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Abstract

This chapter focuses on the dynamic characterization of adhesive materials for vibration
control proposes. First, the experimental characterization and modelization of the relax-
ation and complex moduli of the flexible adhesive ISR 70-03 by means of a dynamic
mechanical thermal analysis technique (DMTA) are presented. Then, the interconversion
path between the relaxation modulus EðtÞ and the corresponding complex modulus
E� ð� Þfor linear viscoelastic solid materials is explored. In contrast to other approximate
methods, in this work the fast Fourier transform (FFT) algorithm is directly applied on
relaxation functions. Finally, an experimental study for the structural noise and vibra-
tion reduction in a cabin elevator by means of adhesive-bonded joints of panels is
presented.

Keywords: elastomers and rubber, nondestructive testing, relaxation modulus, com-
plex modulus, viscoelasticity, material functions interconversion, noise and vibration
reduction, adhesive-bonded joints

1. Introduction

Regarding damping, joint procedures by means of screws, rivets, or by joining do not intro-
duce relevant damping outside of some specific frequency ranges [1–5]. Therefore, they are not
relevant for vibration control porpoises. However, adhesive joint can be designed for structural
noise control because they are able tointroduce effective modal damping below 1 kHz [6].

In particular, viscoelastic adhesives are widely employed in engineering applications and also
found their widespread application in many sectors such as the automotive industry, aero-
space, wind power, and human transportation. The mechanical properties of general visco-
elastic materials depend on temperature, frequency and amplitude, prestress, dynamic load
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level, relative humidity, and among others. Service temperature, frequency, and amplitude of
deformation are the most relevant ones. Thus, suitable mechanical characterization is essential
in order to obtain reliable predictions.

2. Experimental characterization of a flexible adhesive

The experimental characterization by means of adynamic mechanical thermal analysis tech-
nique (DMTA) and the modelization of the relaxation and complex moduli of the flexible
adhesive ISR 70-03 [7] are presented. The manufacturing procedure of the test experiments is
detailed. Then, the influence of the strain level and specimen thickness into material behavior
is studied. Next, using a procedure based on the time-temperature superposition principle,
relaxation and dynamic master curves under tension strain are obtained. Finally, a generalized
Maxwell model and a fractional derivative model of these master curves are implemented. As
a conclusion, models capable of describing together the influence of time, temperature, and
strain level are proposed.

Flexible adhesive shows viscoelastic behavior [8, 9]. In these viscoelastic materials (VEMs), the
energy dissipation is a consequence of the phase difference between the stress� and the strain
� . In frequency domain, this behavior is represented by the complex modulus approximation,
which can be obtained from the relationship between the harmonic stress� ðtÞ

� ðtÞ ¼� 0ei� t (1)

and the stationary harmonic strain � ðtÞgiven by

� ðtÞ ¼� 0eið� t� � Þ (2)

� 0 is the stress amplitude, � 0 is the strain amplitude, � is the excitation frequency, and � is the
phase delay. Therefore, the frequency domain stress-strain relationship~� ð� Þ� ~� ð� Þresults in

~� ð� Þ ¼E� ð� Þ~� ð� Þ (3)

where the complex modulus E� ð� Þcan be written as

E� ð� Þ ¼E�ð� Þ þ iE� ð� Þ ¼E�ð� Þ½1 þ i� ð� Þ� (4)

E�ð� Þis the storage modulus,E� ð� Þis the loss modulus, and � ð� Þis the loss factor calculated as

� ð� Þ ¼
E� ð� Þ

E�ð� Þ
(5)

The complex modulus E� ð� Þbehavior is influenced by multiple factors (excitation conditions,
amplitude, frequency, temperature, prestress, relative humidity, and among others) where
temperature, frequency, and amplitude are the most relevant ones [9]. Involving the frequency
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influence, the ASTM E 756–04 • standard test method for measuring vibration-damping prop-
erties of materialsŽ [10] details the methodology needed to characterize the mechanical behav-
ior of nonself-supporting viscoelastic materials in the frequency range of 50–5 kHz, implying
the use of multimaterial Oberst beam specimens. Nevertheless, the main inconvenience of
ASTM E 756–04 standard consists in introducing additional damping or mass through the
excitation or through the measurement devices. Many authors investigated these inconve-
niences [11], which lead to generate alternative methods with improved accuracy [12–20].
Others techniques based on forced vibrations as the Weissenberg rheogoniometer [21], the
dynamic mechanical analysis (DMA) technique [22], and the dynamic mechanical thermal
analysis (DMTA) technique have also been implemented [23].

In particular, DMTA technique considers together time and temperature by applying the
superposition (TTS) principle [24]. The superposition principle relates the material response
at a given time t and at a given temperature T under different conditions assuming a relation

Eðt, TÞ ¼Eðt0, � TT0Þ (6)

where T and T0 represent the reference temperature and the reference time, respectively, and
� T is the shift factor relating T to T0. Accordingly, this principle can also be applied to
frequency domain by means of

E� ðf , TÞ ¼E� ðf 0, � TT0Þ (7)

where f and f 0 represent the frequency to be shifted and the reference one, respectively,
whereas the shift factor � T relates f to f 0 in the frequency domain. Arrhenius and William-
Landel-Ferry (WLF) [25] are the commonly applied models, where the former model is given
by

log� T ¼ C
1
T

�
1

T0

� �
(8)

where C is a constant, the William-Landel-Ferry model can be expressed by

log� T ¼
� C1� T

C2 þ � T
(9)

where C1 and C2 are constants and� T ¼ T� T0.

Hence, if the objective is to describe the material behavior in frequency or temperature ranges
outside of the tested ones [25], the TTS principle can be used to derive the master curves (MC).

It should be noted that to apply DMTA techniques for characterizing viscoelastic materials,
defect free adhesive specimens are required. The required quality of the specimens can be
obtained by applying nondestructive evaluation (NDE) techniques (such as ultrasonic, acous-
tic emission, radiography, thermography, shearography, holography, and vibration analysis
[26], the neutron radiography and the ultrasonic scan [27, 28]). Through these NDE techniques
allow the detection of voids such as cracks or other regions of uncured adhesive [29–33]. Most
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of the research studies [31–33] are focused on the NDE of adhesive joints, but pay attention to
adhesion failures.

As a resume, the experimental characterization of the material response to both time and
frequency domain is described and also focusedon the specimen preparation and validation.
Therefore, the objective of this research is to characterize, under tension strain, the relaxation
and the dynamic behavior of the flexible adhesive ISR 70-03:

• The materials and the experimental techniques employed are presented.

• The influence of the strain level and test specimen thickness into specimen behavior is
analyzed.

• Relaxation and dynamic master curves are developed using the time-temperature superpo-
sition principle. Related shift factors � T are fitted to the Arrhenius model (Eq. (8)).

• The constructed master curves are fitted to a generalized Maxwell and to a fractional
derivative model.

Hence, the proposed models are capable of describing the influence of time, temperature, and
strain level over the mechanical properties of the flexible adhesive ISR 70-03.

2.1. Experiments

The mechanical behavior of the analyzed material was characterized by means of relaxation
and dynamic tests at different temperatures. A DMTA equipment (RSA3 of TA Instruments)
equipped with climate chamber, the Faculty of Engineering of the University of Oviedo, was
employed.

2.1.1. Materials and experiments

The studied flexible adhesive is modified silane, commercially named ISR 70-03 produced by
Bostik. Regarding the test specimens that were obtained from plates of the cured adhesive
produced using casts of 50 · 70 mm · h, where h is the nominal thickness. Three casts with
different thickness h of 0:5 mm, 1:0 and 1:5 mm were manufactured. They were manufactured
using Teflon to guarantee that a plate of solid material can be demoldedwithout degradation
after the curing. The cure time was 48 h for all plates; at room temperature no specific equip-
ment was employed [34]. Consequently, the proposed procedure can be outlines as follows:

• First, the nozzle is drawn along the length of the cast in a zig-zag motion without removing
the tip. It should be empathized that the nozzle does not touch with the cast surface in order
to ensure an adequate lower surface finish for the adhesive plate.

• Second, when enough amount of adhesive is spread, it is forced to fill the cast, in a single
uniform motion by means of a spatula made of Teflon. The spatula has round corners in
order to obtain a uniform upper surface finish.

No chemical products are used to prepare the specimens. From the uniform obtained plates,
rectangular specimens were cut and measured using an optical microscope. The obtained
width and thickness values of each sample are presented inTable 1.
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To ensure the quality of the produced specimens, tomography techniques by means of neutron
radiographies were used. Two defects were found: internal voids and superficial flaws.
Accordingly, defect-free samples were identified and selected for testing and denoted as P1,
P3, P6, and P10.Figure 1 shows some of the manufactured samples with defects (P2 and P9)
and without (P6 and P10), respectively.

Finally, a DSC test (see Ref. [35] for details) was carried out to determine the glass transition
temperature, Tg ¼ � 64� C.

Identification sample Width (mm) Thickness (mm)

P1 5.45 1.38

P2 5.94 1.50

P3 6.58 1.47

P4 5.26 0.85

P5 6.24 0.78

P6 6.21 0.92

P7 5.25 0.75

P8 5.91 0.45

P9 5.66 0.48

P10 5.69 0.47

Table 1. Specimen dimensions.

Figure 1. Tomography analysis: specimens with defects, defect-free specimens.
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2.1.2. DMTA test

The specimens were studied using a tensile fitting tool shown in Figure 2. For the relaxation
and dynamic tests, the specimens were prestressed to avoid the buckling effect of tightening
the tool screws. Hence, it was verified that the measured force was higher than the prestress at
any time all over the experiments. Under these conditions, two different tests were performed
in the RSA3 DMTA. First, linearity was studied and second the experiments to obtain the
material master curve (MC) were performed. In the latter group, the equipment climate
chamber was used and the stabilization time at each temperature was about 10–15 min. These
master curves represent the relation between the stress and the strain. Therefore, the relaxation
master curve represents the relaxation modulus EðtÞwhile the dynamic one represents the
complex modulus E� ð� Þ.

Concerning the linearity, the tests were performed at a reference temperature of 20� C. Both
specimen thickness and the strain level parameters were analyzed:

Figure 2. Detail of tension supporting tool.
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First, relaxation tests were performed using three samples (P3, P6, and P10) with dimen-
sions shown in Table 1. Two test series differing in the induced strain level were com-
pleted. Strain levels of � ¼ 0:5 and � ¼ 2% were, respectively, applied in a time range of

10� 2 s� 102 s.

Following, seven relaxation tests were carried out using only the specimen P1 (seeTable 1). In

these tests, the analyzed time range was 10� 2 s� 4· 103 s for induced strain levels of � ¼ 0:2,
� ¼ 0:5, � ¼ 1, � ¼ 2, � ¼ 5, � ¼ 7, and � ¼ 8%.

For the MC, relaxation and dynamic tests were conducted over sample P3. In both cases, the
strain level induced was 0:5%. For the relaxation MC, the analyzed temperature range was� 40
to 50� C, where 10 different relaxation tests were carried out. For the dynamic MC, the temper-
ature range was � 10 to 20� C and four tests were deformed.

2.2. Results and discussion

2.2.1. Linearity analysis of the adhesive behavior

Next, the linearity regarding the material behavior is analyzed involving two test conditions,
sample thickness and strain level influence, both by means of relaxation tests.

First, the thickness influence is studied.Figure 3 shows relaxation test series for� ¼ 0:5% and
Figure 4 shows relaxation test series for� ¼ 2%.

From Figures 3 and 4, it should be remarked that the relaxation modulus EðtÞfor the thickness
h ¼ 1:5 mm is slightly higher than the others, anyway less than 5% in both cases. Considering
that the results were derived from different specimens, certain dispersion between the
obtained relaxation modulus EðtÞcan be expected. Therefore, it can be concluded that the
specimen thickness has a negligible influence on these test results.

Next, the strain influence on the range of 0:2% < � < 8% over the relaxation modulus EðtÞis
analyzed through seven tests. The results are illustrated inFigure 5.

From Figure 5, it can be noted that the � ¼ 0:2% and � ¼ 0:5% curves show slight fluctuations
that are not visible for the other curves. These inaccuracies can be expected with the strain
decrement, because the force may be lesser than the machine resolution. Consequently, as the
strain increases, this effect is less significant. Hence, only the curve� ¼ 0:2% could be rejected
due to the fluctuations.

Figure 5 shows that the adhesive material behavior depends on the imposed strain level where
the higher the strain, the lower the experimental relaxation modulus EðtÞ. This implies that the
material softens when the strain level grows up. With the aim of comparing the relaxation
moduli EðtÞobtained for the different strain levels, Figure 6 shows the corresponding ratios
taking � ¼ 0:5% as a reference.

Assuming inherent scatter (seeFigure 6), a nearly constant EðtÞratio can be verified for the
range of strains analyzed, even for � ¼ 0:2%. Consequently, the strain influence on the relaxa-
tion modulus can be modeled using Eq. (10)
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Figure 3. Relaxation modulus tests for thickness influence evaluation for � ¼ 0:5%.

Figure 4. Relaxation modulus tests for thickness influence evaluation for � ¼ 0:5%.
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Figure 5. Relaxation modulus tests for strain influence evaluation.

Figure 6. Ratio of relaxation moduli rðtÞfor � ¼ 0:5% as a reference.
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Eð� , tÞ ¼rð� Þ · ErefðtÞ (10)

where rð� Þis the ratio between the relaxation modulus Eð� , tÞfor the strain � and that taken as
a referenceErefðtÞ. In this context, Figure 7 shows the evolution of the mean value of the ratio
rð� Þof different strains as a function of the strain ratio, taking � ref ¼ 0:5% as a reference.

The decay of the mean value of these ratios with the strain presented inFigure 7 can be fitted
by an experimental function according to

rð� Þ ¼� 1 þ � 2e � � 3
�

� ref (11)

where the parameters � 1, � 2, and � 3 were estimated by least squares, as� 1 ¼ 0:73780,
� 2 ¼ 0:30504, and � 3 ¼ 0:14792, and where � 0 represents the reference strain level, being
� ref ¼ 0:5% for the present cases. The functionrð� Þof Eq. (11) is represented inFigure 7 by the
discontinuous trace.

In order to verify the proposed model, the results provided by Eqs. (10) and (11) are compared
with the experimental data obtained for the strain � ¼ 2%, and asFigure 8 illustrates, Eqs. (10)

and (11) provide an accurate prediction of the material relaxation in the 10� 2 s� 4 · 103 s range
of time.

Based on the results, it can be observed that mechanical properties of the flexible adhesive ISR
70-03 do not depend on sample thickness. In contrast, they do depend on the strain level. Thus,

Figure 7. Ratio of the relaxation modulus relations rð� Þby Eq. (11).
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the lower the strain, the higher the relaxation modulus, leading to the conclusion that the
material softens as the strain level grows up. Consequently, the exponential model given by
Eq. (11) represents the influence of the strain level and Eq. (10) allows computing the relaxation
modulus function EðtÞfor any strain level, once the relaxation modulus for a reference strain
level is obtained.

This increase in the relaxation modulus EðtÞas a consequence of the decrease in the strain level
is in accordance to the observed behavior in other viscoelastic materials [36] so as other rubber
like compounds [37] used for vibration control.

2.2.2. Relaxation master curve

Following, the time domain master curve (MC) is obtained applying the time-temperature
superposition (TTS) principle [25]. The MC is built-up from 10 relaxation curves, obtained for

10 different temperatures ranging from � 40� C–50 � C all of them in the 10� 2 s� 102 s range, as
shown in Figure 9.

From Figure 9, it should be remarked that the higher the temperature, the lower the relaxation
modulus. It should be noted also that the test carried out at T ¼ 30� C intersects the one at
T ¼ � 20� C due to an error during the test. Analogous situation can be verified for the
curvesT ¼ � 10� C and T ¼ � 20� C. Reasons for removing these curves from the analysis will be
discussedlater.

Figure 8. Relaxation modulus given by Eq. (10).

�'�\�Q�D�P�L�F���&�K�D�U�D�F�W�H�U�L�]�D�W�L�R�Q���R�I���$�G�K�H�V�L�Y�H���0�D�W�H�U�L�D�O�V���I�R�U���9�L�E�U�D�W�L�R�Q���&�R�Q�W�U�R�O
�K�W�W�S�������G�[���G�R�L���R�U�J����������������������������

������



Based on the industrial application, the temperature T0 ¼ 20� C is chosen as a reference to
derive the MC. First, all the possible shift factors � Tðt0Þbetween the reference curve and that
for T ¼ 10� C are computed. Thereafter, the times t and t0 are determined for which the
relaxation modulus curves coincide, Eðt, 10� CÞ ¼Eðt0, 20� CÞ. Accordingly, the shift factor
� Tðt0Þat any time t0 is computed as

� Tðt0Þ ¼t=t0: (12)

Based on the TTS principle, singe shift factor� T should exist for each temperature. Therefore,
the optimum shift factor � Tðt0Þ is computed from all the possible factors. This is done by
minimizing the error function defined as the difference between the original and the shifted
curves. Then, a preliminary MC is reached, for which the procedure is repeated for any curve
represented in Figure 9.

Figures 10 and 11 show the range of possible factors� Tðt0Þobtained from each preliminary
MC and the one to be shifted below and above T0 ¼ 20� C, respectively.

From Figures 10 and 11, significant conclusions can be obtained. Involving the curves for
temperatures T ¼ � 40;� 20;� 10 ;0;10;40; and 50� C nearly constant � Tðt0Þfactors are computed
in accordance to the TTS principle. Hence, a reasonable optimum value can be determined at
each temperature. On the contrary, the curve for T ¼ � 30� C exhibits high scatter and should,
therefore, be disregarded from the analysis.

Figure 9. Relaxation curves resulting from a broad range of temperatures.
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Figure 10. Range of possible factors� Tðt0Þin time domain below T0.

Figure 11. Range of possible factors� Tðt0Þin time domain above T0.
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It should be mentioned that the position for the curves resulting for T ¼ � 10 � C is shifted and,
therefore, at least one of them must be removed from the analysis. Decision is taken based on
the optimum shift factors � T represented as a function of temperature inFigure 12.

It follows from Figure 12 that, in order to obtain a monotonically decreasing log � T � T curve
without irregularities, it is convenient to discard the information provided for T ¼ � 20� C.
The observed behavior can be modelized using the Arrhenius model (Eq. (8)), the results of
which is represented in Figure 12 by the discontinuous trace. The parameterC was estimated

by linear regression, giving C ¼ 4419 K, corresponding to a regression coefficientR2 ¼ 0:999.

Therefore, applying the presented procedure and computing the optimums � T values shown
in Figure 12, each single curve has been shifted to built-up the desired relaxation master curve,
as shown in Figure 11. The constructed MC decays from 16 MPa down to 4 MPa in the covered

range 10� 5 s� 1:6 · 103 s.

Based on the results, it can be said that the studied material can be used for vibration control
proposes. It should be remarked also that based on the mechanical strength, the ISR 70-03 can
be employed not only for non-structural applications but also more demanding structural
designs that can be proposed [38, 39].

2.2.3. Dynamic master curve

The dynamic MC can be constructed using an analogous procedure to that followed in the
derivation of the master curve for the relaxation modulus. Hence, Figure 12 represents four

Figure 12. Optimum shift factor � T values for time domain and Arrhenius model fit.

�$�G�K�H�V�L�Y�H�V�������$�S�S�O�L�F�D�W�L�R�Q�V���D�Q�G���3�U�R�S�H�U�W�L�H�V������



curves of the storage modulus E� and loss factor � , respectively, in the 10� 1 Hz� 2· 101 Hz
frequency range, for four different temperatures, T ¼ � 10; 0; 10; and 20� C. In this case, taking
as well into account the industrial application, the same reference temperatureT0 ¼ 20� C has
been adopted.

Figure 13 shows that the higher the temperature, the lower both the storage modulus E�and
the loss factor � . Obviously, this in accordance with the results obtained in the time-domain
case.

Therefore, all the possible shift factors � Tðf 0Þbetween the preliminary master curve and the

one to be shifted are computed using the storage modulus E�ðf , TÞ ¼E�ðf 0, T0Þ, and the shift
factors � Tðf 0Þ. Thus, the shift factor � Tðf 0Þrepresented in Figure 14 satisfying

� Tðf 0Þ ¼f =f 0: (13)

Taking into account the moderate scatter in the results assignable to the experimental
nature of the data, the � Tðf 0Þvalues of the three curves shown in Figure 15 may be taken
as a constant. To compute a single value for each temperature, an analogous minimiza-
tion procedure to that followed in the relaxation case was applied to the complex modu-
lus E� ðf , TÞ. The resulting optimums shift factors � T are computed and represented in
Figure 16.

Figure 13. Storage modulus and loss factor curves for four different temperatures.
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Figure 14. Relaxation master curve in time domain.

Figure 15. Shift factors � Tðf 0Þin frequency domain below T0.
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It can be seen fromFigure 16 that the determinedvalues decay with the temperature. Simi-
larly as in the time-domain case, it follows that the Arrhenius mod el (Eq. (8)), which is
represented in Figure 13 by the discontinuous trace, is a good candidate for describing the
dynamic behaviorobserved in the material. The parameter C becameC ¼ 3710 K for a regres-

sion coefficient R2 ¼ 0:999 . Consequently, the corresponding MC is constructed as shown in
Figure 17.

In Figure 17 the MCs for the storage modulus E� and loss factor � in the range 0:1 Hz� 700 Hz
are illustrated where the rubbery behavior and the beginning of the transition zone are
present. As it was concluded in the time-domain analysis, the ISR 70-03 is applicable for
vibroacoustic control of structures even for low frequency applications [36].

2.3. Models

Next, a relaxation modulus model capable of taking into account together the influence of
strain, time and temperature as

Eð� , t, TÞ ¼rð� Þ· Erefðt,TÞ: (14)

is proposed. Concretely, a generalized Maxwell model (also known as the Prony series model)
[40] and a fractional model [41] are fitted to the previously obtained master curve ErefðtÞ, in the

Figure 16. Optimum shift factor � T values for frequency domain and Arrhenius model fit.
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time range of 1· 10� 5 s� 1:6 · 103 s. Also, a complex modulus model is suggested to modelize
the dynamic master curve E� ðf Þin the frequency range of 0:1 � 700 Hz.

2.3.1. Relaxation models

Next, two relaxation models are presented. Concerning the generalized Maxwell (or Prony
series) model,ErefðtÞyields

ErefðtÞ ¼E0 þ �
N

i¼1
Eie � t=	 i : (15)

where E0 is the relaxed modulus, Ei represents stiffness parameter and	 i denotes relaxation
time. N ¼ 9 is the number of terms chosen for the generalized Maxwell model to accurately
represent the experimental results. The fitting has been carried out by least squares,

corresponding to a regression coefficient ofR2 ¼ 0:999. The obtained values forE0, Ei and 	 i

are presented inTable 2.

Concerning the fractional derivative model, the four-parameter derivative model [42]

� ðtÞ þ 	 � D� � ðtÞ ¼Er � ðtÞ þ 	 � ðEu � ErÞD
� � ðtÞ: (16)

is employed, where � denotes the stress,Er and Eu are relaxed and unrelaxed modulus, 	 is
the relaxation time, and D � is the � order fractional derivative operator. The G1 numerical

Figure 17. Master curves for the storage modulus and loss factor in frequency domain.
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approximation [43] of the fractional derivative of a generic function f ðtÞat the instant tnis
used, given by

D� f ðtÞjt¼tn
¼

1
ð� tÞ� �

n� 1

j¼0
A jþ 1 f ðtn� jÞ: (17)

where A jþ 1 ¼ A jðj� � � 1Þ=j with A1 ¼ 1, and � t is the time step. Thus, applying a strain step as
� ðtÞ ¼HðtÞwhere HðtÞis the Heaviside function, the relaxation modulus EðtnÞ ¼En where
tn ¼ n · � t can be calculated as

En ¼

Er þ ðEu � ErÞ 	
� t

� � � �
n� 1

j¼0
A jþ 1� 	

� t

� � � �
n� 1

j¼1
A jþ 1En� j

1 þ 	
� t

� � � : (18)

An error minimization procedure has been applied for the curve fitting, and Er ¼ 3:271 MPa,

Eu ¼ 20:147 MPa,	 ¼ 1:589· 10� 7 s and � ¼ 0:116 have been determined.

In Figure 18, both models are compared with the experimental data.

From Figure 18, it should be noted that the fractional model has been fitted using a time step of

� t ¼ 1· 10� 2 s. It should be pointed out that both models are able to reproduce the experimen-
tal relaxation master curve. Nevertheless, the curve provided by the fractional model is
smoother. Besides, it should be pointed out that the fractional derivative model needs only
four parameters whereas the generalized Maxwell model needs 19 parameters. On the con-
trary, the computation of Eq. (18) is much larger than that of Eq. (15). As a conclusion, it should
be verified that relaxed and unrelaxed moduli provided by both models are coherent. Hence, it
should be highlighted that involving the generalized Maxwell model, the unrelaxed modulus
Eu can be calculated as

Stiffness parameters (MPa) Relaxation time (s)

E0 ¼ 4:101

E1 ¼ 0:378 	 1 ¼ 1:60· 10� 3

E2 ¼ 0:427 	 2 ¼ 2:91· 102

E3 ¼ 0:523 	 3 ¼ 9:965

E4 ¼ 0:773 	 4 ¼ 4:14· 10� 1

E5 ¼ 1:014 	 5 ¼ 2:01· 10� 2

E6 ¼ 1:521 	 6 ¼ 1:68· 10� 3

E7 ¼ 2:501 	 7 ¼ 2:44· 10� 4

E8 ¼ 3:364 	 8 ¼ 4:82· 10� 5

E9 ¼ 5:904 	 9 ¼ 9:83· 10� 6

Table 2. Coefficients for the Prony series fitted to the relaxation master curve.
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Eu ¼ E0 þ �
N

i¼1
Ei : (19)

Hence, the obtained unrelaxed modulus Eu for the generalized Maxwell model is
Eu ¼ 20:806 MPa while that for the fractional model is Eu ¼ 20:147 MPa.

Apart from the computational cost, fractional models describe precisely the viscoelastic behav-
ior even in time domain despite the low number of parameters needed to describe wide time
ranges [44–47].

2.3.2. Dynamic models

Following, the complex modulus E� ð� Þfor the generalized Maxwell and fractional derivative
models is derived from the Fourier transform of Eqs. (15) and (16), respectively. The one for the
generalized Maxwell model yields

E� ð� Þ ¼E0 þ i� �
N

i¼1

	 iEi

1 þ i�	 i
: (20)

Figure 18. Relaxation models in time domain.
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where � ¼ 2� f , f is the excitation frequency. The curve fitting is carried out by least squares
with N ¼ 9. The obtained numerical values are presented inTable 3.

Concerning the one based on fractional derivatives, the corresponding complex modulusresults
in

E� ð� Þ ¼
Er þ ðEu � ErÞði�	 Þ�

1 þ ði�	 Þ� : (21)

Accordingly, fitting by least squares, Er ¼ 4:419 MPa, Eu ¼ 31:66 MPa, 	 ¼ 1:17· 10� 4 s and

� ¼ 0:353 have been found, the regression coefficient satisfyingR2 ¼ 0:998.

Both models, Eqs. (20) and (21), are contrasted to the experimental dynamic master curve
shown in Figure 19.

From Figure 19, it should be highlighted that the generalized Maxwell model fits the experi-

mental storage modulus E
0
. However, the fractional derivative model reproduces better the

experimental loss factor � . It should be remarked also that the fractional derivative model
needs only four parameters. Besides, the fractional model parameters extraction Eq. (21) is
faster than that of Eq. (20).

Involving the curve fitting, it should be noted that for time domain the difference between the
unrelaxed modulus Eu provided by both models is 1.71%. Regarding frequency domain, the
difference is 7.39%. However, for the relaxed modulus, the differences between the generalized
and the fractional models for time and frequency domains are 20.24 and 12.47%, respectively.
Consequently, the results provided by these models differs for t ! � and for f ¼ 0 Hz.

Stiffness parameters (MPa) Relaxation time (s)

E0 ¼ 5:049

E1 ¼ 0:032 	 1 ¼ 2:42· 10� 7

E2 ¼ 0:070 	 2 ¼ 4:31· 10� 3

E3 ¼ 0:097 	 3 ¼ 5:89· 10� 3

E4 ¼ 0:211 	 4 ¼ 5:82· 10� 3

E5 ¼ 0:690 	 5 ¼ 3:29· 10� 1

E6 ¼ 0:924 	 6 ¼ 2:40· 10� 2

E7 ¼ 1:442 	 7 ¼ 1:70· 10� 3

E8 ¼ 2:637 	 8 ¼ 2:80· 10� 4

E9 ¼ 18:17 	 9 ¼ 2:16· 10� 5

Table 3. Coefficients for the Maxwell model fitted to the dynamic master curve.
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Hence, it can be stated that fractional derivative models are really valuable tools for describing
the viscoelastic behavior principally in frequency domain but also in time domain [44 –47].

2.4. Conclusions

The experimental characterization and modelization of the relaxation and complex moduli of
the flexible adhesive ISR 70-03 havebeen performed using dynamic mechanical thermal anal-
ysis (DMTA).

• To conduct the experiments, defect-free samples have been manufactured using Teflon™
casts. Regarding validation, it can be concluded that tomography techniques by means of
neutron radiography are able to identify internal and external defects in cured adhesives.

• Regarding the linearity, it can be stated that the relaxation test results are not influenced by
sample thickness. On the contrary, the strain influence has been verified. Consequently, it
has been modeled using an exponential model. Therefore, it can be noted that the material
stiffens when the strain level decreases.

• Involving the master curves, the relaxation modulus EðtÞand the complex modulus E� ð� Þ
have been derived by means of a procedure based on the TTS principle. Besides, the
temperature dependence has been modelized by the Arrhenius model.

Figure 19. Dynamic models in frequency domain.
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• Finally, the generalized Maxwell model and fractional derivative models have been fitted to
the time and frequency domains master curves. The generalized Maxwell one has been
fitted using 19 parameters whereas the fractional derivative model has four parameters.
Involving time domain, the fitting is accurate enough for both models. Regarding frequency

domain, the storage modulus E� and loss factor � may be represented also by the general-
ized Maxwell and fractional derivative models. However, the fractional model fits the
experimental response in a wide time or frequency ranges with a lower number of param-
eters. Hence, the fractional derivative model should be used for both time and frequency
domains [44–47].

As a conclusion, a model capable of representing the influence of time, temperature and strain
level over the mechanical properties of the flexible adhesive ISR 70-03 has been presented.

3. Relaxation modulus: complex modulus interconversion for linear
viscoelastic adhesives

The interconversion path between the relaxation modulus EðtÞand the corresponding com-
plex modulus E� ð� Þ for linear viscoelastic solid materials is explored. The key difference
with other approximate methods relies on the fa ct that in the presented procedure, the fast
Fourier transform (FFT) algorithm is directly applied on the time-dependent part of the
viscoelastic responseRðtÞ. First, method foundations are outlined. Next, a theoretical exam-
ple is developed using the generalized Maxwell model. Using this example, influence of
sampling conditions and experimental error a nd data dispersion is studied. Finally, the
accuracy of the method is proved by an application example using experimental data. As a
conclusion, the proposed procedure is able to compute the complex modulus by means of
relaxation tests and vice versa.

Concerning VEM behavior modeling, the memory of viscoelastic materials such as viscoelastic
adhesives can be properly represented using the Boltzmann superposition principle [48].
Therefore, time evolution of stress � ðtÞ can be evaluated using relaxation functions RðtÞ
through convolution integrals given by

� ðtÞ ¼Er � ðtÞ þ
ð t

0
Rðt� 
 Þ_� ð
 Þd
 : (22)

where � ðtÞ is the strain, Er represents the viscoelastic constant,
 denotes the integration
variable and ð:Þrepresents the time derivative. In frequency domain, viscoelastic behavior can
be represented by the complex modulus approximation [49], as shown in Eq. (4).

Concerning experimental characterization of viscoelastic adhesives, ASTM E 756-04 [10]
details the methodology to characterize the mechanical behavior of non-self-supporting visco-
elastic materials, implying the use of multimaterial Oberst beam specimens.
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In this context, the DMTA technique allows to take into account together temperature and time
(or temperature and frequency) by means of the time-temperature superposition (TTS) princi-
ple [24, 50] introducing no extra mass or damping.

Thus, frequency-time interconversion methods are valuable and useful tools [51–53] due to the
fact that they can also be applied to overcome the inherent difficulties of relaxation or dynamic
characterization [54–57], depending on the tested material. The most widely applied methods
[51] for material functions conversion from time to frequency domains are those based on the
Prony series model [40], and the opposed conversion can be achieved through the algorithms
proposed by Ninomiya and Ferry [58]. The former can be obtained by fitting the experimental
data by means of the generalized Maxwell model [59], whereas the latter is based on experi-
mental data fitting.

As summary, the objective of this section is to propose an interconversion method between
time and frequency domains capable of obtaining the complex modulus E� ð� Þby means of
relaxation tests, and vice versa. The main advantage of this procedure is the direct application
of the fast Fourier transform (FFT) algorithm on experimental data. On the contrary, other
existing methods [55–65] are based on fitting models or theoretical functions. In particular, the
proposed method is relevant when a Prony series cannot be accurately fitted to the experimen-
tal data in time or frequency domains. This section is structured as follows:

• Method foundations are outlined.

• A theoretical example is developed using a generalized Maxwell model. Using this example,
influence of sampling conditions and experimental error and data dispersion are studied.

• The accuracy of the method is proved by an application example using experimental data.

3.1. Method foundation

An experimental relaxation test consists on applying a strain step as � ðtÞ ¼� 0HðtÞ, where � 0

represents the magnitude of the strain and HðtÞ is the Heaviside function. Consequently,
applying a strain step and substituting its time derivative into Eq. (22), it yields

� ðtÞ ¼Er � 0HðtÞ þ
ð t

0
Rðt� 
 Þ� 0� ð
 Þd
 ¼ ½Er þ RðtÞ�� 0: (23)

where � ðtÞis the Dirac function. Then, the relaxation modulus EðtÞcan be deduced as

EðtÞ ¼
� ðtÞ
� 0

¼ Er þ RðtÞ: (24)

where the long-term part of the relaxation modulus is represented by the viscoelastic constant
Er and where the time-dependent component is represented byRðtÞ.

Then, applying the Fourier transform, the complex modulus E� ð� Þ is derived. On the one
hand, applying the Fourier transform over Eq. (24), it results in
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~Eð� Þ ¼
Er

i�
þ ~Rð� Þ (25)

where ð:Þrepresents the Fourier transform. On the other hand, applying the Fourier transform
over Eq. (1) it yields

~� ð� Þ ¼Er ~� ð� Þ þ i� ~Rð� Þ~� ð� Þ (26)

where from the complex modulus E� ð� Þcan be derived, yielding

E� ð� Þ ¼Er þ i� ~Rð� Þ (27)

Therefore, by substituting the Fourier transform of the time-dependent part of the viscoelastic

response ~Rð� Þ into Eq. (25), a relationship between complex modulus E� ð� Þand the Fourier

transform of the relaxation modulus ~Eð� Þis obtained,

E� ð� Þ ¼i� ~Eð� Þ (28)

As a result, the complex modulus E� ð� Þof a linear viscoelastic material can be obtained from
the Fourier transform of its relaxation modulus EðtÞ. Nevertheless, applying the fast Fourier
transform (FFT) algorithm, the resulting complex modulus E� ð� Þ will suffer from leakage
becauseEðtÞis not periodic [66, 67] and EðtÞ ¼

t! �
Er � 0. Therefore, to avoid leakage, it should be

remarked that the time-dependent part of the viscoelastic responseRðtÞrepresenting visco-
elastic component disappears with time, RðtÞ ¼

t! �
0. Hence, FFT algorithm does not produce

leakage on complex modulus E� ð� Þapproximation if Eq. (27) is used instead of Eq. (28). The
drawback of the procedure is that the viscoelastic constant Er must be extracted from the
experimental data.

3.2. Theoretical example

Next, the influence of sampling conditions and experimental error and data dispersion is
studied using an exponential material model. The study analyses some aspects related to the
FFT algorithm, which are: leakage, signal discretization and the analyzed ranges. In this
analysis, the FFT algorithm proposed by Cooley and Tukey [64] to compute the discrete
Fourier transform is employed [65] despite the documented drawbacks [69]. There are other
methods, as those presented by Dutt and Rokhlin [66] that have been used in several of
applications [67–70]. However, as stated, the algorithm proposed by Cooley and Tukey [64]
will be used.

An exponential damping model is widely used in the literature [71, 72], because it is capable of
modeling damping mechanisms arising from viscoelastic nature of materials. Its time-depen-
dent part of the viscoelastic responseRðtÞis given by
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RðtÞ ¼c� e� � t (29)

resulting in a relaxation modulus as

EðtÞ ¼Er þ E1 e� � t (30)

where � ¼ 	 � 1
m ¼ E1=c represents the material relaxation parameter,	 m is the relaxation time,

and E1 and c are the stiffness and damping coefficients, respectively. The Fourier transform
~Rð� Þof the time-dependent part of the viscoelastic responseRðtÞis given by

~Rð� Þ ¼E1
1

� þ i�
(31)

Accordingly, the complex modulus E� ð� Þyields

E� ð� Þ ¼Er þ E1
i�

� þ i�
(32)

wherefrom storage modulus E� and loss factor tan � can be directly obtained as

E�ð� Þ ¼Er þ E1
� 2

� 2 þ � 2 (33)

and

tan � ð� Þ ¼
E1��

Er � 2 þ E1ð� 2 þ � 2Þ
(34)

respectively. For the numerical application, it is considered that Er ¼ 3 MPa, E1 ¼ 6 MPa and
c ¼ 0:1 MPa s.

3.2.1. Leakage

Now, the leakage influence is studied. The conversion from time to frequency is achieved using
the procedures described in Section 2 where the validation is done correlating the exact
complex modulus (Eq. (32)) with that provided by Eqs. (28) and (27). All these complex

modulus are represented in Figure 20 as storage modulusE� and loss factor tan � .

From Figure 20, it should be remarked that the direct use of Eq. (28) derives in erroneous
results due to leakage, while through Eq. (27), the complex modulus E� ð� Þcan be precisely
computed from the relaxation modulus.

For the transformation from frequency to time domain, the exact relaxation modulus given by
Eq. (30) is compared with those computed by the inverse FFT applied on Eqs. (28) and (27).
Unfortunately, the leakage resulting from Eq. (28) provides a numerical instability, the relaxa tion
modulus being infinity for every time. Thus, Figure 21 illustrates only two curves instead of
three: the analytic response given by Eq. (30) and the estimation forEðtÞby means of Eq. (27).
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From Figure 21, it should be pointed out that the proposed procedure is capable ofaccurately-
computing the relaxation modulus EðtÞfrom the corresponding complex modulus E� ð� Þ.

3.2.2. Influence of time and frequency sampling

In this section, the influence of the time and frequency sampling is analyzed. It should be
remarked that involving the conversion from time to frequency of a function defined up to a
maximum time tmax, the discretization time � t determines the Nyquist frequency f max,
according to

f max ¼
1

2� t
(35)

the resulting discretized frequency being

� f max ¼
1

tmax
(36)

having

Figure 20. Influence of leakage, conversion from time to frequency. Comparison among the analytic generalized Maxwell
model complex modulus E� ð� Þprovided by Eq. ( 32), the one computed by means of Eq. (28) and therefore suffering
leakage, and the one computed by means of Eq. (27) and therefore avoiding leakage.
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N ¼
tmax

� t
(37)

discrete data.

For the conversion from frequency to time, these three equations can be inversely taken into
account.

For the present analysis,tmax ¼ 0:5s is chosen, and five different discretization cases are analyzed:
� t1 ¼ 	 m=2 ¼ 0:0083 s, � t2 ¼ 	 m=4 ¼ 0:0042 s, � t3 ¼ 	 m=8 ¼ 0:0021 s,� t4 ¼ 	 m=16 ¼ 0:0010 s
and � t5 ¼ 	 m=32 ¼ 0:0005 s. Thus,Figure 22 shows six curves; the five analyzed cases plus the
analytic response given by Eq. (30).

From Figure 22, it should be pointed out that the higher the � t, the lower the f max and better
the accuracy. Thus,� t1 ¼ 	 m=2 is only able to represent the low-frequency range, representing
the rubbery and the beginning of the transition zones of the viscoelastic material [54]. On the
contrary, � t5 ¼ 	 m=32 is enough to accurately represent the complex modulusE� ð� Þin the
whole frequency range, including the vitreous one [54].

For frequency to time domain transformation, a maximum frequency f max ¼ 1 kHz is considered,

and four discretization cases are studied: � f 1 ¼ 	 � 1
m =2 ¼ 29:94 Hz, � f 2 ¼ 	 � 1

m =4 ¼ 14:97 Hz,

Figure 21. Influence of leakage, conversion from frequency to time. Comparison between the analytic generalized
Maxwell model relaxation modulus EðtÞprovided by Eq. ( 30), and the one computed through Eq. (27) avoiding leakage.
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� f 3 ¼ 	 � 1
m =8 Hz ¼ 7:48 Hz and � f 4 ¼ 	 � 1

m =16 Hz ¼ 3:74 Hz. Hence,Figure 4 shows five curves;
the four analyzed cases and the analytic response given by Eq. (30).

From Figure 23, it should be noted that in two of the considered cases, � f 1 ¼ 	 � 1
m =2 and

� f 2 ¼ 	 � 1
m =4 , the relaxation is not properly represented. Thus, differences are verified for

t < 0:02 s. Consequently, they are not useful to compute the relaxation modulusEðtÞ. Consid-
ering the cases� f 3 ¼ 	 � 1

m =8 and � f 4 ¼ 	 � 1
m =16 , the relaxation is reached, providing analogous

accuracy. Hence, for the present case, a� f 3 ¼ 	 � 1
m =8 is small enough to accurately compute the

relaxation modulus EðtÞ.

3.2.3. Influence of the maximum time and frequency

Next, the influence of tmax and f max is analyzed. First, the conversion from time to frequency is
analyzed. The previously defined function discretization parameter � t5 is employed. Five
truncated signals are considered, as tmax;1 ¼ 2	 m ¼ 0:0334 s, tmax;2 ¼ 4	 m ¼ 0:0668 s,
tmax;3 ¼ 8	 m ¼ 0:1336 s, tmax;4 ¼ 16	 m ¼ 0:2672 s and tmax;5 ¼ 32	 m ¼ 0:5344 s. On the one
hand, Figure 24 presents the exactEðtÞgiven by Eq. (30), in which each employed truncation
is represented. On the other hand, Figure 25 shows six curves corresponding to the five
analyzed cases plus the analytic response given by Eq. (32).

Figure 22. Influence of the analyzed time range, conversion from time to frequency. Comparison between generalized
Maxwell model complex modulus E� ð� Þprovided by Eq. ( 32) and the result provided by the proposed interconversion
method for the different truncation times.
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From Figure 24, it should be remarked that in two of the considered cases,tmax;1 and tmax;2, the
relaxation has not been reached, implying that only the vitreous zone can be represented, as
Figure 25 shows. Even if for tmax;3 and tmax;4 the relaxation has been reached, only the transi-
tion zone can be represented. In fact, to include the rubbery zone, a maximum spamtmax;5 has
to be taken into account.

Next, for the conversion from the complex modulus to the relaxation modulus, a previously
defined discretization frequency � f 3 is chosen. Three cases of maximum frequency are ana-

lyzed: f max,1 ¼ 0:1 	 � 1
m � 6 Hz, f max,2 ¼ 	 � 1

m � 60 Hz and f max,3 ¼ 10 	 � 1
m � 600 Hz. These frequency

ranges are supposed to cover the rubbery, transition and vitreous zones, respectively, as shown
in Figure 26. Therefore,Figure 27 shows four curves matching to the three studied cases plus
the analytic response given by Eq. (30).

From Figure 27, it should be noted that the lower the f max, the worse the accuracy. Conse-

quently, the f max,1 ¼ 0:1 	 � 1
m � 6 Hz is not able to represent the relaxation modulus EðtÞ. Regard-

ing f max,2 ¼ 	 � 1
m � 60 Hz, differences are encountered during the relaxation until the viscoelastic

constant Er is reached. On the contrary, f max,3 ¼ 10 	 � 1
m � 600 Hz is enough to accurately repre-

sent EðtÞin the whole time range.

Figure 23. Influence of sampling frequency, conversion from frequency to time. Comparison between generalized Max-
well model relaxation modulus EðtÞ provided by Eq. ( 30) and the result provided by the proposed interconversion
method for different sampling frequencies.
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Figure 25. Influence of the analyzed time range, conversion from time to frequency. Comparison between the generalized
Maxwell model complex modulus E� ð� Þprovided by Eq. ( 32) and the result provided by the proposed interconversion
method for the different truncation times.

Figure 24. Influence of the analyzed time range, conversion from time to frequency. Analytic generalized Maxwell model
relaxation modulus EðtÞprovided by Eq. ( 30), in which different truncation times are illustrated.
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3.2.4. Influence of experimental error and data dispersion

Next, the precision of the interconversion is studied considering eventual data dispersion.

Under this condition, some pseudo-experimental data for relaxation modulus EðtÞand com-

plex modulus E
�
ð� Þhave been generated evaluating Eqs. (30) and (32), respectively, in some

unevenly spaced data points, in which random eventual error � ðtÞ and � � ð� Þ have been
introduced, as

EðtÞ ¼EðtÞ þ � ðtÞ (38)

and

E
�
ð� Þ ¼E� ð� Þ þ � � ð� Þ (39)

Then, these generated data have been resampled in order to obtain evenly spaced dataEesðtÞ

and E
�
esð� Þ. For the present case, linear interpolation has been applied.

For the present numerical application, � t ¼ 10� 4s and tmax ¼ 1 s are used.Figures 28 and 29
show the conversion from relaxation modulus EðtÞto complex modulus E� ð� Þ. The former

Figure 26. Influence of the analyzed frequency range, conversion from frequency to time. Analytic generalized Maxwell
model complex modulus E� ð� Þprovided by Eq. ( 32), in which different truncation frequencies are illustrated.
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illustrates Eq. (30) together with the pseudo-experimental dataEðtÞand the latter illustrates the
converted modulus with the analytic solution for E� ð� Þgiven by Eq. (32).

From Figure 29, it should be pointed out that the low-frequency range is properly reproduced
while the estimation of E� ð� Þfor the higher frequencies differs from the analytic one (Eq. (32)).
The reason is that not enough points were taken inEðtÞduring the relaxation, and therefore, a
linear interpolation technique is not enough to represent the employed model. Therefore, a
higher number of data points are needed, especially during the relaxation. Besides, a higher
order interpolation technique will provide better accuracy.

Regarding the inverse conversion, � f ¼ 0:5 Hz and f max ¼ 1 kHz are chosen to guarantee a
wider time range. Figures 30 and 31show the conversion from complex modulus to relaxation

modulus. Figure 30 illustrates Eq. (32) with the pseudo-experimental dataE
�
ð� Þ, and Figure 31

illustrates the converted modulus with the analytical solution for EðtÞgiven by Eq. (30).

From Figure 31, it should be noted that the converted relaxation modulus accurately repro-
duces the model provided by Eq. (30).

As a conclusion, it can be stated that the proposed procedure is able to provide an accurate
approximation of the relaxation modulus EðtÞand of the complex modulus E� ð� Þeven though

Figure 27. Influence of the analyzed frequency range, conversion from frequency to time. Comparison between the
generalized Maxwell model relaxation modulus EðtÞ provided by Eq. ( 30) and the result provided by the proposed
interconversion method for different truncation frequencies.
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the original data does not match the exact response and even though data are not properly
spaced.

3.3. Application example using experimental data

Finally, an application example is presented in which experimental data for DMTA obtained
relaxation and complex moduli Eexp ðtÞand E�

exp ð� Þof a flexible adhesive [73] are used to

assess the present procedure. The employed flexible adhesive is a modified silane. Concretely,
ISR 70-03 is employed [73]. It should be remarked that the behavior of the employed material
was fitted to an exponential relaxation model [73] considering nine relaxation functions.

The experimental relaxation modulus Eexp ðtÞcovers the time range 10� 5 s� 3· 103 s while the

complex modulus E�
exp ð� Þ covers the frequency range 10� 1 Hz� 7· 102 Hz. It should be

reminded that an interpolation technique is used to equally space the data. Also, this interpo-
lation step is needed to reach the neededtmax and � t where a cubic interpolation is employed.
It should be remarked that, due to the fact that Eexp ðtÞand E�

exp ð� Þare experimental data,

there is no a relaxation time 	 m associated withthem as a result there is no underlying model.
Thus, the desired � t is estimated using the criteria 	 m ¼ 0:66 tr where tr is the elapsed time

from the strain is applied until relaxation is reached. Therefore, a � t ¼ 10� 5 s is derived.

Figure 28. Influence of data dispersion, conversion from time to frequency. Analytic generalized Maxwell model relaxa-
tion modulus EðtÞprovided by Eq. ( 30) together with the employed unevenly spaced data.
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Figure 29. Influence of data dispersion, conversion from time to frequency. Comparison between analytic generalized
Maxwell model complex modulus E� ð� Þprovided by Eq. ( 32) and the converted one using data dispersion.

Figure 30. Influence of data dispersion, conversion from frequency to time. Analytic generalized Maxwell model complex
modulus E� ð� Þprovided by Eq. ( 32) together with the employed unevenly spaced data.
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Figure 31. Influence of data dispersion, conversion from frequency to time. Comparison between analytic generalized
Maxwell model relaxation modulus EðtÞprovided by Eq. ( 30) and the converted one using data dispersion

Figure 32. Application example using experimental results. Conversion from time to frequency: comparison between the
experimental complex modulus E� ð� Þ of a flexible adhesive and the converted one from its respective experimental
relaxation modulus EðtÞ.
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Regarding the dynamic case a� f ¼ 0:01 Hz is selected. Therefore,Figure 32 shows the com-
parison of the conversion from relaxation modulus EðtÞto complex modulus E� ð� Þwith the
experimental data and Figure 33 shows the inverse conversion.

From Figure 32, it should be pointed out that the described procedure achieves an accurate
estimation for E�

exp ð� Þ. Regarding the storage modulus, the described procedure reproduces

the experimental data in the whole frequency range. Concerning, the loss factor tan � ð� Þ, the
procedure matches the tendency of the experimental data but differences are encountered,
being significant in the high-frequency range where these grow up to 30%. Nevertheless, the
accuracy of the interconversion can be improved by reducing the � t used. Regarding the
interconversion from frequency to time, from Figure 33, it should be noted that the described
methodology provides a precise approximation for the experimentally obtained relaxation
modulus during the relaxation. However, an error of 7 % is found for the upper time limit. As
it was presented in Section 3, the accuracy can be improved by reducing the� f for the
interpolation step or by widening the frequency range, this is employing a higher f max.

3.4. Concluding remarks

In this section, the interconversion between the complex modulus E� ð� Þ and the
corresponding relaxation modulus EðtÞfor linear viscoelastic materials has been analyzed. In

Figure 33. Application example using experimental results. Conversion from frequency to time: comparison between the
experimental relaxation modulus EðtÞ of a flexible adhesive and the converted one from its respective experimental
complex modulus E� ð� Þ.
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contrast to other approximate methods, in this research the FFT algorithm proposed by Cooley
and Tukey has been applied on time-dependent part of the viscoelastic responseRðtÞ. Together
with the procedure itself, the influence of leakage, discretization and studied ranges so as the
experimental error and data dispersion have been studied via an analytical material model.
Also, an application case employing experimental data has been developed to prove the
methodology. As a conclusion, the presented methodology is able to estimate the complex
modulus E� ð� Þby means of relaxation tests, and vice versa.

4. Structural noise and vibration reduction in a cabin elevator prototype by
means of adhesive-bonded joints of panels

This section presents an experimental study for the structural noise and vibration reduction in
a cabin elevator by means of adhesive-bonded joints of panels. For that noise and vibration
measurements are carried out on two prototypes: one of them built with classical panel joining
technologies and the other one with adhesive joints. Through the experiments, the benefits
from the vibroacoustic point of view of joining panels by means of adhesive-bonded joints in
contrast to the traditional joining technologies are put into evidence.

4.1. Prototype description

Measurements are performed in order to prove adhesive joints benefits using the selected
material. Therefore, in an elevator cabin property of ORONA S. Coop., the interior sound
pressure levelLp was measured in conjunction with the vibration of a side panel €sðtÞ. Besides,
the vibrations of the floor of the cabin €uðtÞ, €vðtÞ, €wðtÞin x, y and z directions, respectively, were
also measured.

Hence, an elevator cabin prototype was built-up and two set of side panels were specifically
manufactured. Thus, the results of the system with metallic joints are compared to those
provided by the prototype system with adhesive joints. The experimental program was carried
out under operational conditions and the analyzed frequency range is 5 Hz� 1 kHz.

A scheme of both systems is shown in Figures 34 and 35, where Figure 34 represents the
position of the metallic joints, and Figure 35 shows the system with the continuous adhesive
single lap joints.

From Figure 34, it should be noted that two kinds of joints are employed in the original
system. On the one hand, a joint typology is used between the basis and the side panel. On
the other hand, another one is employed to join the metal sheets that constitute this side panel.
From Figure 35, it should be pointed out that the adhesive joints are continuous; whereas the
metallic ones are discrete joints. Besides, the joint thickness and overlapping length dimen-
sions areh1 ¼ 2 mm and l1 ¼ 50 mm for the basis joint and h2 ¼ 2 mm and l2 ¼ 20 mm for the
joint between the sheets.

Regarding the experiments, two kinds of responses were measured. On the one hand, the
interior sound pressure level Lp was registered at the center of the cabin at a height of 1.5 m
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and facing to the side panel under study. On the other hand, the out of plane acceleration €sðtÞ
of the side panel was measured. The floor accelerations€uðtÞ, €vðtÞ, €wðtÞin x, y and z directions,
respectively, were also registered.

Hence, Figure 36 shows a scheme in which the placement of the accelerometers and the
microphone is represented.

Figure 34. Original elevator scheme with metallic joints.
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Next, the responses of the elevator cabin with metallic joints are compared to those of the
system with adhesive joints where the ISR 70-03 adhesive is employed. First, the sound
pressure level Lp is analyzed together with the acceleration auto-spectrum of the side panel
€sðtÞ (see Figure 36). Then, the floor acceleration auto-spectra in x, y and z directions are
studied. The results are presented in third octave bands.

Figure 35. Prototype elevator scheme with adhesive joints.
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4.2. Structural noise

Next, the sound pressure level inside the cabin is presented together with the vibration auto-
spectrum of €s ðtÞ for the right-hand side of the panel, that of the left-hand side one being
analogous (seeFigure 36). Hence,Figure 37 shows the interior sound pressure level Lp for the
system with metallic joints and the corresponding one for the system with adhesive joints. The
results are presented using the A-weighting [74]. Figure 38 shows both acceleration spectra
of €s ðtÞ.

From Figures 37 and 38, it should be emphasized that the vibroacoustic response of an
elevator cabin can be improved by adhesively bonding the side panels. Thus, according to
Figure 37, the sound pressure levelLp has been reduced for even all frequency bands except for
the one of 100 Hz. Small increments can be found also for the lowest frequency bands. Hence,
the total sound pressure level has been determined, beingLp,metal ¼ 72:27 dB for the system
with metallic joints and Lp,adh ¼ 71:80 dB for the one with adhesive joints. However,
concerning the human ear, the A-weighting [74] is taken into account and the following values
are reached:Lp,metal ¼ 50:89 dBðAÞand Lp,adh ¼ 49:59 dBðAÞ, respectively.

Hence, it can be concluded that the interior sound pressure level has been reduced by means of
adhesive joints where a reduction of � Lp ¼ 1:30 dBðAÞ has been achieved. It should be

Figure 36. Representation of the elevator cabin measurement points.
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remarked that, for the present case only one of the three side panels has been adhesively
bonded.

From Figure 38, it should be noted that the system with metallic joints contains the highest
vibration levels in the low-frequency range, especially for frequencies smaller than 100 Hz. It is
important to remark that these vibration levels are an order higher than those for higher
frequencies.

In order to evaluate the effectiveness of the provided solution, the RMS acceleration€sRMS has
been computed, the result is shown in Table 4. The study is carried out taking into account two
frequency groups: the first one made up by the frequency bands below 100 Hz and the second
one by the frequency bands between 100 Hz and 1 kHz.

From Table 4, it should be pointed out that the level of vibration of the side panel has been
reduced in 20 and 30% for the low and high frequency bands, respectively.

In short, it can be concluded that adhesive joints are able to reduce the interior structural noise
of an elevator cabin, by means of introducing effective modal damping for the side panels.

Figure 37. Structural noise response: sound pressure levels.
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4.3. Vibration floor response

Next, the vibration spectra of the cabin floor are presented. The aim of this analysis is to verify
that the vibrational ride comfort has not been decreased by the use of adhesive joints.Fig-
ures 39–41 illustrate the acceleration auto-spectra for €uðtÞ, €vðtÞand €wðtÞ, respectively, for the
systems with metallic and adhesive joints.

From Figures 39–41 it should be pointed out that, accordingly to the panel response, the
highest vibration levels are found for frequencies below 100 Hz. Concerning Figures 40 and 41,
it should be noted that the smallest vibration level is encountered for the medium-frequency

Figure 38. Structural noise response: auto-spectrum of€sðtÞ.

€sRMS ðm=s2Þ2 €uRMS ðm=s2Þ2 €vRMS ðm=s2Þ2 €wRMS ðm=s2Þ2

f < 100 Hz Metallic 1.82 1.06 0.83 2.03

Adhesive 1.48 0.86 0.76 1.72

100 Hz < f < 1 kHz Metallic 3.64 3.23 3.02 3.50

Adhesive 2.53 2.00 1.89 2.44

Table 4. Vibrational results.
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range. It is worth mentioning that the acceleration level on the z direction, seeFigure 41, is one
order of magnitude higher than those for x and y directions. The obtained RMS acceleration
values for the systems with metallic and adhesive joints are shown in Table 4. The results are
provided in two frequency bands as well.

From Table 4, it should be pointed out that in spite of just one side panel has been joined with
the adhesive material its effect over the vibrational response of the floor is significant. Thus, for
the horizontal vibration a reduction up to 40% is obtained while the vertical vibration level has
been reduced to 30%.

4.4. Conclusions

In this section, a study for the noise and vibration reduction in an elevator cabin prototype by
means of panel adhesive-bonded joints has been presented. The interior sound pressure level
of the considered elevator cabin prototype has been reduced in� Lp ¼ 1:30 dBðAÞ. The vibra-
tion level of the side panel has been significantly reduced in the low and high frequency bands.
Also, the vibration level of the elevator cabin floor has been reduced also.

As conclusion, taking into account the presented results obtained with adhesive joints in only
side panels, ride comfort in an elevator cabin can be notably enhanced by substituting tradi-
tional joining technologies by adhesive-bonded joints.

Figure 39. Cabin floor response acceleration auto-spectra in thex direction.
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Figure 40. Cabin floor response acceleration auto-spectra in they direction.

Figure 41. Cabin floor response acceleration auto-spectra in thez direction.
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5. Chapter conclusions

This chapter has been focused on the dynamic characterization of adhesive materials for
vibration control proposes. First, the experimental characterization and modelization of the
relaxation and complex moduli of the flexible adhesive ISR 70-03 by means of a dynamic
mechanical thermal analysis technique (DMTA) has been presented. Then, the interconversion
path between the relaxation modulus EðtÞand the corresponding complex modulus E� ð� Þfor
linear viscoelastic solid materials has been explored. In contrast to other approximate methods,
in this work the fast Fourier transform (FFT) algorithm has been directly applied on relaxation
functions. Finally, an experimental study for the structural noise and vibration reduction in a
cabin elevator by means of adhesive-bonded joints of panels has been presented to probe the
benefits of adhesive joints on the vibroacoustic behavior of equipment subjected to dynamics
loads.
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