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Abstract

Preservation is related to local asymptotic stability in nonlinear systems by using
dynamical systems tools. It is known that a system, which is stable, asymptotically
stable, or unstable at origin, through a transformation can remain stable, asymptotically
stable, or unstable. Some systems permit partition of its nonlinear equation in a linear
and nonlinear part. Some authors have stated that such systems preserve their local
asymptotic stability through the transformations on their linear part. The preservation
of synchronization is a typical application of these types of tools and it is considered an
interesting topic by scientific community. This chapter is devoted to extend the method-
ology of the dynamical systems through a partition in the linear part and the nonlinear
part, transforming the linear part using the Tracy-Singh product in the Jacobian matrix.
This methodology preserves the structure of signs through the real part of eigenvalues
of the Jacobian matrix of the dynamical systems in their equilibrium points. The princi-
pal part of this methodology is that it permits to extend the fundamental theorems of the
dynamical systems, given a linear transformation. The results allow us to infer the
hyperbolicity, the stability and the synchronization of transformed systems of higher
dimension.
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1. Introduction

In nonlinear autonomous dynamical systems, the study of synchronization is not new. We can

see several papers about these themes from different approaches. Some examples show the use

of change of variables, that is, through a diffeomorphism of the origin. From this, it is possible

to say if a system is stable, asymptotically stable, or unstable. Some results are also obtained by

the product in a vector field in the nonlinear dynamical system by a continuously differentia-

ble function at the origin [1]. On one hand, there are studies showing the use of statistical

properties to characterize the synchronization [2]. The eigenvalues of a system determine a

system dynamics, but they are not derivable from the statistical features of such a system. One

way to observe the stability is through a linear part of a dynamical system. But the problem to

preserve stability by the transformation of its linear part in a nonlinear autonomous system has

just been analyzed recently.

In [3], it is presented a methodology under which stability and synchronization of a dynamical

master-slave system configuration are preserved under a modification through matrix multi-

plication. The conservation of stability is important for chaos control. A generalized synchro-

nization can also be derived for different systems by finding a diffeomorphic transformation

such as the slave system written as a function of the master system. One example of preserva-

tion for asymptotic stability is the use of transformations on rational functions in the frequency

domain [4, 5].

This class of transformation can be interpreted as noise in the system or as a simple distur-

bance on the value of the physical parameters of the model. The chaotic synchronization

problem studied in [6] is mainly related to preservation of the stability of the master-slave

system presented in it. Results included therein show that stability is preserved by

transforming the linear part of system. The same results can also be used in the chaos suppres-

sion problem. In [7], the authors show the viability of preserving the hyperbolicity of a master-

slave pair of chaotic systems under different types of nonlinear modifications to its Jacobian

matrix.

In [8], the developed methodology is used to study the problem of preservation of synchroni-

zation in chaotic dynamical systems, in particular the case of dynamical networks. Given a

chaotic system, its transformed version is also a chaotic system. By means of a master-slave

scheme obtained a controller for the system using a linear-quadratic regulator, preserving the

stability even after the master-slave controller is transformed. This chapter is inspired by the

same objective, that is, to preserve the stability in a master-slave system even through a

transformation is performed over it. One way to achieve it is by extending some of the results

in [8], particularly those of the local stable-unstable manifold theorem and extension of the

center manifold theorem based in the preservation of the linear part of the vector field in

nonlinear dynamical systems. As we will see, these results depart from the hypothesis of the

existence of a constant state feedback as anominal synchronization force. In this work, we

elaborate another approach to the problem of preservation of synchronization. We focus

particularly on autonomous nonlinear dynamical systems, extending the previous results

already mentioned.
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This chapter is organized as follows: First, in Section 2, we will give basic concepts of dynam-

ical systems. The fundamental theorem for linear systems, the local stable-unstable manifold

theorem, the center manifold theorem, the Hartman-Grobman theorem and the concept of

group action are introduced. In Section 3, we present some definitions about matrices and

Tracy-Singh product of matrices. Also in this section, the main result is presented as a general-

ization of Proposition 4 in [6]. In Section 4, we will show that it is possible to preserve

synchronization under a class of transformations defined under a certain method. Numerical

experiments on the stability preservation for chaotic synchronization are shown in Section 5.

Finally, a set of concluding remarks is given in Section 6.

2. Classical concepts of dynamical systems

We introduce theorems and classical definitions on properties of dynamical systems in this

section. The fundamental theorem for linear systems, the local stable-unstable manifold theo-

rem and the center manifold theorem are those important propositions mainly needed to

develop analyses in this chapter. We will combine them with the Hartman-Grobman theorem

in order to achieve a necessary generalization for those particular results of this chapter.

Theorem 2.1. (The local stable-unstable manifold theorem [9]). Let E be an open subset of Rn

containing the origin. Let f ∈ C1ðEÞ and φt be the flow of the nonlinear system of the form _x ¼ f ðxÞ.

Suppose that f ð0Þ ¼ 0 and that Df ð0Þ are the Jacobian matrix, which has k eigenvalues with negative

real part and n−k eigenvalues with positive real part.

1. (Stable manifold) Then, there exists a k-dimensional differentiable manifold S tangent to the stable

subspace ES of the linear system _x ¼ AðxÞ at x0 such that for all t ≥ 0, φtðSÞ⊂S and for all x0∈S,

limt!∞ φtðx0Þ ¼ 0.

2. (Unstable manifold) Also there exists an n−k dimensional differentiable manifold W tangent to the

unstable subspace EW of _x ¼ AðxÞ at x0 such that for all t ≤ 0, φtðWÞ⊂W and for all x0∈W ,

limt!−∞ φtðx0Þ ¼ 0.

It should be noted that the manifolds S and W mentioned in Theorem 2.1 are unique. We

define now the central manifold theorem in the following.

Theorem 2.2. (The center manifold theorem [9]). Let E be an open subset of Rn containing the

origin and r ≥ 1. Let f ∈ CrðEÞ, that is, f is a continuously differentiable function on E of order r. Now

we suppose that f ð0Þ ¼ 0 and that Df ð0Þ have k eigenvalues with negative real part, j eigenvalues with

positive real part and l ¼ n−k−j eigenvalues with zero real part. Therefore, there exists an l

-dimensional center manifold WCð0Þ of class Cr tangent to the center subspace EC of _x ¼ AðxÞ at 0

which is invariant under the flow φt of _x ¼ f ðxÞ.

By what it is established in Theorem 2.2, the center manifold WCð0Þ is not unique, which is an

important difference for the stable character of the systems to be studied.
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Theorem 2.3. (The Hartman-Grobman theorem [9]). Let E be an open subset of Rn containing the

origin, let φt be the flow of the nonlinear system _x ¼ f ðxÞ. Now, we assume that f ð0Þ ¼ 0, that is, the

origin is an equilibrium point of the dynamical system; also the Jacobian matrix evaluated at the origin,

A ¼ Df ð0Þ. If H is an homeomorphism of an open set W onto an open set V such that for each x0∈W , it

exists an open interval I0 ⊂ R such that for all x0 ∈ W and t ∈ I0

H ∘φtðx0Þ ¼ eAtHðx0Þ; (1)

that is, H maps trajectories of the nonlinear system _x ¼ f ðxÞ near the origin onto trajectories of _x ¼ Ax

near the origin and preserves the parametrization.

From the following argument, it is show that for any matrix A ¼ UTTAU, there exists an

homeomorphism Ĥ ¼ UH such that for an open set W containing the origin onto an open set

V also containing the origin such that for each x0∈W and there is an open interval I0⊂R

containing zero such that for all x0∈W and t∈I0

Ĥ ∘φtðx0Þ ¼ eTAtĤðx0Þ; (2)

This last equality is a consequence of the Hartman-Grobman theorem and of the fact of

UeAt ¼ eTAtU, that is, Ĥ maps trajectories of the nonlinear system _x ¼ f ðxÞ near the origin onto

trajectories of _x ¼ TAx near the origin and preserves the parametrization.

On the other hand, some classical definitions are now included. A linear system of the form

_x ¼ Ax where x ∈ R
n, A is a n ·n matrix and _x ¼ dx

dt. It is shown that the solution of the linear

system together with the initial condition xð0Þ ¼ x0 is given by xðtÞ ¼ eAtx0. The mapping

eAt : Rn ! R
n is called the flow of the linear system.

Definition 2.1. For all eigenvalues of a matrix Aðn · nÞ have nonzero real part, then the flow eAt is

called a hyperbolic flow and therefore, _x ¼ Ax is called a hyperbolic linear system [9].

Definition 2.2. A subspace E⊂Rn is said to be invariant with respect to the flow eAt : Rn ! R
n if

eAt⊂E for all t∈R [9].

Lemma 2.1. Let A∈R
n ·n. If Rn ¼ Es

⊕Eu
⊕Ec where Es,Eu and Ec are the stable, unstable and

center subspaces of the linear system _x ¼ Ax. By the above,Es,Eu and Ec are invariant with

respect to the flow eAt, respectively [9].

Definition 2.3. Let E be an open subset of Rn and let f ∈ C1ðEÞ, that is, f is a continuous differentiable

function defined on E. For x0 ∈ E, let φðt, x0Þ be the solution of the initial value problem

_x ¼ f ðxÞ, xð0Þ ¼ x0 defined on its maximal interval of existence Iðx0Þ. Then for t∈Iðx0Þ, the mapping

φt : E ! E defined by φtðx0Þ ¼ φtðt, x0Þ is called the flow of the differential equation [9].

Definition 2.4. For any x0∈R
n, let φtðx0Þ be the flow of the differential equation through x0.(i) The

local stable set S corresponding to a neighborhood V of x0 is defined by S ¼ Sð0Þ ¼ {x0 ∈ R
n :

φtðx0Þ ∈ V , t ≥ 0 and φtðx0Þ ! 0 as t ! ∞}. (ii) The local unstable set W of x0 corresponding to a

neighborhood V of x0 is defined by W ¼ Wð0Þ ¼ {x0∈R
n : φtðx0Þ∈V , t ≤ 0 and φtðx0Þ ! 0 as t ! ∞}.
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Then, these stable and unstable local sets are submanifolds of Rn in a sufficiently small neighborhood V

of x0½9�.

Definition 2.5. If G is a group and X is a set, then a (left) group action of G on X is a binary function

G ·X ! X, denoted by [9]

ðg, xÞ↦g � x (3)

which satisfies the following two axioms:

1. ðghÞ � x ¼ g � ðh � xÞ for all g, h ∈ G and x ∈ X;

2. e � x ¼ x for every x ∈ X (where e denotes the identity element of G).

The action is faithful (or effective) if for any two different g, h ∈ G, there exists an x ∈ X such that

g � x ≠ h � x; or equivalently, if for any g ≠ e in G, there exists an x ∈ X such that g � x ≠ x.

The action is free or semiregular if for any two different g, h ∈ G and all x ∈ X, we have

g � x ≠ h � x; or equivalently, if g � x ¼ x for some x implies g ¼ e.

For every x ∈ X, we define the stabilizer subgroup of x (also called the isotropy group or little

group) as the set of all elements in G that fix x:

Gx ¼ fg∈G : g � x ¼ xg (4)

This is a subgroup of G, though typically not a normal one. The action of G on X is free if and

only if all stabilizers are trivial.

3. Tracy-Singh product and other mathematical extensions

In this third section, we show a definition and some properties of the Tracy-Singh product. We

also include a simple extension of the local stable-unstable manifold theorem and the center

manifold theorem, using the tools presented in Section 2. These extensions are tools that will

also be used in Section 4, where we will present the results on preservation of synchronization

in nonlinear dynamical systems.

Definition 3.1. Let λ be an eigenvalue of the n · n matrix A of multiplicity m≤n. Then for k ¼ 1,…,m,

any nonzero solution w of [9]

ðA−λIÞkw ¼ 0 (5)

is called a generalized eigenvector of A.

In this case, let wj ¼ uj þ vj be a generalized eigenvector of the matrix A corresponding to an

eigenvalue λj ¼ aj þ ibj (note that if bj ¼ 0 then vj ¼ 0). Then, let B ¼ fu1, v1,…, uk, vk,…,um, vmg

be a basis of Rn (with n ¼ 2m−k as established by Theorems 1.7.1 and 1.7.2, see [9]). Now, we

introduce the definition of Tracy-Singh product and some properties.
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Definition 3.2. If taken the matrices A ¼ ðaijÞ and C ¼ ðcijÞ of order m ·n and B ¼ ðbklÞ of order p · q.

Let A ¼ ðAijÞ be partitioned with Aij of order mi · nj as the ði, jÞ th block submatrix and B ¼ ðBklÞ of

order pk · ql as the ðk, lÞ th block submatrix ð∑mi ¼ m,∑nj ¼ n,∑pk ¼ p,∑ql ¼ qÞ. Then, the defini-

tions of the matrix products or sums of A and B are given as follows [10].

Tracy-Singh product

A∘B ¼ ðAij∘BÞij ¼
�

ðAij⊗BklÞkl

�

ij
(6)

where Aij⊗Bkl is of order mipk ·njql, Aij∘B is a Kronecker product of order mip ·njq, and A∘B is of order

mp· nq.

Tracy-Singh sum

A⊞B ¼ A∘Ip þ Im∘B (7)

where A ¼ ðAijÞ and B ¼ ðBklÞ are square matrices of respective order m ·m and p · p with Aij of order

mi ·mj and Bkl of order pk · pl; Ip and Im are compatibly partitioned identity matrices.

Theorem 3.1. Let A,B,C,D,E, and F be compatibly partitioned matrices, then [10]

1. ðA∘BÞðC∘DÞ ¼ ðACÞ∘ðBDÞ.

2. A∘B ≠ B∘A.

3. ðC∘B ¼ B∘CÞ where C ¼ ðcijÞ and cij is a scalar.

4. ðA∘BÞ
0

¼ A′
∘B0.

5. ðAþDÞ∘ðBþ EÞ ¼ A∘Bþ A∘EþD∘BþD∘E.

6. ðA∘BÞ∘F ¼ A∘ðB∘FÞ

The next proposition presents some extensions to the local stable-unstable manifold theorem

and to the center manifold theorem.

Proposition 3.1. Let E be an open subset of Rn containing the origin, let f ∈ C1ðEÞ and φt be

the flow of the nonlinear system _x ¼ f ðxÞ ¼ Axþ gðxÞ. Suppose that f ð0Þ ¼ 0 and that

A ¼ Df ð0Þ have k eigenvalues with negative real part and n−k eigenvalues with positive real

part, that is, the origin is an hyperbolic fixed point. Then for each matrix M ∈ ΛU , there

exists a k

-dimensional differentiable manifold SM tangent to the stable subspace ES
M of the linear system

_x ¼ MAx at 0 such that for all t ≥ 0, φM, tðSMÞ⊂SM and for all x0 ∈ SM [8],

lim
t!∞

φM, tðx0Þ ¼ 0, (8)
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where φM, t is the flow of the nonlinear system _x ¼ MAxþ gðxÞ and there exists an n−k dimen-

sional differentiable manifold WM tangent to the unstable subspace EW
M of _x ¼ MAx at 0 such

that for all t≤0, φM, tðWMÞ⊂WM and for all x0∈WM,

lim
t!−∞

φM, tðx0Þ ¼ 0: (9)

An interesting property is that Proposition 4.1 is valid for each g∈C1ðEÞ such that _x ¼ f ðxÞ

¼ Axþ gðxÞ and

‖gðxÞ‖2

‖x‖2
! 0 as‖x‖2 ! 0: (10)

In consequence, the set of matrices ΛU generates the action of the group ΛU on the set of the

hyperbolic nonlinear systems, formally on the set of the hyperbolic vector fields f∈C1ðEÞ,

_x ¼ f ðxÞ ¼ Axþ gðxÞ with g∈C1ðEÞ and

A∈ΩU ≡{P∈Rn ·n : P ¼ UTTPU with TP any upper triangular matrix} (11)

Satisfying the last condition, where U is a fixed unitary matrix, the action is generated by the

action of the group ΛU on the set ΩU. By that this first action preserves the dimension and a

nonlinear systems of the stable and unstable manifolds, that is, an hyperbolic nonlinear system
�

_x ¼ Axþ gðxÞ
�

is mapped in a hyperbolic nonlinear systems
�

_x ¼ MAxþ gðxÞ
�

and

dimS ¼ dimSM and dimW ¼ dimWM.

The proof of this Proposition 3.1 can be revised in Ref. [8].

Given a particular nonlinear system, the stable and unstable manifolds S and W are unique;

then for each matrix M∈ΛU , there exists an unique pair of manifolds ðSM,WMÞ in such a way

that it is possible to define a pair of functions in the following form

Θ : ΛU ·ManS ! ManS

ΘðM, SÞ ¼ SM

Φ : ΛU ·ManW ! ManW

ΦðM,WÞ ¼ WM

(12)

Where ManS is the set of stable manifolds and ManW is the set of unstable manifold for

autonomous nonlinear systems.

Therefore, we can say that if A ¼ Df ð0Þ is an stable matrix A has all the n eigenvalues with

negative real part, then the origin of the nonlinear system _x ¼ M∘Axþ gðxÞ is asymptotically

stable; but if A ¼ Df ð0Þ is an unstable matrix A has n−k (with n > kÞ eigenvalues with positive

real part, then the origin of the nonlinear system _x ¼ M∘Axþ gðxÞ is unstable.
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As an extension of the local stable-unstable manifold theorem in terms of Tracy-Singh product

of matrices in ΛN and the matrix A of the vector field f ðxÞ, we present the following proposi-

tion.

Proposition 3.2.

1. Let E be an open subset of Rn containing the origin, let f∈C1ðEÞ and let φt be the flow of the

nonlinear system _x ¼ f ðxÞ ¼ Axþ gðxÞ. We suppose that f ð0Þ ¼ 0 and that A ¼ Df ð0Þ have a k

eigenvalues with negative real part and n−k eigenvalues with positive real part; thus, the origin

is a hyperbolic fixed point. Now, take a fixed continuously differentiable function

F : C1ðEÞ ! C1ðEÞ (13)

such that FðgÞ ¼ ĝ where ĝ : E⊂Rmn ! R
mn is a fixed continuously differentiable function with

domain all C1ðEÞ; moreover, ĝ∈C1ðEÞ with E an open subset of Rn containing the origin such

that

‖ĝðxÞ‖2

‖x‖2
! 0 as ‖x‖2 ! 0: (14)

Then, for each matrix M∈ΛU of m ·m, there exists a mk− dimensional differentiable manifold

SM∘A tangent to the stable subspace ES
M∘A of the linear system _x ¼ ðM∘AÞx at 0 such that for all

t≥0, φM∘A, tðSM∘AÞ⊂SM∘A and for all x0∈SM∘A,

lim
t!∞

φM∘A, tðx0Þ ¼ 0, (15)

where φM∘A, t be the flow of the nonlinear system _x ¼ ðM∘AÞxþ ĝðxÞ and there exists an mðn−kÞ

dimensional differentiable manifold WM∘A tangent to the unstable subspace EW
M∘A of

_x ¼ ðM∘AÞx at 0 such that for all t≤0, φM∘A, tðWM∘AÞ⊂WM∘A and for all x0∈WM∘A,

lim
t!−∞

φM∘A, tðx0Þ ¼ 0: (16)

2. Also, there exists a function of the group ΛN and the set of all the autonomous hyperbolic

nonlinear systems of dimension n (hyperbolic vector fields of dimension n) denoted by Γn, to

the set Γmn of all the autonomous hyperbolic nonlinear systems of dimension mn (hyperbolic

vector fields of dimension mn); this function (which is similar to an action of the group ΛN on

the set Γn) is defined as follows

ϑ : ΛN ·Γn ! Γmn

ϑ
�

M,Axþ gðxÞ
�

¼ ðM∘AÞxþ ĝðxÞ
(17)

and the new nonlinear system is
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_x ¼ ϑ
�

M,Axþ gðxÞ
�

_x ¼ ðM∘AÞxþ ĝðxÞÞ
(18)

which satisfies the following two axioms:

1. ðghÞ � z ¼ g•ðh � zÞ for all g, h∈ΛN and z∈Γn;

2. For every z∈Γn, there exists an unique ẑ∈Γmn such that e � z ¼ ẑ and h•ẑ ¼ h � z (e denotes

the identity element of ΛN, that is, is the identity matrix Im of m ·m).

Where z is associated with Axþ gðxÞ (denoted by z≗Axþ gðxÞÞ; h � z means ðMh∘AÞxþ ĝðxÞ

(denoted by h � z≗ðMh∘AÞxþ ĝðxÞ); gh is associated with the usual product of matrices Mg,Mh,

that is, gh≗MgMh and e � z means ðIm∘AÞxþ ĝðxÞ, that is,
�

e � z≗ðIm∘AÞxþ ĝðxÞ
�

and g•ðh � zÞ

means ðMg∘InÞðMh∘AÞxþ ĝðxÞ (denoted by g•ðh � zÞ≗ðMg∘InÞðMh∘AÞxþ ĝðxÞ).

Proof.

1. Consider a matrix Awith eigenvalues λi for i ¼ 1, 2,…, n and the matrixMwith eigenvalues

μj for j ¼ 1, 2,…,m. Then, the eigenvalues of the matrix M∘A are the mn numbers λiμj and

taking account that μj > 0 for each j ¼ 1, 2,…,m. Therefore, the matrixM∘A hasmk eigenvalues

with negative real part and mðn−kÞ eigenvalues with positive real part. For this, the result is a

consequence of the stable-unstable manifold theorem.

2. The function ϑ : ΛN · Γn ! Γmn is well defined, since F : C1ðEÞ ! C1ðEÞ is a fixed function;

then given gðxÞ, the vector field ĝðxÞ is unique; for a fixed matrix Mh∈ΛN , then

Mh∘ : R
n· n ! R

mn ·mn is a fixed function and their matrix Mh∘A is unique.

Axiom (i): Since ΛN is a multiplicative group if Mg,Mh∈ΛN, then MgMh∈ΛN .

Then, by Theorem 3.1, we have that for all g, h∈ΛN and z∈Γn

ðghÞ � z≗ðMgMh∘AÞxþ ĝðxÞ ¼ ðMg∘InÞðMh∘AÞxþ ĝðxÞ≗g•ðh � zÞ (19)

Axiom (ii): For every z∈Γn, there exists an unique ẑ∈Γmn such that e � z≗ðIm∘AÞxþ ĝðxÞ ¼ ẑ,

then by the Theorem 2.1

h•ẑ≗ðMh∘InÞðIm∘AÞxþ ĝðxÞ ¼ ðMh∘AÞxþ ĝðxÞ≗h � z (20)

From what it has been said above, we can note that if A ¼ Df ð0Þ is as stable matrix A, it has all

the n eigenvalues with negative real part, then the origin of the nonlinear system

_x ¼ ðM∘AÞxþ ĝðxÞ is asymptotically stable; if A ¼ Df ð0Þ is an unstable matrix A, it has

n−kðn > kÞ eigenvalues with positive real part, then the origin of the nonlinear system

_x ¼ ðM∘AÞxþ ĝðxÞ is unstable.

Now the following Proposition 3.2 is an extension of the center manifold theorem, similar to

Proposition 3.1.
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Proposition 3.3. Let be f∈CrðEÞ where E is an open subset of Rn

containing the origin and r≥1. Suppose that f ð0Þ ¼ 0 and that Df ð0Þ have k eigenvalues with

negative real part, j eigenvalues with positive real part and l ¼ n−k−j eigenvalues with zero real

part. Then,

1. For each matrix M∈ΛU, there exists a m− dimensional differentiable center manifold

WC
Mð0Þ of class C

r tangent to the center subspace EC
M of the linear system _x ¼ MAxþ gðxÞ

at 0 which is invariant under the flow φM, t of the nonlinear system _x ¼ MAxþ gðxÞ.

2. If taken a fixed continuously differentiable function

F̂ : CrðEÞ ! CrðEÞ (21)

such that FðgÞ ¼ ĝ where ĝ : E⊂Rmn ! R
mn is a fixed continuously differentiable function

with domain all CrðEÞ; moreover, ĝ∈CrðEÞ with E an open subset of Rn containing the

origin such that

‖ĝðxÞ‖2

‖x‖2
! 0 as ‖x‖2 ! 0: (22)

Then for each matrix M∈ΛN of m ·m, there exists a ml− dimensional differentiable center

manifold WC
M∘Að0Þ tangent to the center subspace ES

M∘A of the linear system _x ¼ ðM∘AÞx at 0

which is invariant under the flow φM∘A, t of the nonlinear system _x ¼ ðM∘AÞxþ ĝðxÞ.

Proof.

The proof is similar to proof of Proposition 3.1 and we make use of the center manifold

theorem.

Also, there exists a similar function ϑ̂ to ϑ, which satisfies the axiom (i) and axiom (ii) of

Proposition 3.2. However, in this case, there does not exist similar functions to Θ and Φ. due to

that in general, a center manifold is not unique.

Notice that in this case, if the matrix A has l ¼ n−k−j≠0 eigenvlues with zero real part, then the origin

of the nonlinear system _x ¼ MAxþ ĝðxÞ and _x ¼ ðM∘AÞxþ ĝðxÞ are not asymptotically stable.

Propositions 3.1 and 3.2 generalize Proposition 3 in Ref. [6] and give new tools for preservation

of basic properties of dynamical systems and some of these properties are the stability and

instability.

4. Synchronization in nonlinear dynamical system

In this section, we present that it is possible to preserve synchronization even though the

dimension of the systems changes by the action of a class of transformation on the linear part

to a chaotic nonlinear system. If we consider the following two n-dimensional chaotic systems,
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_x ¼ Axþ gðxÞ
_y ¼ Ayþ f ðyÞ þ uðtÞ

(23)

Where A∈Rn ·n is a constant matrix. On the other hand,u∈Rn is the control input and

f , g : Rn ! Rn are continuous nonlinear functions. Synchronization considered in this section

is through the master and the slave system is synchronized by designing an appropriate

nonlinear state-feedback control uðtÞ attached to slave system such that limt!∞ xðtÞ−yðtÞ ! 0,

where ‖ � ‖ is the Euclidean norm of a vector [8]. If we consider the error state vector

e ¼ y−x∈Rn, f ðyÞ−f ðxÞ ¼ Lðx, yÞ and an error dynamics equation is _e ¼ Aeþ Lðx, yÞ þ uðtÞ. Tak-

ing the active control approach [5], to eliminate the nonlinear part of the error dynamics and

choosing uðtÞ ¼ BvðtÞ−Lðx, yÞ, where B is a constant gain vector which is selected such that

ðA,BÞ be controllable, we obtain:

_e ¼ Aeþ BvðtÞ (24)

We can see that the original synchronization problem is equivalent to stabilize the zero-input

solution of the slave system through a suitable choice of the state-feedback control [8]. If the

pair ðA,BÞ is controllable, then one such suitable choice for state feedback is a linear-quadratic

regulator [5], which minimizes the quadratic cost function in the next expression,

J
�

uðtÞ
�

¼ ∫
∞

0

ðeðtÞ⊺QeðtÞ þ vðtÞRvðtÞÞdt (25)

Where Q and R are positive semi-definite and positive definite weighting matrices, respec-

tively. The state-feedback law is given by v ¼ −Ke with K ¼ R−1B⊺S and S the solution to the

Riccati equation

A⊺Sþ SA−SBR−1B⊺ þQ ¼ 0 (26)

This state-feedback law makes the error equation to be _e ¼ ðA−BKÞe, with ðA−BKÞ a Hurwitz

matrix.1 The linear-quadratic regulator is a technique to obtain feedback gains [5]. It is an

interesting property of (LQR) which is robustness. On the other hand, if we consider T∈Rm ·m

be a matrix with strictly positive eigenvalues, supposing that the following two nm-dimen-

sional systems are chaotic:

_x ¼ ðT∘AÞxþ ĝðxÞ

_y ¼ ðT∘AÞyþ f̂ ðyÞ þ ûðtÞ
(27)

for some f̂ , ĝ : Rnm ! Rnm continuous nonlinear functions and û∈Rnm is the control input.

Then, for the Proposition 4.1 and the former procedure, we have that ûðtÞ ¼ θ̂ðtÞ−L̂ðx, yÞ

stabilizes the zero solution of the error dynamics system, where θ̂ðtÞ ¼ −ðBK∘TÞe, that is, the

resultant system

1

A Hurwitz matrix is a matrix for which all its eigenvalues are such that their real part is strictly less than zero.
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_e ¼ ðT∘AÞeþ θ̂ ðtÞ _e ¼ ðT∘A−T∘BKÞe (28)

is asymptotically stable. Then, by using Lemma 2.1 and K ¼ −R−1B⊺S, we obtain that:

_e ¼
�

T∘ðAþ BKÞ
�

e

_e ¼
�

T∘ðA−BR−1B⊺SÞ
�

e
(29)

Now, the original control uðtÞ ¼ BKe−Lðx, yÞ is preserved in its linear part by the Tracy-Singh

product T∘ð�Þ and the new control is given by ûðtÞ ¼ −ðT∘BKÞe−L̂ðx, yÞ. Therefore, we can

interpreted the last procedure as one in which the controller uðtÞ that achieves the synchroni-

zation in the two systems is preserved by the transformation T∘ð�Þ so that ûðtÞ achieves the

synchronization in the two resultant systems after the transformation. For that, a similar

procedure is possible if we consider the transformation ð�Þ∘T.

In general, under the transformation ðA, gÞ ! ðMA, gÞ or ðA, gÞ ! ðM∘A, gÞ and under the

hypothesis of existence of a constant state feedback U ¼ −Kx, which achieves synchronization

of the original chaotic systems and also that the transformed system is chaotic, then synchro-

nization can be preserved [8]. The major contribution does not refer a better synchronization

methodology; it deals that synchronization is preserved when a chaotic system changes from a

lower dimension to a higher dimension.

5. Synchronization of the classical Lü system

In this section, we present the synchronization of a chaotic system. First, we propose a master

and slave system. Then, from these systems, we will apply a linear transformation that allows

us to preserve the synchronization. We will use the well-known Lü and Chen [11] model to

show the possibility to preserve synchronization, described by

_x1 ¼ aðx2−x1Þ
_x2 ¼ cx2−x1x3
_x3 ¼ x1x2−bx3

(30)

which has a chaotic attractor when the parameters are a ¼ 35, b ¼ 3 and c ¼ 14:5. In order to

observe synchronization behavior, we have a modified Lü attractor arranged as a master-slave

configuration. The master and the slave systems are almost identical and the only difference is

that the slave system includes an extra term which is used for the purpose of synchronization

with the master system. The master system is defined by the following equations,

_x1 ¼ 35ðx2−x1Þ
_x2 ¼ 28x2−x1x3
_x3 ¼ x1x2−3x3

(31)

and the slave system is a copy of the master system with a control function uðtÞ to be

determined in order to synchronize the two systems.
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_y1 ¼ 35ðy2−y1Þ þ u1ðtÞ
_y2 ¼ 28y2−y1y3 þ u2ðtÞ
_y3 ¼ y1y2−3y3 þ u3ðtÞ

(32)

Now, we consider the errors e1 ¼ x1−y1, e2 ¼ x2−y2 and e3 ¼ x3−y3,; then, the error dynamics

can be written as:

_e1 ¼ 35ðe2−e1Þ þ u1ðtÞ
_e2 ¼ 28e2−y1y3 þ x1x3 þ u2ðtÞ

_e3 ¼ y1y2−x1x2−3e3 þ u3ðtÞ
(33)

If we introduce the matrices

A ¼
−35 35 0
0 14:5 0
0 0 −3

0

@

1

A, Lðx, yÞ ¼
0

−y1y3 þ x1x3
y1y2−x1x2

0

@

1

A, u ¼
u1ðtÞ
u2ðtÞ
u3ðtÞ

0

@

1

A

: (34)

and selecting the matrix B such that ðA,BÞ is controllable: B ¼ I, the LQR controller is obtained

by using weighting matrices Q ¼ I and R ¼ B⊺B ¼ I. Then, state-feedback matrix is given by

K ¼
0:0143 0:0101 0
0:0101 29:0587 0

0 0 0:1623

0

@

1

A (35)

From the formerly said, we now present simulations made for the synchronized system of Lü

and for the system also synchronized, but after the transformation of its linear part. All

simulations here presented were made inMatlab software. In Figure 1, we show the trajectories

of the master system of Lü. Each line represents one trajectory of the system along the time,

taking an initial condition of ð1, 1, 1Þ.

For the case of Figure 3, we show the trajectories of the slave system of Lü. As it was in the first

case, each line represents one trajectory of the system along the time, taking a initial condition

as ð3, 3, 3Þ. Figures 2 and 4 are phase space mappings of each system while maintaining the

same initial condition.

On the other hand, in Figure 5, we can see the error magnitude between master and slave

systems. Phase space of synchronization of the master and slave systems in Figure 6 is

presented. Now, we shall present a system showing modifications performed on the Lü

attractor. The modified Lü master and slave systems linear and nonlinear parts may be defined

as follows:

_x ¼ ðT∘AÞxþ ½ 0 −x1x3 x1x2 0 −x4x6 x4x5 �⊺

_y ¼ ðT∘AÞyþ ½ 0 −y1y3 y1y2 0 −y4y6 y4y5 �⊺ þ u
(36)

Considering the error vector e ¼ y−x, then the error dynamics can be written as:

_e ¼ ðT∘AÞeþ Lðx, yÞ þ u (37)

with u ¼ −Lðx, yÞ þ v and v ¼ −ðT∘BKÞe and
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Figure 1. Master system of Lü.

Figure 2. Master system of Lü.
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Figure 3. Slave system of Lü.

Figure 4. Slave system of Lü.
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Figure 5. Magnitude of the error between the master and the slave systems.

Figure 6. Synchronization of master and slave system of Lü.
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A ¼
−35 35 0
0 14:5 0
0 0 −3

0

@

1

A,T ¼
1 1
0 1

� �

,B ¼ ½111111�⊺,

Lðx, yÞ ¼ ½ 0 −y1y3 þ x1x3 y1y2−x1x2 0 −y4y6 þ x4x6 y4y5−x4x5 �
⊺

(38)

Now, the LQR controller is obtained by using weighting matrices, B ¼ IQ ¼ I and R ¼ B⊺B ¼ I.

So the vector Lðx, yÞ takes these values because T is an upper triangular matrix and the value

one on the diagonal is repeated.

T∘A ¼

−35 35 −35 35 0 0
0 14:5 0 14:5 0 0
0 0 −35 35 0 0
0 0 0 14:5 0 0
0 0 0 0 −3 −3
0 0 0 0 0 −3

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

(39)

K ¼

0:0143 0:0101 0 −0:0071 0:0050 0
0:0101 23:3051 0 −0:0151 11:5941 0

0 0 0:1614 0 0 −0:0757
−0:0071 −0:0151 0 0:0214 0:0050 0
0:0050 11:5941 0 0:0050 34:8411 0

0 0 −0:0757 0 0 0:2324

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

(40)

Figure 7. Transformation of the master system of Lü.
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Figure 8. Phase space of the transformation of the master system of Lü.

Figure 9. Transformation of the slave system of Lü.
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Figure 10. Phase space of the transformation of the slave system of Lü.

Figure 11. Magnitude of the error between the transformation of master and slave systems.
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After the transformation in its linear part of Lü attractor, we also have several simulations

allowing us to analyze the dynamics of the transformed system. In Figure 7, we present the

trajectories of the transformation of the master system of Lü. Each line represents one trajec-

tory of the system along with the time taking an initial condition of ð0:5, 0:5, 0:5, 0:5, 0:5, 0:5Þ.

For the case of Figure 9, we show the trajectories of the transformation of the slave system of

Lü. Each line represents one trajectory of the system also, along the time, taking an initial

condition of ð3, 3, 3, 3, 3, 3Þ. Figures 8 and 10 are the phase space mappings of each transformed

system while maintaining the same initial condition. By last, in Figure 11, we can see the error

magnitude of the transformation of synchronized system. A phase space mapping of the

transformation of synchronized system is presented in Figure 12.

6. Conclusion

We have studied the preservation of stability of a chaotic dynamic system, from an extension

of the stable-unstable manifold theorem and an extension of the center manifold theorem

based on the preservation of the linear part in nonlinear dynamical systems. However, we

can check that given a chaotic system, its transformed version is also chaotic. A scheme

consisting of a master-slave system for which a controller gain is obtained using a linear-

quadratic regulator has been presented and synchronization is achieved and preserved even

Figure 12. Synchronization of the transformation of the master and slave systems of Lü.

Dynamical Systems - Analytical and Computational Techniques74



after the master-slave controller is transformed, obtaining as a consequence that the chaotic

system changes to an higher dimension. It is important to note the transformation of the linear

part of the chaotic system from Tracy-Singh product in which it was used to modify a Lü

system, showing the effectiveness of the proposed method. The results can be extended to

other techniques for feedback design, for example, adaptive control, sliding mode regulator

and etcetera.
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