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Hand Posture Segmentation, Recognition and 
Application for Human-Robot Interaction 

Xiaoming Yin and Ming Xie 
Singapore Institute of Manufacturing Technology, Nanyang Technological University 

Singapore 

1. Introduction 

Human hand gestures provide the most important mean for non-verbal interaction among 
people. They range from simple manipulative gestures that are used to point at and move 
objects around to more complex communicative ones that express our feelings and allow us 
to communicate with others. Migrating the natural means that human employ to 
communicate with each other such as gestures, into Human-Computer Interaction (HCI) has 
been a long-term attempt. Numerous approaches have been applied to interpret hand 
gestures for HCI. In those approaches, two main categories of hand gesture models are 
used. The first group of models is based on appearance of the hand in the visual images. 
Gestures are modeled by relating the appearance of any gesture to that of the set of 
predefined template gestures [Pavlovic et al., 1996] [Ahmad et al., 1997]. Appearance-based 
approaches are simple and easy to implement in real time, but their application is limited to 
the recognition of a finite amount of hand gestures and they are mostly applicable to the 
communicative gestures. 
The second group uses 3D hand models. 3D hand models offer a way to model hand 
gestures more elaborately. They are well suitable for modeling of both manipulative and 
communicative gestures. Several techniques have been developed in order to capture 3D 
hand gestures. Among those, glove-based devices are used to directly measure joint angles 
and spatial positions of the hand. Unfortunately, such devices remain insufficiently precise, 
too expensive and cumbersome, preventing the user from executing natural movements and 
interacting with the computer intuitively and efficiently. The awkwardness in using gloves 
and other devices can be overcome by using vision-based interaction techniques. These 
approaches suggest using a set of video cameras and computer vision techniques to 
reconstruct hand gestures [Lee and Kunii, 1995] [Lathuiliere and Herve, 2000]. Vision-based 
approaches are gaining more interest with the advantages of being intuitive, device-
independent and non-contact. 
Gesture-based interaction was firstly proposed by M. W. Krueger as a new form of human-
computer interaction in the middle of the seventies [Krueger, 1991], and there has been a 
growing interest in it recently. As a special case of human-computer interaction, human-
robot interaction is imposed by several constraints [Triesch and Malsburg, 1998]: the 
background is complex and dynamic; the lighting condition is variable; the shape of the 
human hand is deformable; the implementation is required to be executed in real time and 

Source: Human-Robot Interaction, Book edited by Nilanjan Sarkar,
ISBN 978-3-902613-13-4, pp.522, September 2007, Itech Education and Publishing, Vienna, Austria
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the system is expected to be user and device independent. Numerous techniques on gesture-
based interaction have been proposed, but hardly any published work fulfills all the 
requirements stated above. 
R. Kjeldsen and J. Render [Kjeldsen and Render, 1996b] presented a realtime gesture system 
which is used in place of the mouse to move and resize windows. In this system, the hand is 
segmented from the background using skin color and the hand's pose is classified using a 
neural net. A drawback of the system is that its hand tracking has to be specifically adapted 
for each user. The Perseus system developed by R. E. Kahn [Kahn et al., 1996] was used to 
recognize the pointing gesture. In the system, a variety of features, such as intensity, edge, 
motion, disparity and color have been used for gesture recognition. This system is 
implemented only in a restricted indoor environment. In the gesture-based human-robot 
interaction system proposed by J. Triesch and C. Ven Der Malsburg [Triesch and Malsburg, 
1998], the combination of motion, color and stereo cues was used to track and locate the 
human hand, and the hand posture recognition was based on elastic graph matching. This 
system is person independent and can work in the presence of complex backgrounds in real 
time. But it is prone to noise and sensitive to the change of the illumination because its skin 
color detection is based on a defined prototypical skin color point in the HS plane. 

Figure 1. Process of hand gesture recognition 

Usually the classical image processing pipeline as shown in Fig. 1 is used for hand gesture 
recognition. During the step of hand image acquisition, the pictures taken by the camera, in 
which a hand is to be seen, are digitized and prepared for further processing. It is usually 
automatically accomplished by a frame grabber. At the step of hand image segmentation, 
those areas in the picture, which represent the hand, are separated from the background. 
The aim of the step of hand feature extraction is to derive the smallest possible amount of 
features out of the segmented hand region, in order to differentiate the different given 
gestures. The last step is hand gesture classification, whereby the type of gesture shown in 
the picture are defined on the basis of extracted characteristics. 
In this chapter, we present a novel hand posture recognition system. According to the 
process of hand gesture recognition, we first present a new color segmentation algorithm 
developed based on RCE neural network for hand image segmentation. Then we extract the 
topological features of the hand from the binary image of the segmented hand region. Based 
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on these features, we proposed a new method for accurate recognition of 2D hand postures. 
We also propose to use the stereo vision and 3D reconstruction techniques to recover 3D 
hand postures, and give a new approach to estimate the epipolar geometry between two 
uncalibrated hand images. Finally, we demonstrate the application of our hand gesture 
recognition system to human-robot interaction. 

2. Hand Image Segmentation 

Hand image segmentation separates the hand image from the background. It is the most 
important step in every hand gesture recognition system. All subsequent steps heavily rely 
on the quality of the segmentation. Two types of cues, color cues and motion cues, are often 
applied for hand image segmentation [Pavlovic et al., 1997]. Motion cues are used in 
conjunction with certain assumptions [Freeman and Weissman, 1995] [Maggioni, 1995]. For 
example, the gesturer is stationary with respect to the background that is also stationary. 
Such assumption restraints its application on occasion when the background is not 
stationary, which is the usual case for service robots. The characteristic color of human skin 
makes color a stable basis for skin segmentation [Quek et al., 1995] [Kjeldsen and Render, 
1996a]. In this section, a novel color segmentation approach based on RCE neural network is 
presented for hand segmentation. 

2.1 Skin Color Modeling 

Color segmentation techniques rely on not only the segmentation algorithms, but also the 
color spaces used. RGB, HSI, and L*a*b* are the most commonly used color spaces in 
computer vision, and have all been applied in numerous proposed color segmentation 
techniques. After exploring the algorithm in these three color spaces respectively, we found 
L*a*b* color space is the most suitable for our hand segmentation algorithm. 

Figure 2. Skin color distribution in L*a*b* color space 

L*a*b* color space is the uniform color space defined by the CIE (Commission International 
de 1'Eclairage) in 1979. It maps equal Euclidean distance in the color space to equal 
perceived color difference. The transformation from RGB to L*a*b* color space is defined as 
follows [Kasson and Plouffe, 1992]: 

a*b*
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 (1) 

 (2) 

 (3) 

where

 (4) 

X, Y and Z are tristimulus values of the specimen, and calculated from the values of R, G 
and B as follows: 

 (5) 

 (6) 

 (7) 

Xn,Yn and Zn are tristimulus values of a perfect reflecting diffuser, which are selected to be 
237.448, 244.073 and 283.478 respectively. 
A common belief is that different people have different skin colors, but some studies show 
that such a difference lies largely in intensity than color itself [Yang et al., 1998] [Jones and 
Rehg, 1999]. We quantitatively investigated the skin color distribution of different human 
hands under different lighting conditions. It is found that skin colors cluster in a small 
region in the L*a*b* color space and have a translation along the lightness axis with the 
change of lighting conditions, as shown in Fig. 2. 
Skin colors cluster in a specific small region in the color space, but the shape of the skin 
color distribution region is complicated and irregular. Common color segmentation 
techniques based on histogram are not effective enough to segment hand images from 
complex and dynamic backgrounds due to the difficulty of threshold selection. In our work, 
a new color segmentation algorithm based on RCE neural network has been developed. 
RCE neural network was designed as a general-purpose, adaptive pattern classification 
engine [Reilly et al., 1982]. It consists of three layers of neuron cells, with a full set of 
connections between the first and second layers, and a partial set of connections between the 
second and third layers. Fig. 3(a) shows the network structure used for hand segmentation. 
Three cells on the input layer are designed to represent the L*a*b* color values of a pixel in 
the image. The middle layer cells are called prototype cells, and each cell contains color 
information of an example of the skin color class which occurred in the training data. The 
cell on the output layer corresponds to the skin color class. 
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 a) b) 
Figure 3. (a) Architecture of RCE neural network for hand segmentation, (b) Distribution 
region of skin colors in L*a*b* color space 

2.2 Hand Segmentation 

During training procedure, the RCE network allocates the positions of prototype cells and 
modifies the sizes of their corresponding spherical influence fields, so as to cover arbitrarily 
complex distribution region of skin colors in the color space. Fig 3(b) shows the distribution 
region of skin colors constructed by skin color prototype cells and their spherical influence 
fields in the L*a*b* color space. During running, the RCE network responds to input color 
signals in the fast response mode. If an input color signal falls into the distribution region of 
skin colors, this input color signal is classified into the skin color class, and the pixel 
represented by this color signal is identified as skin texture in the image. 
During running, the RCE network identifies all the skin-tone pixels in the image. There are 
occasions that other skin-tone objects such as faces are segmented, or some non-skin pixels 
are falsely detected due to the effects of lighting conditions. We assume the hand is the 
largest skin-tone object in the image, and use the technique of grouping by connectivity of 
primitive pixels to further identify the region of the hand. With abundant skin color 
prototype cells together with their different spherical influence fields, the RCE network is 
capable of accurately characterizing the distribution region of skin colors in the color space 
and efficiently segment various hand images under variable lighting conditions from 
complex backgrounds after having been trained properly. Fig. 4 shows some segmentation 
results, in that the hand regions are separated perfectly from the complex backgrounds. The 
RCE neural network based hand image segmentation algorithm is described in more detail 
in our paper [Yin et al., 2001]. 

3. 2D Hand Posture Recognition 

Hand segmentation is followed by feature extraction. Contour is the commonly used feature 
for accurate recognition of hand postures, and can be extracted easily from the silhouette of the 
segmented hand region. Segen and Kumar [Segen and Kumar, 1998] extracted the points along 
the boundary where the curvature reaches a local extremum as 'local features', and used those 
features that are labeled "peaks" or 'valleys' to classify hand postures. However, if the 
boundary is not smooth and continuous, it is difficult to identify peaks and valleys correctly. 
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In our study, we found it is difficult to extract the smooth and continuous contour of the 
hand because the segmented hand region is irregular, especially when the RCE neural 
network is not trained sufficiently. The topological features of the hand, such as the number 
and positions of fingers, are other distinctive features of hand postures. In this section, we 
present a new method for accurate recognition of hand postures, which extract topological 
features of the hand from the silhouette of the segmented hand region, and recognize hand 
postures on the basis of the analysis of these features. 

3.1 Feature Extraction 

In order to find the number and positions of fingers, the edge points of fingers are the most 
useful features. We extract these points using the following proposed algorithm: 
1. Calculate the mass center of the hand from the binary image of the segmented hand 

region, in that pixel value 0 represents the background and 1 represents the hand 
image;

2. Draw the search circle with the radius r at the position of the center of mass; 
3. Find all the points E = {Pi , i = 0,1,2,..., n} that have the transition either from pixel value 

0 to 1, or 1 to 0 along the circle; 
4. Delete Pi and Pi-1, if the distance between two conjoint points  threshold 

;
5. Increment the radius r and iterate Step 2 to 4, until r >1/2 (the width of the hand 

region).

Figure 4. Hand segmentation results 
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The purpose of Step 4 is to remove the falsely detected edge points resulted from imperfect 
segmentation. This step can removal most of falsely detected edge points. However, there 
are still occasions that one finger is divided into several branches because there are big holes 
in the image, or several fingers are merged into one branch because these fingers are too 
close. So we define the branch as follows: 
Definition 3.1 The branch is the segment between Pi-1 (0,1) and Pi (l,0). Where Pi-1 (0,1) and Pi(l,0) 
are two conjoint feature points detected on the search circle. Pi-1 (0,1) has the transition from pixel 
value 0 to 1, and Pi (l,0) has the transition from 1 to 0.

Figure 5. (a) segmented hand image, (b) Feature points extracted from the binary image of 
the segmented hand region, (c) Plot of branch number of the hand posture vs the radius of 
the search circle, (d) Plot of branch phase of the hand posture on the selected search circle 

A branch indicates the possible presence of a finger. Then the extracted feature points 
accurately characterize the edge points of branches of the hand, including fingers and arm. 
Fig. 5 (a) shows a segmented hand image. Fig. 5(b) shows the part of Fig. 5(a) with the scale 
of 200%, in that the green circles represent the search circles and the red points represent the 
extracted feature points. 
For each branch, two edge points can be found on the search circle, so half of the feature 
points found on the search circle just indicate the branch number of the hand posture. But 
the feature points on the different search circles are varied, how to determine the correct 
branch number is critical. In our method, we define the following function to determine the 
possibility pi of each branch number: 
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 (8) 

Where Ci is the number of the search circles on that there are i branches; N is the total 
number of the search circles; ai is the weight coefficient. We have a1 < a2 < ... < ai < ... < a6,
because the number of the branches may decrease when the search circle is beyond the 
thumb or little finger. Then the branch number with the biggest possibility is selected as the 
most possible branch number BN.
In practice, the branch number BN can also be determined as follows: 
1. Find all the branch numbers K (a set) whose occurrences are bigger than a threshold 

n.
2. Choose the biggest one as the branch number BN among the numbers in K,
The biggest number in K, but not the number with the most occurrence, is selected as BN, 
because the biggest number may not have the most occurrence if there are some search 
circles beyond the fingers. But when its occurrence is bigger than the threshold, it should be 
the most possible branch number. For example, Fig. 5(c) shows the relationship between the 
branch number and the radius of the search circle. In this case, branch number 5 occurs 7 
times, and 0 occurs 15 times. However, we select 5 but not 0 as BN. This method is easier to 
implement, and is very effective and reliable with the threshold n selected to be 6 in our 
implementation.
After the branch number BN is determined, the branch phase can be obtained easily. Here 
we define the branch phase as follows: 
Definition 3.2  The branch phase is the positions of the detected branches on the search circle, 
described by angle.
In our method, we selected the middle one of the search circles, on which there are BN 
branches, to obtain the branch phase. Fig. 5 (d) shows the radius of the selected search circle, 
and the branch phase on this circle. 
Some morphological operations, such as dilation and erosion, are helpful for improvement 
of the binary image of the segmented hand region, but the branch number and phase 
obtained from the improved image are the same as those obtained from the original one. It 
indicates that our feature extraction algorithm has good robustness to noise, and can extract 
the correct branch number and phase reliably from the segmented hand image even though 
the segmentation is not very good. 

3.2 Posture Recognition 

After the branch phase is determined, the width of each branch BWi can be obtained easily 
from the branch phase. In most cases, the widest branch should be the arm. We use it as the 
base branch BQ. Then the distance from other branch B^ to BQ can be calculated, that is just 
the distance between the finger and the arm BD^. Using these aforementioned parameters: 
the branch number BN, the width of the branch BWi, the distance between the finger and the 
arm BD^, the hand posture can be recognized accurately. 
Although these parameters are all very simple and easy to estimate in real time, they are 
distinctive enough to differentiate those hand postures defined explicitly. In addition, the 
recognition algorithm also possesses the properties of rotational invariance and user 
independence because the topological features of human hands are quite similar and stable. 
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The postures shown in Fig. 6 all have distinctive features and are easy to recognize. We have 
used them for gesture-based robot programming and human-robot interaction of a real 
humanoid robot. The classification criterion of these postures is shown in Fig. 7. Preliminary 
experiments were conducted with users of different age, gender and skin color. The robot 
successfully recognized postures with the accuracy of more than 95% after the RCE network 
was trained properly. 
The recognition accuracy may decrease in the case that the user or lighting condition 
changes too much, because the previous training of the RCE network becomes insufficient. 
But this problem can be solved easily by selecting parts of undetected hand sections as the 
training data using the mouse, and incrementally performing the online training. There is no 
need to re-present the entire training set to the network. In addition, the proposed posture 
recognition algorithm is only invariant to the hand rotation on the palm plane. If the hand is 
rotated more than 10 degree on the plane perpendicular to the palm, the posture recognition 
may be failed. The algorithms for topological feature extraction and hand posture 
recognition are described in more detail in our paper [Yin and Xie, 2007]. 

4. 3D Hand Posture Reconstruction 

All of the 3D hand models employed so far use 3D kinematic models of the hand. Two sets 
of parameters are used in such models: angular (joint angles) and linear (phalange lengths 
and palm dimensions). However, The estimation of these kinematic parameters is a complex 
and cumbersome task because the human hand is an articulated structure with more than 27 
degree of freedom. In this section, we propose to infer 3D information of the hand from the 
images taken from different viewpoints and reconstruct hand gestures using 3D 
reconstruction techniques. 

4.1 Find robust matches 

There are two approaches that can be used for the reconstruction of 3D vision models of 
hand postures. The first is to use calibrated stereo cameras, and the second is to use 
uncalibrated cameras. Camera calibration requires expensive calibration apparatus and 
elaborate procedures, and is only valid for the space near the position of the calibration 
object. Furthermore, the variation of focal lengths or relative positions of cameras will cause 
the previous calibration invalid. These drawbacks make camera calibration not feasible for 
gesture-based interaction, especially for human-robot interaction. Because service robots 
usually operate in dynamic and unstructured environments and their cameras need to be 
adjusted to track human hands frequently. 
With uncalibrated stereo, there is an equivalence to the epipolar geometry which is 
presented by the fundamental matrix [Luong and Faugeras, 1996]. We have proposed a new 
method to estimate the fundamental matrix from uncalibrated stereo hand images. The 
proposed method consists of the following major steps: extracting points of interest; 
matching a set of at least 8 points; recovering the fundamental matrix. 
In most approaches reported in the literature, high curvature points are extracted as points 
of interest. In our method, we use the edge points of the extended fingers, which are similar 
to those described in Section 3, as points of interest, and find robust matches from these 
points.
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Matching different images of a single scene remains one of the bottlenecks in computer 
vision. A large amount of work has been carried out during the last decades, but the results 
are not satisfactory. The numerous algorithms for image matching that have been proposed 
can roughly be classified into two categories: correlation-based matching and feature-based 
matching. Correlation-based methods are not robust for hand image matching due to the 
ambiguity caused by the similar color of the hand. The topological features of the hand, such 
as the number and positions of the extended fingers that are described in the above section, 
are more distinct and stable in stereo hand images, only if the distance and angles between 
two cameras are not too big. In our method, we propose to take advantage of the topological 
features of the hand to establish robust correspondences between two perspective hand 
images. 
We first detect fingertips by searching the furthest edge points from the mass center of the 
hand in the range between Bi + BWi and Bi — BWi. Here Bi is the branch phase and BWi is the 
branch width. The fingertips of two perspective hand images are found using this method , 
respectively. Simultaneously, their correspondences are established by the order of the 

finger. For example, the fingertip of in the right image corresponds to the fingertip of 
in the left image. 
Then, we define the center of the palm as the point whose distance to the closest region 
boundary is maximum, and use the morphological erosion operation to find it. The 
procedure is as follows: 
1. Apply dilation operation once to the segmented hand region. 
2. Apply erosion operations until the area of the region becomes small enough. As a 

result, a small region at the center of the palm is obtained. 
3. Calculate the center of mass of the resulting region as the center of the palm. 
The purpose of the first step is to remove little holes in the imperfectly segmented hand 
image. These little holes can affect the result of erosion greatly. Fig. 8 shows the procedure 
to find the center of the palm by erosion operations. 
The palm centers of two hand images are found by this method, respectively. In most case, 
they should correspond to each other because the shapes of the hand in two perspective 
images are almost the same under the assumption that the distance and angle between two 
cameras are small. However, because the corresponding centers of the palm are very critical 
for finding matches in our approach, we further use the following procedure to evaluate the 
accuracy of correspondence and determine the corresponding palm centers more robustly: 
1. Find the fingertips and the palm centers for the left image and right 

image, respectively. 

2. Calculate . Here, is the distance between the palm 

center and a fingertip in the left image, and is that in the right image. (BN — 1) 

represents the number of the extended fingers. 
3. Take and as the corresponding palm centers if d < .  is the threshold and is 

set to 2 pixels in our implementation. 

The evaluation procedure above is used because we can assume is equal to 

according to projective invariance. If d > , we take the point, whose distance to each 
fingertip in the right image is the same as the distance between the palm center and each 
fingertip in the left image, as new corresponding to . Such a point is determined in 
theory by calculating the intersection of all the circles that are drawn in the right hand image 
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with the radius at the positions of . Referring to the coordinates of this point as x

and y, they satisfy the following equation: 

 (9) 

where, denote the coordinates of a fingertip in the right image. Such an 
equation is difficult to be solved by mathematical methods. In practice, we can determine an 
intersection within the right hand region for every two circles, then calculate the mass center 
of all the intersections as new .

Figure 6. Hand postures used for robot programming and human-robot interaction 
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Figure 7. Classsification criterion of hand postures 

Figure 8. Procedure for finding the center of the palm by the morphological erosion 
operation

After the corresponding palm centers are determined, matches can be found by comparing 
the edge points on the ith(i = 1, ...,m) search circle of the left image with those of the right 
image. The criterion is as follows: 

1. Calculate and . Here, 

 is the jth edge point on the ith search circle in the left image, and is that in the 

right image. is the distance between the edge points and

2. Calculate . If d < threshold ,  and are taken as a pair of 

matches.  is set to 2 pixels in our implementation. 
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The basic idea underlying this matching algorithm is to extract the edge points , whose 
distances to its previous and following points as well as to the center of the palm are almost 
identical in two images, as matches. The algorithm works very well under the situation that 
the distance and angle between two cameras are small. In Fig. 9, (a) shows the edge points 
extracted from the segmented hand regions of two perspective images and (b) shows the 
matches extracted from these edge points. The green circles represent the search circles and 
the red points are the extracted edge points. 

(a)

(b)
Figure 9. (a) Edge points extractedfrom stereo hand images, (b) Matches extracted from edge 
points

4.2 Estimate the Fundamental Matrix 

Using the set of matched points established in the previous step, the epipolar geometry 
between two uncali-brated hand images can be recovered. It contains all geometric 
information that is necessary for establishing correspondences between two perspective 
images, from which 3D structure of an object can be inferred. 
The epipolar geometry is the basic constraint which arises from the existence of two 
viewpoints [Faugeras, 1993]. Considering the case of two cameras, we have the following 
fundamental equation: 

 (10) 
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where and are the homogeneous image coordinates of 

a 3D point in the left and right images, respectively.  is known as the fundamental matrix. 

Geometrically,  defines the epipolar line of a left image point  in the right image. 
Equation (10) says no more than that the correspondence in the right image of point m' lies 
on the corresponding epipolar line. Transposing equation (10) yields the symmetric relation 
from the right image to the left image. 

 is of rank 2. Besides, it is defined up to a scalar factor. Therefore, a fundamental matrix has 
only seven degrees of freedom. That is, there are only 7 independent parameters among the 9 
elements of the fundamental matrix. Various techniques have been reported in the literature 
for estimation of the fundamental matrix (see [Zhang, 1996] for a review). The classical method 
for computing the fundamental matrix from a set of 8 or more point matches is the 8-point 
algorithm introduced by Longuet-Higgins in [Longuet-Higgins, 1981]. This method is the 
linear criterion and has the advantage of simplicity of implementation. However, it is quite 
sensitive to noise. In order to recover the epipolar geometry as accurately as possible, we use a 
combination of techniques such as input data normalization, rank-2 constraint, linear criterion, 
nonlinear criterion as well as robust estimator to yield an optimal estimation of the 
fundamental matrix. The algorithm is as follows: 
1. Normalize pixel coordinates of matches. 
2. Initialize the weights  = 1 and  = 1 for all matches. 
3. For a number of iterations: 

3.1. Weight the ith linear equation by multiplying it by .

3.2. Estimate the fundamental matrix  using the linear least-squares algorithm. 

3.3. Impose the rank-2 constraint to the estimated  by the singular value 
decomposition. 

3.4. Calculate the residuals of matches .
3.5. Calculate the nonlinear method weight: 

 (11) 

here  ig tne corresponding epipolar line of point 

and the corresponding epipolar line of point .

3.6. Calculate the distances between matching points and the corresponding epipolar 

lines .
3.7. Calculate the robust method weight: 

 (12) 

By combining several simple methods together, the proposed approach becomes more 
effective and robust, but still easily to be implemented. 
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Figure 10. The epipolar geometry computed from the calibration matrices 

a)

b)
Figure 11. (a) Segmentation results of one pair of calibrated hand images, (b) Extracted 
matches and the estimated epipolar geometry 

Our experimental results demonstrate the performance of the proposed algorithm. We first 
use this algorithm to estimate the fundamental matrix between two calibrated cameras, and 
compare the obtained epipolar geometry with that computed from the calibration matrices 
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of the cameras. The epipolar geometry computed from the calibration matrices is shown in 
Fig. 10. It serves as a ground truth. Fig. 11 shows a pair of hand images taken by the 
calibrated cameras with the size of 384 x 288. In that, (a) shows the segmentation results of 
the hand images using the method presented in Section 2, and (b) shows the extracted 
corresponding points using the approach presented in Section 3 as well as the epipolar 
geometry estimated from these matches using the algorithm described in this section. 
Sometimes, the matches extracted from the hand images may lie on a plane. This will cause 
degeneracy in the data, and affect the accuracy of the estimation of the fundamental matrix. 
We can take more hand images with the hand at different positions and use all the matches 
extracted from these images to get a more accurate estimation of the fundamental matrix. The 
epipolar geometry estimated using all the matches obtained from several hand images is 
shown in Fig. 12. The red solid lines represent the epipolar lines estimated from the extracted 
matches, and the green dash lines represent those computed from the calibration matrices. It 
can be observed the estimated epipolar geometry is very closed to the calibrated one. 
Fig. 13 shows a pair of hand images taken by two uncalibrated cameras with the size of 384 
x 288. In that, (a) shows the segmentation results of the hand images and (b) shows the 
extracted corresponding points as well as the epipolar geometry estimated from these 
matches. In order to avoid the problem of degeneracy, and obtain more accurate and robust 
estimation of the fundamental matrix, we take more than one pairs of hand images with the 
hand at different positions, and use all the matches found in these images to estimate the 
fundamental matrix. Fig. 14 shows another pair of images taken by the same cameras, where 
the epipolar geometry is estimated from all the matches obtained from several hand images. 
It can be observed that the estimated epipolar lines match the corresponding points well 
even though there is no point in this figure used for the estimation of the fundamental 
matrix. So at the beginning of hand gesture recognition, we can take several hand images 
with the hand at different positions, and use the matches extracted from these images to 
recovery the epipolar geometry of the uncalibrated cameras. Then the recovered epipolar 
geometry can be applied to match other hand images and reconstruct hand postures. If the 
parameters of the cameras change, the new fundamental matrix is easy to be estimated by 
taking some hand images again. 

Figure 12. Comparison of the estimated epipolar geometry with the calibrated one 

In [Zhang et al., 1995], Zhang proposed an approach to match images by exploiting the 
epipolar constraint. They extracted high curvature points as points of interest, and match 
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them using a classical correlation technique followed by a new fuzzy relaxation procedure. 
Then the fundamental matrix is estimated by using a robust method: the Least Median of 
Squares (Lmeds). Zhang provides a demo program to compute the epipolar geometry 
between two perspective images of a single scene using this method at his home page: 
http://www.inria.fr/robotvis /personnel/zzhang/zzhang-eng.html. We submitted the 
images in Figs. 13 and 14 to this program and obtain the results as shown in Figs. 15 and 16, 
where (a) shows the extracted correspondences which are marked by white crosses, and (b) 
shows the estimated epipolar geometry. It can be seen the epipolar lines are very far from 
the corresponding points on the hand. 
The approach presented in this section can also be used for other practical applications. For 
example, at some occasions when the calibration apparatus is not available and the feature 
points of the scene, such as corners, are difficult to be extracted from the images, we can take 
advantage of our hands, and use the method presented above to derive the unknown 
epipolar geometry for the uncalibrated cameras. This method is described in more detail in 
our paper [Yin and Xie, 2003]. 

a)

b)
Figure 13.  (a) Segmentation results of one pair of uncalibrated hand images, (b) Extracted 
matches and the estimated epipolar geometry 
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Figure 14. Application of the estimated epipolar geometry to one pair of uncalibrated hand 
images

a)

b)
Figure 15. (a) Extracted matches using the method proposed by Zhang from uncalibrated 
hand images shown in Fig. 13, (b) Estimated epipolar geometry from these matches 
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4.3 Reconstruct hand postures 

After the epipolar geometry between two uncalibrated cameras are recovered, it can be 
applied to match other hand images and reconstruct 3D hand postures. Although stereo 
images taken by uncalibrated cameras allow reconstruction of 3D structure only up to a 
projective transformation, it is sufficient for hand gesture recognition, where the shape of 
the hand, not the scale, is important. 
The epipolar geometry is the basic constraint which arises from the existence of two 
viewpoints. For a given point in one image, its corresponding point in the other image must 
lie on its epipolar line. This is known as the epipolar constraint. It establishes a mapping 
between points in the left image and lines in the right image and vice versa. So, if we 

determine the epipolar line in the right image for a point in the left image, we can 

restrict the search for the match of along . The search for correspondences is thus 

reduced to a ID problem. 
After the set of matching candidates is obtained, the correct match of in the right 
image, denoted by , is further determined using correlation-based method. In correlation-
based methods, the elements to match are image windows of fixed size, and the similarity 
criterion is a measure of correlation between windows in two images. The corresponding 
element is given by the window that maximizes the similarity criterion within a search region. 
For intensity images, the following cross-correlation is usually used [Faugeras, 1993]: 

 (13) 
with

 (14) 

 (15) 

 (16) 

where, I1 and Ir are the intensity functions of the left and right images. and 

are the mean intensity and standard deviation of the left image at the point (ul, vl)

in the window (2n + 1) x (2m + 1). and are similar to and

, respectively. The correlation C ranges from -1 for two correlation windows 

which are not similar at all, to 1 for two correlation windows which are identical. However, 
this cross-correlation method is unsuitable for color images, because in color images, a pixel 
is represented by a combination of three primary color components (R (red), G (green), B
(blue)). One combination of (R, G, B) corresponds to only one physical color, and a same 
intensity value may correspond to a wide range of color combinations. In our method, we 
use the following color distance based similarity function to establish correspondences 
between two color hand images [Xie, 1997]. 
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(17)

with

 (18) 

 (19) 

 (20) 

 (21) 

 (22) 

where, Rl, Gl and Bl are the color values of the left image corresponding to red, green and 
blue color components, respectively. Rr, Gr and Br are those of the right image. 

a)

b)
Figure 16. (a) Extracted matches using the method proposed by Zhang from uncalibrated 
hand images shown in Fig. 14, (b) Estimated epipolar geometry from these matches 
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The similarity function defined in Equation (17) varies in the range [0, 1]. Then stereo 

matching can be summarized as follows: Given a pixel in the left image, find a 

pixel in the right image which maximizes the similarity function in Equation (17): 

 (23) 

where, W denotes the searching area in the right image. In our implementation, the 
searching area is limited in the segmented hand region and on the epipolar line. 
The computation of C is time consuming because each pixel involves three multiplications.  
In practice, a good approximation is to use the following similarity function. 

  (24) 

where

  (25) 

 (26) 

 (27) 

The similarity function defined in Equation (24) also takes values in the range [0, 1]. 
As shown in Figure 17, for the points marked by red crosses in the left image, their matching 
candidates in the right image found by the technique described above are marked by red 
points. Figure 18 shows all detected corresponding points of the hand, and Figure 19 shows 
4 views of the reconstructed 3D hand posture. 

Figure 17. Find corresponding points in the right image which are marked by red points, for 
points in the left image which are marked by red crosses, using the color correlation and 
epipolar geometry 
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Figure 18. Detected corresponding points of the hand 

 (a) Right view (b) Front view (c) Left view (d) Back view 
Figure 19. Different views of the reconstructed 3D hand posture 

5. Gesture-Based Human-Robot Interaction 

Our research on hand gesture recognition is a part of the project of Hybrid Service Robot 
System, in which we will integrate various technologies, such as real robot control, virtual 
robot simulation, human-robot interaction etc., to build a multi-modal and intelligent 
human-robot interface. Fig. 20(a) shows the human-alike service robot HARO-1 at our lab. It 
was designed and developed by ourselves, and mainly consists of an active stereo vision 
head on modular neck, two modular arms with active links, an omnidirectional mobile base, 
dextrous hands under development and the computer system. Each modular arm has 3 
serially connected active links with 6 axes, as shown in 20 (b). 

5.1 Gesture-Based Robot Programming 

In order to carry out a useful task, the robot has to be programmed. Robot programming is 
the act of specifying actions or goals for the robot to perform or achieve. The usual methods 
of robot programming are based on the keyboard, mouse and teach-pendant [Sing and 
Ikeuchi, 1997]. However, service robots necessitate new programming techniques because 
they operate in everyday environment, and have to interact with people that are not 
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necessarily skilled in communicating with robots. Gesture-based programming offers a way 
to enable untrained users to instruct service robots easily and efficiently. 

 a) b) 

Figure 20. (a) Humanoid service robot HARO-1; (b) Modular robot arm with 6 axes 

Based on our approach of 2D hand posture recognition, we have proposed a posture 
programming method for our service robot. In this method, we define task postures and 
corresponding motion postures respectively, and associate them during the training 
procedure, so that the robot will perform all the motions associated with a task if that task 
posture is presented to the robot by the user. Then, the user can interact with the robot and 
guide the behavior of the robot by using various task postures easily and efficiently. 
The postures shown in Fig. 6 is used for both robot programming and human-robot 
interaction. In the programming mode, Postures a to f represent the six axes of the robot arm 
respectively, Posture g means 'turn clockwise', and Posture h means 'turn anti-clockwise'. 
We use them as motion gestures to control the movements of the six axes of either robot 
arm. Using these postures, we can guide the robot arm to do any motion, and record any 
motion sequence as a task. 
In the interaction mode, these postures are redefined as task postures and associated with 
corresponding tasks. For example, some motion sequence is defined as Task 1, and is 
associated with Posture a. When Posture a is presented to the robot in the interaction stage, 
the robot will move its arm according to the predefined motion sequence. A task posture is 
easy to be associated with different motion sequences in different applications by 
programming using corresponding motion postures. 
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5.2 Gesture-Based Interaction System 

Fig. 21 shows the Graphic User Interface (GUI) of the gesture-based interaction system 
implemented on robot HARO-1, in that (a) represents the Vision section of the interface, and 
(b) shows the virtual robot developed using Open GL. 

 a) b) 

Figure 21. Graphic user interface of the robot HARO-1: (a) Posture recognition; (b) Virtual 
robot

As shown in Fig. 21 (a), live images with the size of 384x288 are captured through two CCD 
video cameras (EVID31, SONY) in the system. At the end of each video field the system 
processes the pair of images, and output the detected hand information. The processing is 
divided into two phases: hand tracking phase and posture recognition phase. At the 
beginning, we have to segment the whole image to locate the hand, because we have no any 
information about the position of the hand. After the initial search, we do not need to 
segment the whole image, but a smaller region surrounding the hand, since we can assume 
continuity of the position of the hand during the tracking. At the tracking phase, the hand is 
segmented using the approach described in Section 2 from a low resolution sampling of the 
image, and can be tracked reliably at 4-6Hz on a normal 450MHz PC. 
The system also detects the motion features of the hand such as pauses during the tracking 
phase. Once a pause is confirmed, the system stops the tracking, crops a high resolution 
image tightly around the hand and performs a more accurate segmentation based on the 
same techniques. Then the topological features of the hand is extracted from the segmented 
hand image and the hand posture is classified based on the analysis of these features as 
described in Section 3. If the segmented hand image is recognized correctly as one of the 
postures defined in Fig. 6, the robot will perform motions associated with this posture. If the 
segmented image can not be recognized because of the presence of noises, the robot will not 
output any response. The time spent on the segmentation of the high resolution image is less 
than 1 second, and the whole recognition phase can be accomplished within 1.5 seconds. 
After the posture recognition phase is finished, the system continues to track the hand until 
another pause is detected. 
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6. Conclusions 

Vision-based hand gesture recognition provide a more nature and powerful way for human-
computer interaction. In the chapter, we present some new approaches for hand image 
segmentation, 2D hand posture recognition and 3D hand posture reconstruction. We 
segment hand images using the color segmentation approach which is based on the RCE 
neural network. Then we extract topological features of the hand from the binary image of 
the segmented hand region, and recognize 2D hand postures base on the analysis of these 
features. We also propose to use the stereo vision and 3D reconstruction techniques to 
recover 3D hand postures and present a new method to estimate the fundamental matrix 
from uncalibrated stereo hand images in this chapter. A human-robot interaction system has 
been developed to demonstrate the application of our hand posture recognition approaches. 
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