We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,200
Open access books available

116,000
International authors and editors

125M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 8

Advancement of Sol-Gel–Prepared TiO$_2$ Photocatalyst

Robabeh Bashiri, Norani Muti Mohamed and Chong Fai Kait

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68357

Abstract

This chapter elaborates a review of sol-gel–prepared TiO$_2$ photocatalyst for different photocatalytic applications. Among the semiconductors employed, TiO$_2$ is known as an attractive photocatalyst owing to its high photosensitivity, nontoxicity, easy availability, strong oxidizing power and long-term stability. Some research works related to the effect of sol-gel preparation parameters on physicochemical properties and different photocatalytic applications of prepared TiO$_2$ photocatalysts are reported. Furthermore, various sol-gel and related systems for modification of TiO$_2$ photocatalytic performance, including transition metals and co-doing of TiO$_2$, were considered. The results illustrated that doping TiO$_2$ with metal ions through sol-gel method usually resulted in an improved efficiency of TiO$_2$ photocatalyst. This method has all the advantages over other preparation techniques in terms of purity, homogeneity, felicity and flexibility in introducing dopants in a large concentration, stoichiometry control, ease of processing and composition control.

Keywords: TiO$_2$, metal doping, hydrolysis, physicochemical properties, photocatalytic activity

1. Introduction

An excessive deal of attention has recently been paid to the development of photocatalyst which being used in a variety of products and research areas especially for environmental and energy applications. Semiconductor-based photocatalyst have been extensively studied due to its electronic configuration to absorb applied solar spectrum for photocatalytic reaction. The semiconductor consists of a valence band (VB) and conduction band (CB). The energy difference between the top of the VB and the bottom of the CB levels is known as band gap energy (E$_g$) which is responsible for photoactivity of the semiconductor. Figure 1 displays the general principle of photocatalytic reaction over the semiconductor as summarized in the following steps:
1. Harvesting photons with energy equivalent or larger than the bandgap energy to form electron-hole pairs.

2. Photogenerated electrons are injected to the CB, while photogenerated holes with a positive charge are left behind in the VB.

3. Surface chemical reactions consist of reducing an acceptor species \((A^+ \rightarrow A)\) and oxidizing a donor species \((D^- \rightarrow D^+)\) \[1\].

Semiconducting oxides such as TiO\(_2\), SrTiO\(_3\), ZnO, \(\alpha\)-Fe\(_2\)O\(_3\), WO\(_3\), Ta\(_2\)O\(_5\), VO\(_2\), KTaO\(_3\), and Fe\(_2\)O\(_3\) appear to be the most considered materials for photocatalysts due to the fact that their properties can be modified over wide ranges through changing their semiconducting properties. Moreover, these materials are economically promising because their processing technologies are relatively simple \[2, 3\]. Among different metal oxides, TiO\(_2\) is one of the most significant photocatalyst with a large variety of applications in energy and environment (Figure 2),

Figure 1. A schematic diagram of general principle of the photocatalytic reaction.

Figure 2. Different photocatalytic applications of TiO\(_2\).
regardless of its limitations. The following section is dedicated to the discussion of the intrinsic properties of TiO$_2$ to fully understand its function as a photocatalyst and its synthesis process.

2. Titanium dioxide (TiO$_2$) photocatalyst

TiO$_2$ has high resistance to corrosion and photocorrosion in an aqueous medium, cheaper than many other photosensitive materials, easily available, environmentally friendly. Furthermore, its electronic properties can be varied by just changing the defect chemistry or oxygen stoichiometry [9]. The photocatalytic applications of TiO$_2$ are restricted because of its large bandgap energy (3.0–3.2 eV) and small electron mobility of 1 cm2/V s [4–6]. TiO$_2$ has three crystalline phases, including anatase, rutile and brookite. Anatase and rutile are the most common structures for photocatalytic studies. Figure 3a and b describes the lattice structures of anatase and rutile, respectively, in the form of distorted TiO$_6$ octahedral with six O$^{2-}$ ions around each Ti$^{+4}$ ion. The structure of rutile represents an irregular octahedron with slightly orthorhombic distortion compared to octahedron in anatase [34]. The structural difference between anatase and rutile explains the significant difference in their electronic band properties.

However, rutile with band gap energy of 3.0 eV has a threshold absorption edge of 415 nm in the visible region compared to anatase with band gap energy of 3.2 eV and threshold absorption of 390 nm. Researchers have reported that anatase is the appropriate crystalline phase for photocatalytic hydrogen production [36]. It has more negative CB position (~0.2 eV) compared to rutile as demonstrated in Figure 4, while their VB positions (O2p) are almost in the similar position.

2.1. Sol-gel synthesis of TiO$_2$ nanoparticles

Photocatalytic activity of TiO$_2$ is strongly influenced by the synthesis condition and methodology. Various methods have been applied for synthesis of TiO$_2$ photocatalyst: electrochemical [7, 8], combining inverse micelle and plasma treatment [9], dip coating [10], two step wet

![Figure 3. The bulk structural model of: (a) anatase and (b) rutile (ball (1) and (2) represent oxygen and titanium atoms, respectively) [35].](https://example.com/figure3.png)
chemical [11], precipitation [12], thermal (hydrothermal and solvothermal) [13, 14], chemical solvent and chemical vapor decomposition (CSD and CVD) [15, 16], ultrasonic irradiation [17], two-route sol-gel [18], and sol-gel [19–21]. Sol-gel method is a technique to improve the physicochemical and electrochemical properties of TiO$_2$ nanocrystalline. It provides a simple synthesis process of nanoparticle at ambient temperature under atmospheric pressure, and this technique does not require a complicated set up. The benefits derived from preparing TiO$_2$ by sol-gel method (process flow chart shown in Figure 5) such as purity, homogeneity, and flexibility of the growth of TiO$_2$ can be effectively controlled by hydrolysis and condensation of titanium alkoxide in the aqueous medium [22]. Typically, sol-gel-derived precipitates are amorphous in nature, requiring further heat treatment to induce crystallization. Based on literatures, the sol-gel method has been modified using various techniques like calcination, ultrasonic [23], hydrothermal [24, 25], or surfactant [26] to obtain better properties of the synthesized powders.

Figure 4. Electronic bands of anatase and rutile [36].

Figure 5. A schematic diagram of sol-gel process to synthesize TiO$_2$-based photocatalysts [22].
In normal sol-gel processing, gelation and calcination are necessary. If the calcination temperature for crystallization is not high enough, some organic molecules will remain in the product, leading to the incomplete crystallization of titania. However, high temperature calcination causes high aggregation rate and/or phase transformation [27]. Hydrothermal synthesis provides an easy route to prepare a well-crystalline and phase-pure oxide in a tightly closed vessel. The hydrothermal-assisted sol-gel method helps to increase the number of hydroxyl groups (OH⁻) on the surface of the photocatalyst and requires a lower calcination temperature. The prepared TiO₂ by this method has high thermal stability, well-crystalline phase, small particle sizes, and large surface area, which are beneficial to improve the photocatalytic activity [28–30]. The sol-gel process is typically based on the formation of inorganic polymer by hydrolysis and condensation of metal precursor like titanium alkoxide to oxopolymers, which are transformed into a metal alkoxide in aqueous solutions or organic solvents [31–34]. A number of parameters can influence on the hydrolysis process like water to alkoxide ratio, pH, and solvents. Water plays a significant role during the hydrolysis process to determine the reaction mechanism, the number of active sites on the surface of the photocatalyst and the physical properties of the photocatalyst during photocatalytic reaction [35].

2.2. Effect of hydrolysis process on sol-gel method

The water to alkoxide molar ratio (R_w) plays an important role in the structure of TiO₂ due to controlling of the formation of nucleus and the growth of crystallites. The total sol-gel synthesis can be described by an alcoholic permutation reaction, hydrolysis, and condensation reactions, which are competitive with alkoxolation, oxolation and olation as follows:

1. Alcoholic permutation

\[M(\text{OR}) + x\text{R(OH)} \leftrightarrow M(\text{OR})_2 + x\text{ROH} \] (1)

2. Hydrolysis

\[M(\text{OR})_n + n\text{H}_2\text{O} \rightleftharpoons M(\text{OH})_n + n\text{ROH} \] (2)

3. Condensation reactions

A. Alcoxolation

\[\text{M-OH} + \text{M-OR} \rightleftharpoons \text{M-O-M} + \text{R-OH} \] (3)

B. Oxolation

\[\text{M-OH} + \text{M-OH} \rightleftharpoons \text{M-O-M} + \text{H}_2\text{O} \] (4)

The water to alkoxide molar ratio is investigated in two main groups: low R_w and high R_w. Hydrolysis of alkoxide with low water content less than stoichiometric ratio (R_w < 4) causes an incomplete hydrolysis. Therefore, unhydrolyzed alkoxide can be absorbed on the surface of TiO₂ and increase particle size with irregular shape and low surface area [36]. A high R_w (R_w > 100) causes the completion of nucleation and growth during the hydrolysis of TiO₂.
within nanosecond; thus, TiO$_2$ particle is unstable, and the white suspension is immediately formed due to precipitation of a large aggregate [37]. Furthermore, adding external solvent like simple alcohols can significantly affect the controlling hydrolysis and condensation rate.

Venkatachalam et al. [38] investigated the influence of water to alkoxide ratio, pH, and type of solvent (methanol, isopropyl alcohol, acetic acid) on the physicochemical properties of TiO$_2$ and consequently its photocatalytic activity by using Bisphenol-A (BPA) as a model pollutant. Table 1 illustrates that the prepared photocatalysts in the presence of acetic acid had smaller particle size and higher surface area compared to prepared TiO$_2$ in the presence of isopropanol and methanol. It was explained that acetic acid as a catalyst causes a rapid hydrolysis process, formation of titanium hydroxide, and their condensation to form TiO$_2$ nanoparticles. In addition, the variation of pH from 3 to 9 during hydrolysis process illustrates that the prepared TiO$_2$ photocatalyst at pH = 9 has very low surface area due to rapid hydroxylation of titanium precursor and agglomeration of TiO$_2$ particles.

It was reported that high water: alkoxide ratio improves the nucleophilic attack of water on titanium (IV) isopropoxide; however, it had negative effect on the surface area beyond the optimum level (350) due to more agglomeration. Furthermore, the presence of residual alkyl groups decreases the crystallization rate of TiO$_2$, which favor the formation of less dense anatase phase exclusively. At low water content, the hydrolysis rate is slow, and the existence of excess titanium alkoxide in the solvent favors the development of Ti–O–Ti chains and formation of high ratio of rutile phase. They reported that the synthesized TiO$_2$ photocatalyst under the optimum molar ratio of alkoxide, acetic acid and water is 1:10:350 had maximum photocatalytic mineralization of BPA over nano-sized TiO$_2$ photocatalyst compared to P25 (commercial TiO$_2$) and other prepared photocatalysts.

Bashiri et al. [29] reported synthesis a series of 10 mol% Cu/TiO$_2$ photocatalysts by varying H$_2$O:alkoxide molar ratios (8, 16, 32, and 64) using sol-gel–associated hydrothermal method. The influence of hydrolysis rate on the physicochemical properties (Table 2) and photocatalytic

<table>
<thead>
<tr>
<th>Photocatalyst</th>
<th>BET surface area (m2 g$^{-1}$)</th>
<th>Catalyst anatase crystallite size (nm)</th>
<th>Anatase:Rutile ratio (%)</th>
<th>Band gap energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>69</td>
<td>17</td>
<td>69:31</td>
<td>3.19</td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>84</td>
<td>12.6</td>
<td>74.26</td>
<td>3.21</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td>107</td>
<td>8.3</td>
<td>82.18</td>
<td>3.27</td>
</tr>
<tr>
<td>Hydrolyzing agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:10:150</td>
<td>86</td>
<td>12</td>
<td>73.27</td>
<td>3.19</td>
</tr>
<tr>
<td>1:10:250</td>
<td>94</td>
<td>10.1</td>
<td>78.22</td>
<td>3.26</td>
</tr>
<tr>
<td>1:10:350</td>
<td>110</td>
<td>8.1</td>
<td>83.17</td>
<td>3.28</td>
</tr>
<tr>
<td>1:10:450</td>
<td>91</td>
<td>8.6</td>
<td>74.26</td>
<td>3.21</td>
</tr>
</tbody>
</table>

Table 1. Physicochemical properties of nano-sized TiO$_2$ photocatalysts [38].
hydrogen production by water photosplitting in an aqueous NaOH-glycerol solution were investigated. It was demonstrated that the amount of water has strong influence on the hydrolysis and polymerization rate, changing the physicochemical properties and photocatalytic activity of the prepared photocatalysts.

The average crystal sizes ranged from 9.63 (CuT8) to 13.55 nm (TiO$_2$), which confirmed that the presence of copper and variation of water contents can strongly control crystal size. The low water content (CuT8) causes the incomplete hydrolysis, leads to aggregates, and surpasses the crystal growth. However, adding more water showed negative impact on the crystallinity due to formation of aggregates rather than the growth of crystals, strong nucleophilic reaction and fast hydrolysis rate. In this case, more alkoxy groups in the alkoxide are substituted by hydroxyl groups from H$_2$O, and the quantity of unhydrolyzed alkyl in the precursor is reduced hence reduction in steric hindrance by the residual alkyls preventing crystallization to anatase phase \[37, 39\]. The better crystallinity and proper crystal size of CuT32 compared to other photocatalysts can be explained by the moderate hydrolysis rate during preparation. The variation of the BET surface area of mesoporous photocatalysts from 82.69 to 89.19 m2/g illustrates that the grain size was decreased in CuT8 and CuT64 but the surface area did not increase due to the agglomeration during hydrolysis process. The photocatalyst with the H$_2$O:alkoxide molar ratio of 32 produced the highest cumulative hydrogen production of 10571 µmol in 300 min compared to TiO$_2$ and other synthesized Cu/TiO$_2$ photocatalysts in the aqueous NaOH-glycerol solution. The mesoporous nanoparticles with larger specific surface area, lower bandgap energy, more absorbance in the visible region, presence of Ti$^{3+}$ with higher photocatalytic activity and the coexistence of Cu$_2$O and CuO are responsible for better photocatalytic performance of CuT32 photocatalyst.

In the other work, Behnajady et al. [40] synthesized titanium dioxide nanoparticles by sol-gel method. Various precursors under different synthesis conditions such as solvent and water percent, reflux temperature and time, sol drying method and calcination temperature are studied as shown in Table 3.

The photocatalytic activity of prepared TiO$_2$ was studied by photodegradation of C.I. Acid Red 27 as a model contaminant from textile industry under UV light irradiation. Results of characterization revealed that the type of the precursor and solvent is effective on the particle size

<table>
<thead>
<tr>
<th>Photocatalysts</th>
<th>H$_2$O:alk side</th>
<th>Crystallite size (nm)</th>
<th>Average particle size (nm)</th>
<th>BET surface area (m2/g)</th>
<th>Band gap (eV)</th>
<th>Hydrogen production (µmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$</td>
<td>0</td>
<td>13.55</td>
<td>13.89</td>
<td>27.54</td>
<td>82.69</td>
<td>3</td>
</tr>
<tr>
<td>CuT8</td>
<td>8</td>
<td>9.63</td>
<td>11.47</td>
<td>22.194</td>
<td>85.57</td>
<td>2.96</td>
</tr>
<tr>
<td>CuT16</td>
<td>16</td>
<td>11.22</td>
<td>12.08</td>
<td>19.72</td>
<td>83.5</td>
<td>2.9</td>
</tr>
<tr>
<td>CuT32</td>
<td>32</td>
<td>12.88</td>
<td>13.34</td>
<td>16.835</td>
<td>89.19</td>
<td>2.72</td>
</tr>
<tr>
<td>CuT64</td>
<td>64</td>
<td>10.54</td>
<td>12.53</td>
<td>20.185</td>
<td>84.57</td>
<td>2.83</td>
</tr>
</tbody>
</table>

Table 2. Physicochemical properties of all prepared photocatalysts [29].
and crystalline structure of the synthesized TiO\textsubscript{2} nanoparticles, which can strongly control the photocatalytic performance of TiO\textsubscript{2}. Optimal conditions for synthesis of TiO\textsubscript{2} nanoparticles with excellent photocatalytic activity were obtained from titanium isopropoxide precursor in methanol solvent with molar ratio of 1:65:1 (precursor:water:solvent) under reflux for 3 h at reflux temperature of 80°C, employing thermal drying method for sol drying and calcination temperature of 450°C. Titanium dioxide nanoparticles produced under optimal conditions show higher photocatalytic activity than commercial TiO\textsubscript{2}-P25. In the following section, the various sol-gel and related systems of doping TiO\textsubscript{2} including noble metal, co-doping, transition metal doping, and their photocatalytic performance in degradation of pollutants in aqueous solutions and solar hydrogen production are discussed.

3. Doped-TiO\textsubscript{2} photocatalysts by sol-gel method

Many researchers have attempted to modify TiO\textsubscript{2} surface to overcome its limitation for photocatalytic reaction. The aim of these modifications is to extend the absorbance edge into the visible region, reducing charge carrier recombination and decreasing fast backward reaction. The modification of TiO\textsubscript{2} mainly was conducted through the following strategies:

1. Doping metal ions with a dn (0 < n < 10) electronic configuration
2. Valence band control using anion’s p orbitals or the s orbital of p-block metal ions
3. Spectral sensitization [41]

The metal dopant can strongly influence on the number of surface defects by changing the morphology such as crystal structure, crystallinity and particle size [1, 42]. Type of metal dopants (electronegativity and affinity), total metal loading, preparation method, and chemical state of metal are crucial parameters to control the effect of metal loading in TiO\textsubscript{2}[28]. In this

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precursor</td>
<td>Titanium tetraisopropoxide (TTIP), titanium n-butoxide (TBOT)</td>
</tr>
<tr>
<td>Solvent</td>
<td>Methanol, ethanol, isopropanol</td>
</tr>
<tr>
<td>Solvent molar percent (%)</td>
<td>1, 5, 10, 15, 20</td>
</tr>
<tr>
<td>Water molar percent (%)</td>
<td>10, 20, 40, 65, 80, 100</td>
</tr>
<tr>
<td>Reflux temperature (°C)</td>
<td>50, 65, 80</td>
</tr>
<tr>
<td>Reflux time (h)</td>
<td>1, 3, 6</td>
</tr>
<tr>
<td>Sol drying method</td>
<td>Thermal drying, freeze drying</td>
</tr>
<tr>
<td>Calcination temperature (°C)</td>
<td>350, 450, 750</td>
</tr>
</tbody>
</table>

Table 3. Experimental parameters [40].
section, we discuss various sol-gel and sol-gel–related systems of doping TiO$_2$ including co-
doping, transition metal and their photocatalytic performance.

3.1. Noble metal–doped TiO$_2$ by sol-gel method

Loading noble metals (platinum (Pt), rhodium (Rh), palladium (Pd), silver (Ag) and gold (Au)
with a low overpotential have been investigated as the effective materials to enhance photocatal-
lytic activity in terms of hydrogen production on the surface of TiO$_2$ [48–56]. Figure 6 displays
that their Fermi energy levels are lower than TiO$_2$ and the formation of Schottky barrier helps
(retarding the electron/hole recombination) to pass photo-excited electrons from the CB of TiO$_2$
to the deposited metal particles on the surface of TiO$_2$ until achieving a thermodynamic equi-
librium and their Fermi level energy are aligned [43]. Hence, accumulation of electrons in the
noble metal particles is caused that their Fermi levels shift to more negative and closer to the
CB level of TiO$_2$ which is suitable for the reduction of water to hydrogen. Pt and Au have been
used intensively as a co-catalyst compared with other noble metals due to their lower over-
potential, desirable electron affinity and work function compared to other noble metals [44].

Rosseler et al. described a comparison between sol-gel–prepared Au and Pt-doped TiO$_2$. They
showed that the optimum photocatalyst of 3 wt%-Au/TiO$_2$ produced maximum amount of
hydrogen up to 120 µmol/min in methanol (1, v/v%) solution under 150 W metal halide lamp
(large portion of the visible light range) with intensity of 30 mW/cm2. Low photocatalytic
activity of Pt/TiO$_2$ was corresponded to low extension of absorption edge to the visible and
great activity of Pt toward backward reaction:($H_2 + 1/2 O_2 \rightarrow H_2O$) even at room temperature.
Furthermore, they pointed out that the photocatalytic activity of a photocatalyst can be tuned
by following considerable parameters:

1. The type and content of the metallic co-catalyst and metal-support interactions
2. The surface crystallographic, anatase/rutile ratio, porosity properties of the TiO$_2$
3. The relative amount of methanol added as sacrificial agent [38]
Naseri et al. [45] synthesized sol-gel-derived Ag/TiO$_2$ thin films with various Ag:Ti molar ratios of 0, 1, 2, 5, 10 and 20 mol%. Ag/TiO$_2$ photocatalyst was immersed in 1 M KOH as the photoanode, Pt wire as the cathode, and Ag/AgCl as the reference electrode (RE) under the illumination of Xe short arc lamp with intensity of 1000 W/m2 to measure photoelectrochemical activity. The 1 mol% Ag doped TiO$_2$ photocatalyst (crystallite size: 11 nm) had maximum photocurrent density of 0.8 mA/cm2 and hydrogen production rate of 197 µmol/h. The modification of TiO$_2$ with noble metals is the promising method, but their high cost and relatively low availability strongly limit their application for large-scale photocatalytic systems. Therefore, largely available and cheap transition metals with acceptable photocatalytic activity can replace with the noble metals [46–49].

3.2. Transition metal–doped TiO$_2$ by sol-gel method

Transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO$_2$ nanoparticles were synthesized by the sol-gel method using 2-hydroxyethylammonium format as an ionic liquid by Ghasemi et al. [50]. The performance of prepared photocatalysts was evaluated by degradation of Acid Blue92 (AB92) in aqueous medium under UV light. The results illustrated that transition metal (TM) doped TiO$_2$ nanoparticles was significantly enhanced photodegradation of AB92 in water compared to pure TiO$_2$. The studies revealed that transition metal (TM) doped TiO$_2$ nanoparticles have smaller crystalline size and higher surface area than pure TiO$_2$. Dopant ions in the TiO$_2$ structure caused significant absorption shift into the visible region. They explained that this better photocatalytic degradation may correspond to high electron-hole generation and low charge carrier recombination rate. The Fe/TiO$_2$ photocatalyst displayed maximum efficiency rate constant for AB92 degradation. The reason for the highest activity of Fe/TiO$_2$ could be the lowest crystalline size, the highest surface area and the minimum band gap energy. A decrease in crystal region size can give rise to larger surface area, which can increase the available surface active site and consequently leads to a higher adsorption of dye, separation of electron-hole generation, and interfacial charge carrier transfer rate for degradation. The photocatalytic hydrogen production of prepared NiO/TiO$_2$ photocatalysts with sol-gel and conventional incipient wetness impregnation methods was investigated by Sreethawong et al. [51]. They observed that sol-gel–prepared NiO/TiO$_2$ under 300 W high-pressure Hg lamp in an aqueous methanol solution had markedly higher hydrogen production rate of 162.6 µmol/h compared to TiO$_2$ photocatalyst (87.2 µmol/h). Furthermore, they pointed out that the extending absorption edge of NiO/TiO$_2$ to the longer wavelengths between 600 to 800 nm and combination of single-step sol-gel process with pore-controlling surfactant caused high photocatalytic performance. Singh et al. [52] studied the photoelectrochemical performance of synthesized anatase Fe/TiO$_2$ photoanode with sol-gel spin coating method. The photoelectrochemical behavior of Fe/TiO$_2$ photoanode was explored under 150 W Xenon Arc lamp and reaction condition; electrolyte: NaOH with pH = 13, cathode: Pt and reference electrode (RE): saturated calomel electrode (SCE). The four layers of 0.2 at % Fe/TiO$_2$ photoanode with thickness of 1.30 µm showed better shift of the absorption edge toward the visible region with bandgap energy of 2.89 eV. In addition, the measured photocurrent density (i_p was ~0.92 mA/cm2 at zero external bias. Many researchers have been reported that co-doped TiO$_2$ is more effective technique to
improve the photocatalytic performance of TiO$_2$ compared to single-doped TiO$_2$ due to the synergistic effect of the presence of two metals.

3.3. Co-doped TiO$_2$ by sol-gel method

The photocatalytic properties of bimetallic nanoparticles are directly related to their composition structure and catalyst preparation processes. Kim et al. [53] synthesized Cu-Ag/TiO$_2$ photocatalyst with the sol-hydrothermal method (to split water under UV irradiation with intensity of 18 W/cm2 in the presence of methanol. The Cu$_{0.03}$Ag$_{0.07}$Ti$_{0.9}$O$_2$ photocatalyst (crystallite size: 15.28 nm) markedly increased hydrogen production rate up to 1093 mmol/h compared to Ag/TiO$_2$ (312 mmol/h), Cu/TiO$_2$ (900 mmol/h), and TiO$_2$ (200 mmol/h). They suggested that the Cu or Ag components in the TiO$_2$ framework were reduced by attracting the excited electrons from the valence band of TiO$_2$, because of the greater reduction potential of CuO or AgO than that of pureTiO$_2$. This hinders the recombination of charge carriers because the CuO or AgO component captures electrons, thereby increasing the number of holes over the valence band and allowing methanol decomposition to continue. Sun et al. [28] synthesized the single (Fe and Ni) and bimetallic (Fe-Ni) doped TiO$_2$ using the sol-hydrothermal method. They found out that 5% Fe-4% Ni/TiO$_2$ photocatalyst (crystallite size: 13.8 nm, surface area: 98.35 m2/g, and bandgap energy: 2.41 eV) had the maximum hydrogen production rate of 361.64 µmol/h.gcat compared to other metal loading ratios under a 500 W Xenon lamp equipped with a 400 nm cut-off glass filter in an aqueous ethanol solution. This result was corresponded to better ability of charge carrier separation, restriction of their recombination and red shifting absorption edge to 514 nm compared to TiO$_2$. In the other works, Sun et al. [54] successfully synthesized Ag and Fe doped TiO$_2$ using sol-hydrothermal method. The water photosplitting was conducted in an aqueous ethanol solution with two light sources: A 16-W high-pressure inner irradiation Hg lamp (λ = 254 nm) with intensity of 11.7 mW/cm2 as the UV light source and 500 W Xe lamp equipped with a 400 nm cut-off glass as the visible light source. 4.5% Fe-4.5% Ag/TiO$_2$ photocatalyst (crystallite size: 12.1 nm, bandgap energy: 2.03 eV, and particle size: 12 nm) had a higher hydrogen production rate of 515.45 µmol/h.gcal compared to monometallic doped and undoped TiO$_2$. They concluded that the interaction of Fe and Ag with TiO$_2$ reduces particle size (~12 nm), shifts absorption edge into the visible region compared to anatase phase of TiO$_2$ (λ ≤ 367 nm), reduces charge carrier recombination, and enhances the photocatalytic performance.

Tables 3 and 4 show a summary of reported related work to modify TiO$_2$ with metal dopants.

<table>
<thead>
<tr>
<th>Cocatalyst Finding</th>
<th>Ref Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>The extending absorption edge of NiO/TiO$_2$ to the long wavelengths between 600 and 800 nm and combination of single-step sol-gel process with pore-controlling surfactant caused high photocatalytic performance</td>
</tr>
<tr>
<td>Fe</td>
<td>0.2 at.% Fe/TiO2 had the lowest bandgap energy of 2.89 eV, maximum $j{p}$ ~0.92 mA/cm2 at zero external bias, donor density (N_D): 4.3 × 1019 cm$^{-3}$ and more negative flat band potential (Vfb): −0.92 compared with TiO$_2$</td>
</tr>
<tr>
<td>Cr, Mn, Fe, Co, Ni, Cu, and Zn</td>
<td>The most active photocatalyst was Fe/TiO$_2$ with maximum photocatalytic degradation rate for AB92 degradation. The reason for the highest activity could be the lowest crystalline size, the highest surface area and the minimum band gap energy</td>
</tr>
</tbody>
</table>
Here, the previous research works confirm that sol-gel process is a simple and easy means of synthesizing nanoparticles at ambient temperature under atmospheric pressure, and this technique does not require complicated setup. The results of the investigation conclude that optimization of preparation conditions is essential for obtaining nanocrystalline TiO$_2$ materials with notably higher activity than Degussa (P-25) TiO$_2$. Doping TiO$_2$ with metals is favorable to improve the photocatalytic efficiency of the catalyst in sol-gel method compared to other methods. Furthermore, from the results available, it can be concluded that co-doping of TiO$_2$ generally enhances the photocatalytic efficiency of the catalyst compared to single metal doped and undoped TiO$_2$.

Acknowledgements

The authors would like to thank Centre of innovative Nanostructures & Nanodevices (COINN) and Universiti Teknologi PETRONAS for financial and technical support in making this research work feasible.

Author details

Robabeh Bashiri*, Norani Muti Mohamed1,2 and Chong Fai Kait2

*Address all correspondence to: susanbashiri@gmail.com

1 Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia

2 Fundamental and Applied Sciences Department, Universiti Teknologi Petronas, Bandar Seri Iskandar, Perak, Malaysia
References

