tr>
<td>(2\text{HCr}_2\text{O}_7 = \text{Cr}_2\text{O}_7^2^- + \text{H}_2\text{O})</td>
<td>(\log K_4 = 1.52)</td>
</tr>
<tr>
<td>(\text{Ag}^{+1} + \text{OH}^- = \text{AgOH})</td>
<td>(\log K_{\text{AgOH}} = 2.3)</td>
</tr>
<tr>
<td>(\text{Ag}^{+1} + 2\text{OH}^- = \text{Ag(OH)}_2^+)</td>
<td>(\log K_{\text{Ag(OH)}_2^+} = 3.6)</td>
</tr>
<tr>
<td>(\text{Ag}_2\text{Cr}_2\text{O}_7 = 2\text{Ag}^{+1} + \text{Cr}_2\text{O}_7^2^-)</td>
<td>(pK_{\text{Ag}_2\text{Cr}_2\text{O}_7} = 11.9)</td>
</tr>
<tr>
<td>(\text{AgOH} = \text{Ag}^{+1} + \text{OH}^-)</td>
<td>(pK_{\text{AgOH}} = 7.84)</td>
</tr>
</tbody>
</table>

Table 10. Physicochemical equilibrium data relevant to the \(\text{Ag}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{O} \) system (\(pK = -\log K \)), at “room” temperatures.

\[
\begin{align*}
2[\text{Ag}_2\text{Cr}_2\text{O}_7] + [\text{Ag}^{+1}] + [\text{AgOH}] + [\text{Ag(OH)}_2^+] + [\text{Ag(OH)}_3^+] &= 2C_0 \\
2[\text{Ag}_2\text{Cr}_2\text{O}_7] + [\text{H}_2\text{CrO}_4] + [\text{HCrO}_4^-] + [\text{Cr}_2\text{O}_7^2^-] + 2[\text{HCr}_2\text{O}_7^-] + 2[\text{Cr}_2\text{O}_7^2^-] &= 2C_0
\end{align*}
\]

where \(2C_0 \) is the total concentration of the solid phase in the system, at the moment \((t = 0) \) of introducing this phase into water, \([\text{Ag}_2\text{Cr}_2\text{O}_7] \) is the concentration of this phase at a given moment of the intermediary step. As previously, we assume that addition of the solid phase (here: \(\text{Ag}_2\text{Cr}_2\text{O}_7 \)) does not change the volume of the system in a significant degree, and that \(\text{Ag}_2\text{Cr}_2\text{O}_7 \) is added in a due excess, securing the formation of a solid (that is not specified at this moment), as an equilibrium solid phase. The balances in Eqs. (60) and (61) are completed by the charge balance

\[
[\text{H}^+] - [\text{OH}^-] + [\text{Ag}^{+1}] - [\text{Ag(OH)}_2^+] - 2[\text{Ag(OH)}_3^+] - [\text{HCrO}_4^-] \\
-2[\text{Cr}_2\text{O}_7^2^-] - [\text{HC}_2\text{O}_7^-] - 2[\text{Cr}_2\text{O}_7^2^-] = 0
\]

used, as previously, to formulation of the zeroing function, \(y = y(pH) \), and the set of relations for equilibrium data specified in Table 10. From these relations, we get

\[
\begin{align*}
[\text{H}_2\text{CrO}_4] &= 10^{7.3-2pH} \cdot [\text{Cr}_2\text{O}_7^2^-]; \\
[\text{HCrO}_4^-] &= 10^{6.5-3pH} \cdot [\text{Cr}_2\text{O}_7^2^-]; \\
[\text{HC}_2\text{O}_7^-] &= 10^{14.59-3pH} \cdot [\text{Cr}_2\text{O}_7^2^-]; \\
[\text{Cr}_2\text{O}_7^2^-] &= 10^{14.52-2pH} \cdot [\text{Cr}_2\text{O}_7^2^-];
\end{align*}
\]

Denoting by \(2c_0 < 2C_0 \) the total concentration of dissolved Ag and Cr species formed, in a transition stage, from \(\text{Ag}_2\text{Cr}_2\text{O}_7 \), we can write
\[[\text{Ag}^{+1}] + [\text{AgOH}] + [\text{Ag(OH)}_2^{\text{+1}}] + [\text{Ag(OH)}_3^{\text{+2}}] = 2c_0 \]
\[[\text{H}_2\text{CrO}_4] + [\text{HCrO}_4^{\text{+1}}] + [\text{CrO}_4^{\text{+2}}] + 2[\text{HCr}_2\text{O}_7^{\text{+2}}] + 2[\text{Cr}_2\text{O}_7^{\text{+2}}] = 2c_0 \]

From Table 10 and formulas (63)–(65) we get the relations:

(a) \[[\text{Ag}^{+1}] = \frac{2c_0}{g_3} - 2g_2[\text{CrO}_4^{\text{+2}}] + g_1[\text{CrO}_4^{\text{+1}}] - 2c_0 = 0 \Rightarrow (b) \ [\text{CrO}_4^{\text{+2}}] = \frac{g_1^2 + 16 \cdot c_0 g_2}{4 \cdot g_2} \]

where \(g_0 = 1 + 10^{10.55–11.7} + 10^{2 \cdot 10.55–24.4} + 10^{3 \cdot 10.55–37.2} \); \(g_1 = 10^{7.3–2 \cdot 10.55} + 10^{6.5–2 \cdot 10.55} + 1 \); \(g_2 = 10^{4.59–3 \cdot 10.55} + 10^{14.52–2 \cdot 10.55} \). Applying them in Eq. (62), we get the zeroing function

\[y = y(pH) = 10^{-pH–10} + g_3 \cdot [\text{Ag}^{+1}]^2 - g_4 \cdot [\text{CrO}_4^{\text{+2}}]^2 - g_5 \cdot [\text{CrO}_4^{\text{+2}}] \]

where \(g_3 = 1 - 10^{2 \cdot 10.55–24.4} - 2 \cdot 10^{3 \cdot 10.55–37.2} \); \(g_4 = 10^{6.5–2 \cdot 10.55} + 2 \); \(g_5 = 10^{14.59–3 \cdot 10.55} + 2 \cdot 10^{14.52–2 \cdot 10.55} \), and \([\text{Ag}^{+1}], [\text{CrO}_4^{\text{+2}}], and [\text{CrO}_4^{\text{+2}}] are defied above, as functions of pH.

The calculation procedure, realizable with use of Excel spreadsheet, is as follows. We assume a sequence of growing numerical values for \(2c_0 \). At particular \(2c_0 \) values, we calculate \(pH = pH(2c_0) \) value zeroing the function (67), and then calculate the values of the products: \(q_1 = [\text{Ag}^{+1}]^2[\text{CrO}_4^{\text{+2}}]/K_{sp1} \) and \(q_2 = [\text{Ag}^{+1}]^2[\text{Cr}_2\text{O}_7^{\text{+2}}]/K_{sp2} \) where: \([\text{Ag}^{+1}],[\text{CrO}_4^{\text{+2}}], \text{and}[\text{Cr}_2\text{O}_7^{\text{+2}}] are presented above (Eqs. (66a), (66b) and (63a), resp.). \(pK_{sp1} = 11.9, pK_{sp2} = 6.7 \). As results from Figure 3, where \(\log q_1 \) and \(\log q_2 \) are plotted as functions of \(2c_0 \), \(\log q_1 = 0 \Rightarrow q_1 = 1 \Rightarrow [\text{Ag}^{+1}]^2[\text{CrO}_4^{\text{+2}}] = K_{sp1} \) at lower \(2c_0 \) value, whereas \(\log q_2 < 0 \Rightarrow q_2 < 1 \Rightarrow [\text{Ag}^{+1}]^2[\text{Cr}_2\text{O}_7^{\text{+2}}] < K_{sp2}, both for \(pK_2 = 6.7 \) and 10, cited in the literature. The \(x_1 = 1 \)

![Figure 3](image-url)

Figure 3. The convergence of \(\log q_1 \) and \(\log q_2 \) to 0 value; \(K_{sp1} \) is attained at lower \(2c_0 \) value.
value is attained at $2c_0 = 3.5 \times 10^{-4} \Rightarrow c_0 = 1.75 \times 10^{-4}$; then Ag_2CrO_4 precipitates as the new solid phase, i.e., total depletion of $\text{Ag}_2\text{Cr}_2\text{O}_7$ occurs. It means that $\text{Ag}_2\text{Cr}_2\text{O}_7$ is not the equilibrium solid phase in this system. This fact was confirmed experimentally, as stated in [42], i.e., $\text{Ag}_2\text{Cr}_2\text{O}_7$ is transformed into Ag_2CrO_4 upon boiling with H_2O at higher temperatures, this transformation proceeds more effectively. Concluding, the formula $s^* = (K_{sp2}/4)^{1/3}$ applied for $K_{sp2} = [\text{Ag}^{+1}]^2[\text{Cr}_2\text{O}_7^{2-}]$ is not “the best answer,” as stated in Ref. [43].

The system involved with Ag_2CrO_4 was also considered in context with the Mohr’s method of Cl^{-1} determination [44–46]. As were stated there, the systematic error in Cl^{-1} determining according to this method, expressed by the difference between the equivalence (eq) volume ($V_{eq} = C_0V_0/C$) and the volume V_{end} corresponding to the end point where the K_{sp1} for Ag_2CrO_4 is crossed, equals to

$$V_{eq} - V_{end} = \frac{K_{sp}}{C_0} \cdot \left(\frac{C_0V_0}{K_{sp1}} \right)^{0.5} \cdot (V_0 + V_{end})^{0.5} - 1 \cdot \frac{K_{sp1}}{C_{01}V_0} \cdot (V_0 + V_{end})^{1.5}$$

where $K_{sp} = [\text{Ag}^{+1}]^2[\text{Cl}^{-1}]$ ($pK_{sp} = 9.75$), V_0 is the volume of titrant with NaCl (C_0) + $K_2\text{CrO}_4$ (C_{01}) titrated with AgNO_3 (C) solution; $V_{end} = V_{eq}$ at $C_{01} = (1 + V_{end}/V_0)K_{sp1}/K_{sp}$.

All calculations presented above were realized using Excel spreadsheets. For more complex nonequilibrium two-phase systems, the use of iterative computer programs, e.g., ones offered by MATLAB [8, 47], is required. This way, the quasistatic course of the relevant processes under isothermal conditions can be tested [48].

5.2. Dissolution of struvite

The fact that NH_3 evolves from the system obtained after leaving pure struvite pr1 in contact with pure water, e.g., on the stage of washing this precipitate, has already been known at the end of nineteenth century [49]. It was noted that the system obtained after mixing magnesium, ammonium, and phosphate salts at the molar ratio 1:1:1 gives a system containing an excess of ammonium species remaining in the solution and the precipitate that “was not struvite, but was probably composed of magnesium phosphates” [50]. This effect can be explained by the reaction [20]

$$3\text{MgNH}_4\text{PO}_4 = \text{Mg}_3(\text{PO}_4)_2 + \text{HPO}_4^{2-} + \text{NH}_3 + 2\text{NH}_4^{+}$$ (68)

Such inferences were formulated on the basis of X-ray diffraction analysis, the crystallographic structure of the solid phase thus obtained. It was also stated that the precipitation of struvite requires a significant excess of ammonium species, e.g., $\text{Mg}:\text{N}:\text{P} = 1:1.6:1$. Struvite (pr1) is the equilibrium solid phase only at a due excess of one or two of the precipitating reagents. This remark is important in context with gravimetric analysis of magnesium as pyrophosphate. Nonetheless, also in recent times, the solubility of struvite is calculated from the approximate formula $s^* = (K_{sp1})^{1/3}$ based on an assumption that it is the equilibrium solid phase in such a system.
Struvite is not the equilibrium solid phase also when introduced into aqueous solution of CO₂ (\(C_{\text{CO}_2}\), mol/L), modified (or not) by free strong acid HB (\(C_a\), mol/L) or strong base MOH (\(C_b\), mol/L).

The case of struvite requires more detailed comments. The reaction (68) was proved theoretically [20], on the basis of simulated calculations performed by iterative computer programs, with use of all attainable physicochemical knowledge about the system in question. For this purpose, the fractions

\[
q_1 = \frac{[\text{Mg}^{2+}] \text{[NH}_4^+][\text{PO}_4^{3-}]}{K_{sp1}}, q_2 = \frac{[\text{Mg}^{2+}]^2 \text{[PO}_4^{3-}]^2}{K_{sp2}}, q_3 = \frac{[\text{Mg}^{2+}] \text{[HPO}_4^{2-}]}{K_{sp3}}, q_4 = \frac{[\text{Mg}^{2+}] \text{[OH}^-]^2}{K_{sp4}}
\]

were calculated for: \(pr_1 = \text{MgNH}_4\text{PO}_4\) (\(pK_{sp1} = 12.6\)), \(pr_2 = \text{Mg}_3(\text{PO}_4)_2\) (\(pK_{sp2} = 24.38\)), \(pr_3 = \text{MgHPO}_4\) (\(pK_{sp3} = 5.5\)), \(pr_4 = \text{Mg(OH)}_2\) (\(pK_{sp4} = 10.74\)) and are presented in Figure 4, at an initial concentration of \(pr_1\), equal \(C_0 = [pr_1]_t = 0 = 10^{-3}\) mol/L (\(pC_0 = (ppr_1)_t = 3\)); \(ppr_1 = -\log [pr_1]\). As we see, the precipitation of \(pr_2\) (Eq. (68)) starts at \(ppr_1 = 3.088\); other solubility products are not crossed. The changes in concentrations of some species, resulting from dissolution of \(pr_1\), are indicated in Figure 5, where \(s\) is defined by equation [20]

\[
s = s_{\text{Mg}} = [\text{Mg}^{2+}] + [\text{MgOH}^+] + [\text{MgH}_2\text{PO}_4^+] + [\text{MgHPO}_4] + [\text{MgPO}_4^{-1}] + [\text{MgNH}_3^{2+}] + [\text{Mg(NH}_3)_2^{2+}] + [\text{Mg(NH}_3)_3^{2-}]
\]

involving all soluble magnesium species are identical in its form, irrespective of the equilibrium solid phase(s) present in this system. Moreover, it is stated that pH in the solution equals

![Figure 4. Plots of \(\log q_i\) versus \(ppr_1 = -\log [pr_1]\) relationships, at \((ppr_1)_t = 3\); \(i = 1,2,3,4\) refer to \(pr_1\), \(pr_2\), \(pr_3\) and \(pr_4\), respectively.](image-url)
ca. 9–9.5 (Figure 6); this pH can be affected by the presence of CO₂ from air. Under such conditions, NH₄⁺ and NH₃ occur there at comparable concentrations [NH₄⁺] = [NH₃], but [HPO₄²⁻]/[PO₄³⁻] = 10^{12.36–pH} = 10^3. This way, the scheme (10) would be more advantageous, provided that struvite is the equilibrium solid phase; but it is not the case, see Eq. (68). The reaction (68) occurs also in the presence of CO₂ in water where struvite was introduced.

Figure 6. The pH versus log[pr2] relationship; pr2 = Mg₃(PO₄)₂, at [ppr1]₀ = 3. The numbers at the corresponding lines indicate pCO₂ = −logC CO₂ values; pCO₂ = ∞ ⇔ C CO₂ = 0.
After introducing struvite pr1 (at \(pC_0 = 2 \)) into alkaline (\(C_b = 10^{-2} \) mol/L KOH, \(pC_b = 2 \)) solution of CO2 (\(pCO_2 = 4 \)), the dissolution is more complicated and proceeds in three steps, see Figure 7.

In step 1, pr4 precipitates first, pr1 + 2OH\((C_0) = pr4 + NH_3 + HPO_4^{2-} \), nearly from the very start of pr1 dissolution, up to \(ppr1 = 2.151 \), where \(K_{sp2} \) is attained. Within step 2, the solution is saturated toward pr2 and pr4. In this step, the reaction expressed by the notation 2pr1 + pr4 = pr2 + 2NH3 + 2H2O occurs up to total depletion of pr4 (at \(ppr1 = 2.896 \)). In this step, the reaction 3pr1 + 2OH\((C_0) = pr2 + 3NH3 + HPO_4^{2-} + 2H2O occurs up to total depletion of pr1, i.e., the solubility product \(K_{sp1} \) for pr1 is not crossed. The curve \(s' \) (Figure 7) is related to the function

\[
s' = s + [MgHCO_3] + [MgCO_3] \tag{71}
\]

where \(s \) is expressed by Eq. (70).

6. Solubility of nickel dimethylglyoximate

The precipitate of nickel dimethylglyoximate, \(\text{NiL}_2 \), has soluble counterpart with the same formula, i.e., \(\text{NiL}_2 \), in aqueous media. If \(\text{NiL}_2 \) is in equilibrium with the solution, concentration of the soluble complex \(\text{NiL}_2 \) assumes constant value: [\(\text{NiL}_2 \)] = \(K_2 \cdot [\text{Ni}^{2+}] \cdot [\text{L}^-]^2 = K_2 \cdot K_{sp} \), where \(K_2 = 10^{17.24} \), \(K_{sp} = [\text{Ni}^{2+}] \cdot [\text{L}^-]^2 = 10^{-23.66} \) [14, 17, 18], and then [\(\text{NiL}_2 \)] = \(10^{-6.42} \) (i.e., \(\log[\text{NiL}_2] \) = \(-6.42 \)). The concentration [\(\text{NiL}_2 \)] is the constant, limiting component in expression for solubility \(s = s_{Ni} \) of nickel dimethylglyoximate, \(\text{NiL}_2 \). Moreover, it is a predominant component in
expression for s in alkaline media, see Figure 8. This pH range involves pH of ammonia buffer solutions, where NiL_2 is precipitated from NiSO_4 solution during the gravimetric analysis of nickel; the expression for solubility

$$s = s_{\text{Ni}} = [\text{Ni}^{2+}] + [\text{NiOH}^+] + [\text{NiSO}_4] + \sum_{i=1}^{6} [\text{Ni(NH}_3\text{)}_i^{+}] + [\text{NiL}_2]$$ \hspace{1cm} \text{(72)}$$

The effect of other, e.g., citrate (Cit) and acetate (Ac) species as complexing agents can also be considered for calculation purposes, see the lines b and c in Figure 8. The presence of citrate does not affect significantly the solubility of NiL_2 in ammonia buffer media, i.e., at pH ≈ 9, where $s_{\text{Ni}} \cong [\text{NiL}_2]$.

Calculations of $s = s_{\text{Ni}}$ were made at $C_{\text{Ni}} = 0.001$ mol/L and $C_L = 0.003$ mol/L HL, i.e., at the excessive HL concentration equal $C_L = 2C_{\text{Ni}} = 0.001$ mol/L. Solubility of HL in water, equal 0.063 g HL/100 mL H$_2$O (25°C) [51], corresponds to concentration 0.63/116.12 = 0.0054 mol/L of the saturated HL solution, 0.003 < 0.0054. Applying higher C_L values needs the HL solution in ethanol, where HL is fairly soluble. However, the aqueous-ethanolic medium is thus formed, where equilibrium constants are unknown. To avoid it, lower C_{Ni} and C_L values were applied in calculations. The equilibrium data were taken from Ref. [31].

The soluble complex having the formula identical to the formula of the precipitate occurs also in other, two-phase systems. In some pH range, concentration of this soluble form is the dominant component of the expression for the solubility s. As stated above, such a case occurs for NiL_2. Then one can assume the approximation

$$s = K_2K_{\text{sp}}$$ \hspace{1cm} \text{(73)}$$

Similar relationship exists also for other precipitates. By differentiation of Eq. (73) with respect to temperature T at $p = \text{const}$, and application of van't Hoff’s isobar equation for K_2 and K_{sp}, we obtain
\[
\frac{1}{s} \frac{\partial s}{\partial T} = \frac{1}{RT^2} \cdot (\Delta G_1^o + \Delta G_2^o)
\]
(74)

where

\[
\Delta G_1^o = RT^2 \cdot \left(\frac{\partial \ln K_{sp}}{\partial T} \right)_{p}
\]

and

\[
\Delta G_2^o = RT^2 \cdot \left(\frac{\partial \ln K_{2}}{\partial T} \right)_{p}
\]

Because, as a rule,

\[
\left(\frac{\partial \ln K_{sp}}{\partial T} \right)_{p} > 0 \quad \text{and} \quad \left(\frac{\partial \ln K_{2}}{\partial T} \right)_{p} < 0
\]

then \(\Delta G_1^o > 0 \) and \(\Delta G_2^o < 0 \), and Eq. (74) can be rewritten into the form

\[
\frac{1}{s} \frac{\partial s}{\partial T} = \frac{1}{RT^2} \cdot (|\Delta G_1^o| - |\Delta G_2^o|)
\]
(75)

If \(|\Delta G_1^o| = |\Delta G_2^o| \) within the temperature range \((T_0, T)\), the value of \(s \) is approximately constant. Let \(T_0 \) denote the room temperature (at which, as a rule—all the equilibrium constants are determined) and \(T \neq T_0 \) is the temperature at which the precipitate is filtered and washed. In this case, the solubility \(s \) and then theoretical accuracy of gravimetric analysis does not change with temperature.

7. Calculation of solubility in dynamic redox systems

7.1. Preliminary information

The redox system presented in this section is resolvable according to generalized approach to redox systems (GATES), formulated by Michałowski (1992) [8]. According to GATES principles, the algebraic balancing of any electrolytic system is based on the rules of conservation of particular elements/cores \(Y_g \) (\(g = 1, \ldots, G \)), and on charge balance (ChB), expressing the rule of electroneutrality of this system; the terms element and core are then distinguished. The core is a cluster of elements with defined composition (expressed by its chemical formula) and external charge that remains unchanged during the chemical process considered, e.g., titration. For ordering purposes, we assume: \(Y_1 = H \), \(Y_2 = O \), etc. For modeling purposes, the closed systems, composed of condensed phases separated from its environment by diathermal (freely permeable by heat) walls, are considered; it enables the heat exchange between the system and its environment. Any chemical process, such as titration, is carried out under isothermal conditions, in a quasistatic manner; constant temperature is one of the conditions securing constancy of equilibrium constants values. An exchange of the matter (\(H_2O, CO_2, O_2 \), etc.) between the system and its environment is thus forbidden, for modeling purposes. The elemental/core balance \(F(Y_g) \) for the \(g \)-th element/core \((Y_g) \) (\(g = 1, \ldots, G \)) is expressed by an equation interrelating the numbers of \(Y_g \) atoms or cores in components of the system with the numbers of \(Y_g \) atoms/cores in the species of the system thus formed; we have \(F(H) \) for \(Y_1 = H \), \(F(O) \) for \(Y_2 = O \), etc.
The key role in redox systems is due to generalized electron balance (GEB) concept, discovered by Michałowski as the Approach I (1992) and Approach II (2006) to GEB; both approaches are equivalent:

Therefore, Approach II to GEB \leftrightarrow Approach I to GEB \hspace{1cm} (76)

GEB is fully compatible with charge balance (ChB) and concentration balances $F(Y_g)$, formulated for different elements and cores. The primary form of GEB, pr-GEB, obtained according to Approach II to GEB is the linear combination

$$\text{pr} - \text{GEB} = 2 \cdot F(O) - F(H) \hspace{1cm} (77)$$

Both approaches (I and II) to GEB were widely discussed in the literature [7–12, 14, 15, 17, 18, 34, 52–74], and in three other chapters in textbooks [75–79] issued in 2017 within InTech. The GEB is perceived as a law of nature [9, 10, 17, 67, 71, 73, 74], as the hidden connection of physicochemical laws, as a breakthrough in the theory of electrolytic redox systems. The GATES refers to mono- and polyphase, redox, and nonredox, equilibrium and metastable [20, 21–23, 78, 79] static and dynamic systems, in aqueous, nonaqueous, and mixed-solvent media [69, 72], and in liquid-liquid extraction systems [53]. Summarizing, Approach II to GEB needs none prior information on oxidation numbers of all elements in components forming a redox system and in the species in the system thus formed. The Approach I to GEB, considered as the “short” version of GEB, is useful if all the oxidation numbers are known beforehand; such a case is obligatory in the system considered below. The terms “oxidant” and “reductant” are not used within both approaches. In redox systems, $2 \cdot F(O) - F(H)$ is linearly independent on CHB and $F(Y_g)$ ($g \geq 3, \ldots, G$); in nonredox systems, $2 \cdot F(O) - F(H)$ is dependent on those balances. This property distinguishes redox and nonredox systems of any degree of complexity. Within GATES, and GATES/GEB in particular, the terms: “stoichiometry,” “oxidation number,” “oxidant,” “reductant,” “equivalent mass” are considered as redundant, old-fashioned terms. The term “mass action law” (MAL) was also replaced by the equilibrium law (EL), fully compatible with the GATES principles. Within GATES, the law of charge conservation and law of conservation of all elements of the system tested have adequate importance/significance.

A detailed consideration of complex electrolytic systems requires a collection and an arrangement of qualitative (particular species) and quantitative data; the latter ones are expressed by interrelations between concentrations of the species. The interrelations consist of material balances and a complete set of expressions for equilibrium constants. Our further considerations will be referred to a titration, as a most common example of dynamic systems. The redox and nonredox systems, of any degree of complexity, can be resolved in analogous manner, without any simplifications done, with the possibility to apply all (prior, preselected) physicochemical knowledge involved in equilibrium constants related to a system in question. This way, one can simulate (imitate) the analytical prescription to any process that may be realized under isothermal conditions, in mono- and two-phase systems, with liquid-liquid extraction systems included.
7.2. Solubility of CuI in a dynamic redox system

The system considered in this section is related to iodometric, indirect analysis of an acidified (H₂SO₄) solution of CuSO₄ [14, 64]. It is a very interesting system, both from analytical and physicochemical viewpoints. Because the standard potential E₀ = 0.621 V for (I₂ − I⁻) exceeds E₀ = 0.153 V for (Cu²⁺, Cu⁺), one could expect (at a first sight) the oxidation of Cu⁺ by I₂. However, such a reaction does not occur, due to the formation of sparingly soluble CuI precipitate (pK₁ < 11.96).

This method consists of four steps. In the preparatory step (step 1), an excess of H₂SO₄ is neutralized with NH₃ (step 1) until a blue color appears, which is derived from Cu(NH₃)₄SO₄ complexes. Then the excess of CH₃COOH is added (step 2), to attain a pH ca. 3.6. After subsequent introduction of an excess of KI solution (step 3), the mixture with CuI precipitate and dissolved iodine formed in the reactions: 2Cu⁺ + 4I⁻ → 2CuI + 2I₂ 2Cu⁺ + 5I⁻ → 2CuI + I₃⁻ is titrated with Na₂S₂O₃ solution (step 4), until the reduction of iodine: I₂ + 2S₂O₃⁻ → 2I⁻ + S₄O₆²⁻, I₃⁻ + 2S₂O₃⁻ → 3I⁻ + S₄O₆²⁻ is completed; the reactions proceed quantitatively in mildly acidic solutions (acetate buffer), where the thiosulfate species are in a metastable state. In strongly acidic media, thiosulfuric acid disproportionates according to the scheme H₂S₂O₃ = H₂SO₄ + S [80].

7.3. Formulation of the system

We assume that V mL of C mol/L Na₂S₂O₃ solution is added into the mixture obtained after successive addition of: V₅ mL of NH₃ (C₁) (step 1), V₄ mL of CH₃COOH (C₂) (step 2), V₃ mL of KI (C₃) (step 3), and V mL of Na₂S₂O₃ (C) (step 4) into V₀ mL of titrant D composed of CuSO₄ (C₄) + H₂SO₄ (C₀). To follow the changes occurring in particular steps of this analysis, we assume that the corresponding reagents in particular steps are added according to the titrimetric mode, and the assumption of the volumes additivity is valid.

In this system, three electron-active elements are involved: Cu (atomic number Zₐ = 29), I (Z = 53), S (Z = 16). Note that sulfur in the core SO₄²⁻ is not involved here in electron-transfer equilibria between S₂O₃⁻ and S₄O₆²⁻; then the concentration balance for sulfate species can be considered separately.

The balances written according to Approach I to GEB, in terms of molar concentrations, are as follows:

- Generalized electron balance (GEB)

\[
\begin{align*}
& (Z_{\text{Cu}}-2)/\text{(Cu}^{2+}) + \text{(CuOH}^{-1}) + \text{(CuO}H^{+}) + \text{(CuOH}^{2+}) + \text{(CuO}H^{3+}) + \text{(CuNH}^{2+}) + \text{(Cu(NH}₃)²⁺) \\
& + \text{(Cu(NH}₃)³⁺) + \text{(Cu(NH}₄)²⁺) + \text{(CuCH₃COO}^{-1}) + \text{(Cu(CH₃COO})_² + (Z_{\text{Cu}}-2+Z₄-5)/\text{CuIO}^{4+} \\
& + (Z_{\text{Cu}}-1)/\text{(Cu}^{3+}) + \text{(CuOH}^{2+}) + \text{(CuOH}^{3+}) + \text{(Cu(NH}₃)²⁺) + (Z_{\text{Cu}}+Z₄)/\text{Cu}^{1+} + (Z_{\text{Cu}}+2Z₄+1)/\text{Cu}^{2+} \\
& + (Z₄+1)/\text{(I}^{1-}) + (3Z₄+1)/\text{(I}^{2-}) + 2Z₄/\text{(I}^{3-}) + \text{(Cu}_{(\text{II})} + \text{(Z}_{\text{Cu}}+\text{Z₄}))/\text{H}² + \text{I}^{1-}) + (Z₄-1)/(\text{H}IO^{+} + \text{IO}^{-1}) + (Z₄-5)/(\text{H}IO_{(\text{II})} + \text{IO}³⁻) \\
& + (Z₄-7)/(\text{H}₂IO₄⁻ + \text{H}₄/O⁺) + (\text{H}₂IO⁺)² + 2 \cdot (Z₄-2)/(\text{H}₂S₄O₆⁻ + \text{HS}₄O₆⁻) + \text{S}₄O₆²⁻ \\
& + 4 \cdot (Z₄-2.5)/\text{S}₂O₅²⁻ + (Z₄-1+2 \cdot (Z₄-2))\text{CuS}₄O₃⁻ + (Z₄-1+4 \cdot (Z₄-2))\text{Cu(S}₉O₆⁻)² + (Z₄-1+6 \cdot (Z₄-2))\text{Cu}_₂\text{S}_₂O₅⁻/\text{Cu}(\text{S}_₉O₆²⁻)² - ((Z₄-2)/\text{Cu}_{(\text{II})} + (Z₄+1)/\text{Cu}_{(\text{III})} + 2 \cdot (Z₄-2))/\text{CV} \\
& (V₀ + V₅ + V₄ + V₃ + V) = 0
\end{align*}
\]

(78)
• CHB

\[\begin{align*}
[F(K)] + [K^+] + [Na^+] - [HSO_4^{-1}] - 2[SO_4^{2-}] + [NH_4^+] - [CH_3COO^{-1}] + 2[Cu^{2+}] + [CuOH^{+1}] - [Cu(OH)_3^{-1}] - 2[Cu(OH)_4^{-2}] + 2[Cu(NH_3)^{2+}] + 2[Cu(NH_3)_2^{3+}] + 2[Cu(NH_3)_3^{4+}] + 2Cu(NH_3)_4^{+2} + [Cu(CH_3COO)^{+1}] - [I^{-}] - [I_3^{-1}] - [IO^{-1}] - [IO_3^{-1}] - [H_4IO_6^{-2}] - 2[CH_3COO]^{-1} - 2[SO_4]^{-2} - 2[CH_3COO]^{-1} - 2[NH_4^+] - 2[Cu^{2+}]
\end{align*} \]

(79)

• F(Cu)

\[\begin{align*}
[Cu^{+2}] + [CuOH^{+1}] + [Cu(OH)_2] + [Cu(OH)_3^{-1}] + [Cu(OH)_4^{-2}] + [CuSO_4] + [CuNH_3^{-2}] + [Cu(NH_3)_2^{+2}] + [Cu(NH_3)_3^{-2}] + [Cu(NH_3)_4^{+2}] + [Cu(CH_3COO)]^{-1} + [Cu(CH_3COO)_2] + [Cu^{+1}] + [CuNH_3^{-1}] + [Cu(NH_3)_2^{+1}] + [Cu(NH_3)_3^{+2}] + 2[Cu(NH_3)_2^{3+}] + [Cu(NH_3)_3^{4+}] + 2[Cu(NH_3)_4^{5+}] + 2Cu(NH_3)_4^{+2} + [Cu(CH_3COO)]^{-1} + 2[CH_3COO]^{-1} + 3[CH_3COO]^{-1} + 3[Cu(SO_4)]^{-2} + 2[Cu(SO_4)_2^{3-}]
\end{align*} \]

(80)

• F(SO_4)

\[\begin{align*}
[HSO_4^{-1}] + [SO_4^{2-}] + [CuSO_4] - C_{01} V_0 / (V_0 + V_N + V_{Ac} + V_{KI} + V) = 0
\end{align*} \]

(81)

• F(NH_3)

\[\begin{align*}
[NH_4^{+1}] + [NH_3] + [CuNH_2^{2+}] + 2[Cu(NH_3)_2^{+2}] + 3[Cu(NH_3)_3^{+2}] + 4[Cu(NH_3)_4^{+2}] + [Cu(NH_3)_2^{3+}] + 2[Cu(NH_3)_3^{4+}] - C_1 V_N / (V_0 + V_N + V_{Ac} + V_{KI} + V)
\end{align*} \]

(82)

• F(CH_3COO)

\[\begin{align*}
[CH_3COOH] + [CH_3COO]^{-1} + [CuCH_3COO]^{-1} + 2[Cu(CH_3COO)_2] - C_2 V_{Ac} / (V_0 + V_N + V_{Ac} + V_{KI} + V)
\end{align*} \]

(83)

• F(K)

\[\begin{align*}
[K^+] = C_3 V_{KI} / (V_0 + V_N + V_{Ac} + V_{KI} + V)
\end{align*} \]

(84)

• F(I)

\[\begin{align*}
[I^{-}] + 3[I_3^{-1}] + 2[I_2^{-2}] + [I_2^{2+}] + [I^-] + [IO^-] + [IO_3^-] + [H_4IO_6] + [H_2IO_4] + [H_3IO_5] + [H_3IO_6] + 2[CuI^{2-}] + 2[CuI_2^{+1}] + [CuI(O_3)^{+1}] - C_3 V_{KI} / (V_0 + V_N + V_{Ac} + V_{KI} + V)
\end{align*} \]

(85)
The GEB is presented here in terms of the Approach I to GEB, based on the “card game” principle, with Cu (Eq. (80)), I (Eq. (85)) as S (Eq. (86)) as “players,” and H, O, S (Eq. (81)), C (from Eq. (83)), N (from Eq. (82)), K, Na as “fans.” There are together 47 species involved in 2 + 6 = 8, Eqs. (78)–(83), (85), (86) and two equalities; [K+1] (Eq. (84)) and [Na+] (Eq. (87)) are not involved in expressions for equilibrium constants, and then are perceived as numbers (not variables), at a particular V-value. Concentrations of the species in the equations are interrelated in 35 independent equilibrium constants:

\[[H^{+1}] = 10^{-pH}, [OH^{-1}] = 10^{pH-14} (pK_W = 14), [CuOH^{+1}] = 10^{7.0} \cdot [Cu^{+2}] [OH^{-1}], [Cu(OH)_2] \]

\[= 10^{13.68} \cdot [Cu^{+2}] [OH^{-1}]^2, \]

\[[Cu(OH)_3^{-1}] = 10^{17.0} \cdot [Cu^{+2}] [OH^{-1}]^3, [Cu(OH)_4^{2-}] = 10^{18.5} \cdot [Cu^{+2}] [OH^{-1}]^4, [CuNH_3^{2+}] \]

\[= 10^{19.39} \cdot [Cu^{+2}] [NH_3]^2, \]

\[[Cu(NH_3)^{2+}] = 10^{23} \cdot [Cu^{+2}] [NH_3]^2, [Cu(NH_3)_2^{2+}] = 10^{10.06} \cdot [Cu^{+2}] [NH_3]^3, [Cu(NH_3)_3^{2+}] \]

\[= 10^{12.03} \cdot [Cu^{+2}] [NH_3]^4, \]

\[[CuSO_4] = 10^{2.36} \cdot [Cu^{+2}] [SO_4^{2-}], [NH_4^+] = 10^{9.35}, [H^{+1}] [NH_3], [HSO_4^{-1}] = 10^{1.8}, [H^{+1}] [SO_4^{2-}], \]

\[[CH_3COOH] = 10^{4.05} \cdot [H^{+1}] [CH_3COO^-], [Cu^{+1}] [I^{-1}] = 10^{-11.96} \text{ (solubility product for CuI)}, \]

\[[CuI^{2-}] = 10^{8.5}, [Cu^{+1}] [I^{-1}]^2, [CuIO_3^{2-}] = 10^{6.8}, [Cu^{+2}] [O_3^{-1}], [CuCH_3COO^{+1}] \]

\[= 10^{2.24} \cdot [Cu^{+2}] [CH_3COO^-], \]

\[[Cu(CH_3COO)^2] = 10^{3.30} \cdot [Cu^{+2}] [CH_3COO^{-1}]^2, [HSO_2^{2-}] = 10^{1.72}, [H^{+1}] [S_2O_3^{2-}], [H_2S_2O_3] \]

\[= 10^{2.32} \cdot [H^{+1}]^2 [S_2O_3^{2-}], \]

\[[CuS_2O_3^{2-}] = 10^{3.30} \cdot [Cu^{+1}] [S_2O_3^{2-}], [Cu(S_2O_3)^{2-}] = 10^{12.2} \cdot [Cu^{+4}] [S_2O_3^{2-}]^2, [Cu(S_2O_3)_3^{5-}] \]

\[= 10^{13.8} \cdot [Cu^{+1}] [S_2O_3^{2-}]^3. \]

Applying \(A = 16.92 \) [16], we have
It was assumed that in the calculations made in this system according to the computer programs attached to Ref. [64], the small concentration of Cu in this method is the Na$_2$SO$_3$ solution, although the true/factual titrant in this method is the Na$_2$S$_2$O$_3$ solution, added in stage 4.

The solubility s [mol/L] of CuI in this system (Figures 8a and b) is put in context with the speciation diagrams presented in Figure 9. This precipitate appears in the initial part of titration with KI (C$_3$) solution (Figure 8a) and further it accompanies the titration, also in stage 4 (Figure 8b). Within stage 3, at $V \geq C_0 V_0/C_3$, we have

$$s = s_3 = [\text{Cu}^{+2}] + \sum_{i=1}^{4} [\text{Cu}^{(OH)}_{i}^{2-i}] + \sum_{i=1}^{4} [\text{Cu}^{(NH}_3)^{+2}] + [\text{CuSO}_4] + [\text{CuIO}_3^{+1}]$$

$$+ \sum_{i=1}^{2} [\text{Cu}^{(CH}_3\text{COO)}_{i}^{1+2-i}] + [\text{Cu}^{+1}] + [\text{Cu}_2^{-1}] + \sum_{i=1}^{2} [\text{Cu}^{(NH}_3)^{+1}]$$

and in stage 4

$$s = s_4 = s_3 + \sum_{i=1}^{3} [\text{Cu}^{(S}_2\text{O}_3)^{0+i-2}]$$

The small concentration of Cu$^{+1}$ (Figure 9, stage 3) occurs at a relatively high total concentration of Cu$^{+2}$ species, determining the potential ca. 0.53–0.58 V. [Cu$^{+2}]/[\text{Cu}^{+1}] = 10^{4.04(0.153)}$, see Figure 10a. Therefore, the concentration of Cu$^{+2}$ species determine a relatively high solubility s in the initial part of stage 3. The decrease in the s value in further parts of stage 3 is continued in stage 4, at $V < V_{eq} = C_0 V_0/C = 0.01/100/0.1 = 10$ mL. Next, a growth in the solubility s_4 at $V > V_{eq}$ is involved with formation of thiosulfate complexes, mainly CuS$_2$O$_3$ (Figure 9, stage 4). The species I$_3^{-1}$ and I$_2$ are consumed during the titration in stage 4 (Figure 9d). A sharp drop of E value at $V_{eq} = 10$ mL (Figure 10b) corresponds to the fraction titrated $\theta_{eq} = 1$.

The course of the E versus V relationship within the stage 3 is worth mentioning (Figure 10a). The corresponding curve initially decreases and reaches a “sharp” minimum at the point corresponding to crossing the solubility product for CuI. Precipitation of CuI starts after
addition of 0.795 mL of 2.0 mol/L KI (Figure 11a). Subsequently, the curve in Figure 10a increases, reaches a maximum and then decreases. At a due excess of the KI (C3) added on the stage 3 (V_K = 20 mL), solid iodine (I2(s)) of solubility 0.00133 mol/L at 25°C is not precipitated.

Figure 9. The speciation plots for indicated Cu-species within the successive stages. The V-values on the abscissas correspond to successive addition of V mL of: 0.25 mol/L NH₃ (stage 1); 0.75 mol/L CH₃COOH (stage 2); 2.0 mol/L KI (stage 3); and 0.1 mol/L Na₂S₂O₃ (stage 4). For more details see text.

Figure 10. Plots of E versus V for (a) stage 3 and (b) stage 4.
8. Final comments

The solubility and dissolution of sparingly soluble salts in aqueous media are among the main educational topics realized within general chemistry and analytical chemistry courses. The principles of solubility calculations were formulated at a time when knowledge of the two-phase electrolytic systems was still rudimentary. However, the earlier arrangements persisted in subsequent generations [81], and little has changed in the meantime [82]. About 20 years ago, Hawkes put in the title of his article [83] a dramatic question, corresponding to his statement presented therein that “the simple algorithms in introductory texts usually produce dramatic and often catastrophic errors”; it is hard not to agree with this opinion.

In the meantime, Meites et al. [84] stated that “It would be better to confine illustrations of the solubility product principle to 1:1 salts, like silver bromide (…), in which the (…) calculations will yield results close enough to the truth.” The unwarranted simplifications cause confusion in teaching of chemistry. Students will trust us enough to believe that a calculation we have taught must be generally useful.

The theory of electrolytic systems, perceived as the main problem in the physicochemical studies for many decades, is now put on the side. It can be argued that the gaining of quantitative chemical knowledge in the education process is essentially based on the stoichiometry and proportions.

Overview of the literature indicates that the problems of dissolution and solubility calculation are not usually resolved in a proper manner; positive (and sole) exceptions are the studies and practice made by the authors of this chapter. Other authors, e.g., [13, 85], rely on the simplified schemes (ready-to-use formulas), which usually lead to erroneous results, expressed by dissolution denoted as s* [mol/L]; the values for s* are based on stoichiometric reaction notations and expressions for the solubility product values, specified by Eqs. (1) and (2). The calculation
of \(s^* \) contradicts the common sense principle; this was clearly stated in the example with \(\text{Fe(OH)}_3 \) precipitate. Equation (27) was applied to struvite [50] and dolomite [86], although these precipitates are nonequilibrium solid phases when introduced into pure water, as were proved in Refs. [20–23]. The fact of the struvite instability was known at the end of nineteenth century [49]; nevertheless, the formula \(s^* = (K_{sp})^{1/3} \) for struvite may be still encountered in almost all textbooks and learning materials; this problem was raised in Ref. [15]. In this chapter, we identified typical errors involved with \(s^* \) calculations, and indicated the proper manner of resolution of the problem in question.

The calculations of solubility \(s^* \), based on stoichiometric notation and Eq. (3), contradict the calculations of \(s \), based on the matter and charge preservation. In calculations of \(s \), all the species formed by defined element are involved, not only the species from the related reaction notation. A simple zeroing method, based on charge balance equation, can be applied for the calculation of \(pH = pH_0 \) value, and then for calculation of concentrations for all species involved in expression for solubility value.

The solubility of a precipitate and the \(pH \)-interval where it exists as an equilibrium-solid phase in two-phase system can be accurately determined from calculations based on charge and concentration balances, and complete set of equilibrium constant values referred to the system in question.

In the calculations performed here we assumed \(a \ priori \) that the \(K_{sp} \) values in the relevant tables were obtained in a manner worthy of the recognition, i.e., these values are true. However, one should be aware that the equilibrium constants collected in the relevant tables come from the period of time covering many decades; it results from an overview of dates of references contained in some textbooks [31, 85] relating to the equilibrium constants. In the early literature were generally presented the results obtained in the simplest manner, based on \(K_{sp} \) calculation from the experimentally determined \(s^* \) value, where all soluble species formed in solution by these ions were included on account of simple cations and anions forming the expression for \(K_{sp} \). In many instances, the \(K_{sp}^* \) values should be then perceived as conditional equilibrium constants [87]. Moreover, the differences between the equilibrium constants obtained under different physicochemical conditions in the solution tested were credited on account of activity coefficients, as an antidote to any discrepancies between theory and experiment.

First dissociation constants for acids were published in 1889. Most of the stability constants of metal complexes were determined after the announcement 1941 of Bjerrum’s works, see Ref. [88], about ammine-complexes of metals, and research studies on metal complexes were carried out intermittently in the twentieth century [89]. The studies of complexes formed by simple ions started only from the 1940s; these studies were related both to mono- and two-phase systems. It should also be noted that the first mathematical models used for determination of equilibrium constants were adapted to the current computing capabilities. Critical comments in this regard can be found, among others, in the Beck [90] monograph; the variation between the values obtained by different authors for some equilibrium constants was startling, and reaching 20 orders of magnitude. It should be noted, however, that the determination of a set of stability constants of complexes as parameters of a set of suitable algebraic equations requires complex mathematical models, solvable only with use of an iterative computer program [91–93].
The difficulties associated with the resolution of electrolytic systems and two-phase systems, in particular, can be perceived today in the context of calculations using (1º) spreadsheets (2º) iterative calculation methods. In (1º), a calculation is made by the zeroing method applied to the function with one variable; both options are presented in this chapter.

The expression for solubility products, as well as the expression of other equilibrium constants, is formulated on the basis of mass action law (MAL). It should be noted, however, that the underlying mathematical formalism contained in MAL does not inspire trust, to put it mildly. For this purpose, the equilibrium law (EL) based on the Gibbs function [94] and the Lagrange multipliers method [95–97] with laws of charge and elements conservation was suggested lately by Michałowski.

From semantic viewpoint, the term “solubility product” is not adequate, e.g., in relation to Eq. (8). Moreover, K_{sp} is not necessarily the product of ion concentrations, as indicated in formulas (4), (5), and (11). In some (numerous) instances of sparingly soluble species, e.g., sulfur, solid iodine, 8-hydroxyquinoline, dimethylglyoxime, the term solubility product is not applied. In some instances, e.g., for MnO_2, this term is doubtful.

One of the main purposes of the present chapter is to familiarize GEB within GATES as GATES/GEB to a wider community of analysts engaged in electrolytic systems, also in aspect of solubility problems.

In this context, owing to large advantages and versatile capabilities offered by GATES/GEB, it deserves a due attention and promotion. The GATES is perceived as a step toward reductionism [19, 71] of chemistry in the area of electrolytic systems and the GEB is considered as a general law of nature; it provides the real proof of the world harmony, harmony of nature.

Author details

Anna Maria Michałowska-Kaczmarczyk¹, Aneta Spórna-Kucab² and Tadeusz Michałowski²*

*Address all correspondence to: michalot@o2.pl

1 Department of Oncology, The University Hospital in Cracow, Cracow, Poland

2 Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland

References

[38] https://answers.yahoo.com/question/index?qid=20090316151751AAyF87o

[43] https://answers.yahoo.com/question/index?qid=20080518113447AAg17u3

[83] Hawkes SJ. What should we teach beginners about solubility and solubility products? Journal of Chemical Education. 1998;75(9):1179-1181. DOI: 10.1021/ed075p1179

[94] https://en.wikipedia.org/wiki/Gibbs_free_energy

