We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,900
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 5

Symplectic Manifolds: Gromov-Witten Invariants on Symplectic and Almost Contact Metric Manifolds

Yong Seung Cho

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65663

Abstract

In this chapter, we introduce Gromov-Witten invariant, quantum cohomology, Gromov-Witten potential, and Floer cohomology on symplectic manifolds, and in connection with these, we describe Gromov-Witten type invariant, quantum type cohomology, Gromov-Witten type potential and Floer type cohomology on almost contact metric manifolds. On the product of a symplectic manifold and an almost contact metric manifold, we induce some relations between Gromov-Witten type invariant and quantum cohomology and quantum type invariant. We show that the quantum type cohomology is isomorphic to the Floer type cohomology.

Keywords: symplectic manifold, Gromov-Witten invariant, quantum cohomology, Gromov-Witten potential, Floer cohomology, almost contact metric manifold, Gromov-Witten type invariant, quantum type cohomology, Gromov-Witten type potential, Floer type cohomology

1. Introduction

The symplectic structures of symplectic manifolds \((M, \omega, J)\) are, by Darboux’s theorem 2.1, locally equivalent to the standard symplectic structure on Euclidean space.

In Section 2, we introduce basic definitions on symplectic manifolds [1–5, 10–13] and flux homomorphism. In Section 2.1, we recall \(J\)-holomorphic curve, moduli space of \(J\)-holomorphic curves, Gromov-Witten invariant and Gromov-Witten potential, quantum product and quantum cohomology, and in Section 2.2, symplectic action functional and its gradient flow line, Maslov type index of critical loop, Floer cochain complex and Floer cohomology, and theorem of Arnold conjecture.

In Section 3, we introduce almost contact metric manifolds \((M, g, \varphi, \eta, \xi, \phi)\) with a closed fundamental 2-form \(\phi\) and their product [4, 7, 8]. In Section 3.1, we study \(\varphi\)-coholomorphic
map, moduli space of \(\varphi\)-coholomorphic maps which represent a homology class of dimension two, Gromov-Witten type cohomology, quantum type product and quantum type cohomology, Gromov-Witten type potentials on the product of a symplectic manifold, and an almost contact metric manifold [5, 6, 13]. In Section 3.2, we investigate the symplectic type action functional on the universal covering space of the contractible loops, its gradient flow line, the moduli space of the connecting flow orbits between critical loops, Floer type cochain complex, and Floer type cohomology with coefficients in a Novikov ring [7, 9, 13].

In Section 4, as conclusions we show that the Floer type cohomology and the quantum type cohomology of an almost contact metric manifold with a closed fundamental 2-form are isomorphic [7, 13], and present some examples of almost contact metric manifolds with a closed fundamental 2-form.

2. Symplectic manifolds

By a symplectic manifold, we mean an even dimensional smooth manifold \(M^{2n}\) together with a global 2-form \(\omega\) which is closed and nondegenerate, that is, the exterior derivative \(d\omega = 0\) and the \(n\)-fold wedge product \(\omega^n\) never vanishes.

Examples: (1) The \(2n\)-dimensional Euclidean space \(\mathbb{R}^{2n}\) with coordinates \((x_1, \ldots, x_n, y_1, \ldots, y_n)\) admits symplectic form \(\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i\).

(2) Let \(M\) be a smooth manifold. Then its cotangent bundle \(T^*M\) has a natural symplectic form as follows. Let \(\pi: T^*M \to M\) be the projection map and \(x_1, \ldots, x_n\) are local coordinates of \(M\). Then \(q_i = x_i \circ \pi, i = 1, 2, \ldots, n\) together with fiber coordinates \(p_1, \ldots, p_n\) give local coordinates of \(T^*M\). The natural symplectic form on \(T^*M\) is given by

\[
\omega = \sum_{i=1}^n dq_i \wedge dp_i. \quad (1)
\]

(3) Every Kähler manifold is symplectic.

Darboux’s Theorem 2.1 (6). Every symplectic form \(\omega\) on \(M\) is locally diffeomorphic to the standard form \(\omega_0\) on \(\mathbb{R}^{2n}\).

A symplectomorphism of \((M, \omega)\) is a diffeomorphism \(\phi \in \text{Diff}(M)\) which preserves the symplectic form \(\phi^*\omega = \omega\). Denote by \(\text{Sym}(M)\) the group of symplectomorphisms of \(M\). Since \(\omega\) is nondegenerate, there is a bijection between the vector fields \(X \in \Gamma(TM)\) and 1-forms \(\omega(X, \cdot) \in \Omega^1(M)\). A vector field \(X \in \Gamma(TM)\) is called symplectic if \(\omega(X, \cdot)\) is closed.

Let \(M\) be closed, i.e., compact and without boundary. Let \(\phi: \mathbb{R} \to \text{Diff}(M), t \mapsto \phi_t\) be a smooth family of diffeomorphisms generated by a family of vector fields \(X_t \in \Gamma(TM)\) via,
Theorem 2.2 (6). $\phi \in \text{Sym}(M)$ is a Hamiltonian symplectomorphism if and only if there is a homotopy $[0,1] \to \text{Sym}(M)$, $t \mapsto \phi_t$ such that $\phi_0 = \text{id}$, $\phi_1 = \phi$, and $\text{Flux}(\{\phi_t\}) = 0$.

2.1. Quantum cohomology

Let (M, ω) be a compact symplectic manifold. An almost complex structure is an automorphism of TM such that $J^2 = -I$. The form ω is said to tame J if $\omega(v, Jw) > 0$ for every $v \neq 0$. The set $\mathcal{J}_1(M, \omega)$ of almost complex structures tamed by ω is nonempty and contractible. Thus the Chern classes of TM are independent of the choice $J \in \mathcal{J}_1(M, \omega)$. A smooth map $\phi : (M_1, I_1) \to (M_2, I_2)$ from M_1 to M_2 is (J_1, J_2)-holomorphic if and only if

$$d\phi_* I_1 = J_2 e^d\phi_*$$

Hereafter, we denote by $H_2(M)$ the image of Hurewicz homomorphism $\tau_2 M \to H_2(M, \mathbb{Z})$. A (i, J)-holomorphic map $u : (\Sigma, z_1, \ldots, z_k) \to M$ from a reduced Riemann surface (Σ, J) of genus g with k marked points to (M, J) is said to be stable if every component of Σ of genus 0 (resp. 1), which is contracted by u, has at least 3 (resp. 1) marked or singular points on its component, and the k marked points are distinct and nonsingular on Σ. For a two-dimensional homology class $A \in H_2(M)$ let $\mathcal{M}_{g,k}(M; A ; J)$ be the moduli space of (i, J)-holomorphic stable maps which represent A.

Let $B := C^\infty(\Sigma, M; A)$ be the space of smooth maps

$$u : \Sigma \to M$$

which represent $A \in H_2(M)$.

$$\frac{d}{dt} \phi_t = X_r \phi_t, \phi_0 = \text{id}. \quad (2)$$

Then $\phi_t \in \text{Symp}(M)$ if and only if $X_t \in \Gamma(TM, \omega)$ the space of symplectic vector fields on M. Moreover, if $X, Y \in \Gamma(TM, \omega)$, then $[X, Y] \in \Gamma(TM, \omega)$ and $\omega([X, Y], \cdot) = dH$, where $H = \omega(X, Y) : M \to R$. Let $H : M \to R$ be a smooth function. Then the vector field X_H on M determined by $\omega(X_H, \cdot) = dH$ is called the Hamiltonian vector field associated with H. If M is closed, then X_H generates a smooth 1-parameter group of diffeomorphisms $\phi_t \in \text{Diff}(M)$ such that

$$\frac{d}{dt} \phi_t^H = X_H \phi_t, \phi_0^H = \text{id}. \quad (3)$$

This $\{\phi_t^H\}$ is called the Hamiltonian flow associated with H. The flux homomorphism Flux is defined by

$$\text{Flux}(\phi_t^H) = \frac{1}{\omega(X_t, \cdot)} dt. \quad (4)$$

$$\frac{d}{dt} \phi_t^H = X_H \phi_t^H, \phi_0^H = \text{id}. \quad (3)$$

This $\{\phi_t^H\}$ is called the Hamiltonian flow associated with H. The flux homomorphism Flux is defined by
Let us consider infinite dimensional vector bundle \(E \rightarrow B \) whose fiber at \(u \) is the space \(E_u = \Omega^{0,1}(\Sigma, u^*TM) \) of smooth \(J \)-antilinear 1-forms on \(\Sigma \) with values in \(u^*TM \). The map \(\delta_B : B \rightarrow E \) given by

\[
\delta_B(u) = \frac{1}{2}(du + Jd\omega_u)
\]

is a section of the bundle. The zero set of the section \(\delta_B \) is the moduli space \(\mathcal{M}_{g,k}(M, A; J) \).

For an element \(u \in \mathcal{M}_{g,k}(M, A; J) \) we denote by

\[
D_u : \Omega^0(\Sigma, u^*TM) = T_uB \rightarrow \Omega^{0,1}(\Sigma, u^*TM)
\]

the composition of the derivative

\[
d(\delta_B)_u : T_uB \rightarrow T_{(u,0)}E
\]

with the projection to fiber \(T_{(u,0)}E \rightarrow \Omega^{0,1}(\Sigma, u^*TM) \). Then the virtual dimension of \(\mathcal{M}_{g,k}(M, A; J) \) is

\[
\dim \mathcal{M}_{g,k}(M, A; J) = \text{index} D_u : \Omega^0(\Sigma, u^*TM) \rightarrow \Omega^{0,1}(\Sigma, u^*TM) = 2c_1(TM)A + n(2-2g) + (6g-6) + 2k.
\]

Theorem 2.1.1. For a generic almost complex structure \(J \in \mathcal{J}_c(M, \omega) \) the moduli space \(\mathcal{M}_{g,k}(M, A; J) \) is a compact stratified manifold of virtual dimension,

\[
\dim \mathcal{M}_{g,k}(M, A; J) = 2c_1(TM)A + n(2-2g) + (6g-6) + 2k.
\]

For some technical reasons, we assume that \(c_1(A) \geq 0 \) if \(\omega(A) > 0 \) and \(A \) is represented by some \(J \)-holomorphic curves. In this case, we call the symplectic manifold \(M \) semipositive. We define the evaluation map by

\[
ev : \mathcal{M}_{g,k}(M, A; J) \rightarrow M^k, \quad \text{ev}(\{u; z_1, \ldots, z_k\}) = (u(z_1), \ldots, u(z_k)).
\]

Then the image \(\text{Im}(\text{ev}) \) is well defined, up to cobordism on \(J \), as a \(\dim \mathcal{M}_{g,k}(M, A; J) = m \)-dimensional homology class in \(M^k \).

Definition. The Gromov-Witten invariant \(\Phi_{g,k}^{M,A} \) is defined by

\[
\Phi_{g,k}^{M,A} : H^m(M^k) \rightarrow \mathbb{Q}, \quad \Phi_{g,k}^{M,A}(a) = \int_{\mathcal{M}_{g,k}(M, A; J)} \text{ev}^* \cdot a
\]

where \(a = PD(a) \in H_{2k-m}(M^k) \) and \(\cdot \) is the intersection number of \(\text{ev} \) and \(a \) in \(M^k \).

The minimal Chern number \(N \) of \((M, \omega) \) is the integer \(N := \min |\mathcal{J}\mathcal{B}\lambda|c_1(A) = \lambda_0, A \in H_2(M)| \).

We define the quantum product \(a \ast b \) of \(a \in H^k(M) \) and \(b \in H_-(M) \) as the formal sum...
\[a \ast b = \sum_{A \in \text{H}_2(M)} (a \ast b)_A q^{c_1(A)/N} \]

where \(q \) is an auxiliary variable of degree \(2N \) and \((a \ast b)_A \in H^{k+l-2c_1(A)}(M) \) is defined by

\[
\oint_C (a \ast b)_A = \Phi_{A,0,3}^M (a \otimes b \otimes r)
\]

for \(C \in \text{H}_{k+l-2c_1}(M) \), \(r = PD(C) \). Hereafter, we use the Gromov-Witten invariants of \(g = 0 \) and \(k = 3 \). Then the quantum product \(a \ast b \) is an element of \(QH^* := H^*(M) \otimes \mathbb{Q}[q] \)

where \(\mathbb{Q}[q] \) is the ring of Laurent polynomials of the auxiliary variable \(q \).

Extending \(\ast \) by linearity, we get a product called quantum product

\[
\ast : QH^*(M) \otimes QH^*(M) \rightarrow QH^*(M).
\]

It turns out that \(\ast \) is distributive over addition, skew-commutative, and associative.

Theorem 2.1.2. Let \((M, \omega) \) be a compact semipositive symplectic manifold. Then the quantum cohomology \((QH^*(M), +, \ast) \) is a ring.

Remark. For \(A = 0 \in \text{H}_2(M) \), the all \(J \)-holomorphic maps in the class \(A \) are constant. Thus \((a \ast b)_0 = a \cup b \). The constant term of \(a \ast b \) is the usual cup product \(a \cup b \).

We defined the Novikov ring \(A_\omega \), by the set of functions \(\lambda : \text{H}_2(M) \rightarrow \mathbb{Q} \) that satisfy the finiteness condition

\[
\# \{ A \in \text{H}_2(M) | \lambda(A) \neq 0, \omega(A) < c \} < \infty
\]

for every \(c \in \mathbb{R} \). The grading is given by \(\text{deg}(A) = 2c_1(A) \).

Examples (55). (1) Let \(p \in H^2(\mathbb{C}P^r) \) and \(A \in \text{H}_2(\mathbb{C}P^r) \) be the standard generators. There is a unique complex line through two distinct points in \(\mathbb{C}P^r \) and so \(p \ast p^n = q \). The quantum cohomology of \(\mathbb{C}P^r \) is

\[
QH^*(\mathbb{C}P^r; \mathbb{Q}[q]) = \mathbb{Q}[p,q] / (p^{n+1} = q).
\]

(2) Let \(G(k,n) \) be the Grassmannian of complex \(k \)-planes in \(\mathbb{C}^n \). There are two natural complex vector bundles \(\mathbb{C}^k \rightarrow E \rightarrow G(k,n) \) and \(\mathbb{C}^r \rightarrow F \rightarrow G(k,n) \). Let \(x_i = c_i(E^*) \) and \(y_j = c_i(F^*) \) be Chern classes of the dual bundles \(E^* \) and \(F^* \), respectively. Since \(E \otimes F \) is trivial, \(\sum_{j=0}^k x_j y_{j-i} = 0, j = 1, \ldots, n \). By computation \(x_k \ast y_{n-k} = (-1)^{n-k}q \). The quantum cohomology of \(G(k,n) \) is
Theorem 2.1.3 ([4, 5])

\[QH^r \left(\mathcal{M}(k, n); \mathbb{Q}[q] \right) = \frac{\mathbb{Q}[x_1, \ldots, x_n, q]}{< y_{n+k+1}, \ldots, y_{n+1}, y_n + (-1)^{n+1} q >} \]

(20)

Let \(\{e_0, \ldots, e_n\} \) be an integral basis of \(H^r(M) \) such that \(e_0 = 1 \in H^0(M) \) and each \(e_i \) has pure degree. We introduce \(L_M \) with coefficients in \(\mathbb{H} \). For every contractible loop \(\gamma \) in \(\mathcal{M}(k, n) \) the Gromov-Witten potential of \((M, \omega)\) is a formal power series in variables \(t_0, \ldots, t_n \) with coefficients in the Novikov ring \(\mathbb{A} \).

\[\Phi^M(\gamma) = \sum_{k_0 + \cdots + k_n = A} \sum_{\gamma_0, \ldots, \gamma_n} \epsilon(k_0, \ldots, k_n) \Phi_{0,k}^M(e_0^{(k_0)} \otimes \cdots \otimes e_n^{(k_n)} \cdot (p^t)_{k_0} \cdots (p^n)_{k_n} q^{\nu(A)/n}. \]

(21)

Examples ([4]), (1) \(\Phi^{CP^3}(t) = \frac{1}{2} t_0^2 t_1 + (e_1 - t_1 - t_2^2). \)

(2) \(\Phi^{CP^2}(t) = \frac{1}{6} \sum_{i+j+k=n} t_it_jt_k + \sum_{d=0}^n \sum_{k_2+\cdots+k_n} N_d(k_2, \ldots, k_n) \cdot t_2^{k_2} \cdots t_n^{k_n} e^{\nu(t)}, \)

where \(N_d(k_2, \ldots, k_n) = \Phi_{0,k}^{CP^n,dA}(p^2, \ldots, p^n). \)

We define a nonsingular matrix \((g_{ij}) \) by \(g_{ij} = \int_{M} e_i \cup e_j \) and denote by \((g^{ij}) \) its inverse matrix.

Theorem 2.1.3 ([4, 5]). The Gromov-Witten potential \(\Phi^M \) of \((M, \omega)\) satisfies the WDVV-equations:

\[\sum_{i,j,k} \partial_i \partial_j \partial_k \Phi^M(t) g^{ij} \partial_k \partial_i \partial_k \Phi^M(t) = \epsilon_{ijk} \sum_{i,j,k} \partial_i \partial_j \partial_k \Phi^M(t) g^{ij} \partial_k \partial_j \partial_k \Phi^M(t), \]

(22)

where \(\epsilon_{ijk} = (-1)^{\deg(\alpha_i) + \deg(\alpha_j) + \deg(\alpha_k)}. \)

2.2. Floer cohomology

Let a compact symplectic manifold \((M, \omega)\) be semipositive. Let \(H_{2,1} : M \to R \) be a smooth 1-periodic family of Hamiltonian functions. The Hamiltonian vector field \(X_t \) is defined by \(\omega(X_t, -) = dtH_t. \) The solutions of the Hamiltonian differential equation \(\dot{x}(t) = X_t(x(t)) \) generate a family of Hamiltonian symplectomorphisms \(\phi_t : M \to M \) satisfying \(\frac{d}{dt} \phi_t = X_t \phi_t \) and \(\phi_0 = \text{id}. \)

For every contractible loop \(x : R/\mathbb{Z} \to M, \) there is a smooth map \(u : D := \{ z \in \mathbb{C} | |z| \leq 1 \} \to M \) such that \(u(e^{2\pi it}) = x(t). \) Two such maps \(u_1 \) and \(u_2 \) are called equivalent if their boundary sum \(u_1 \# (-u_2) \) is homologous to zero in \(H_2(M). \) Denote by \((x, [u_1]) = (x, [u_2])\) for equivalent pairs, \(LM \) the space of contractible loops and \(\bar{LM} \) the space of equivalence classes. Then \(LM \to \bar{LM} \) is a covering space whose covering transformation group is \(H_2(M) \) via, \(A(x, [u]) = (x, [A\# u]) \) for each \(A \in H_2(M) \) and \((x, [u]) \in \bar{LM}. \)

Definition. The symplectic action functional \(a_t \) is defined by
orbits from The degree k for every the finiteness condition, We define the Floer cochain group $\tilde{\omega}$ generated by the linearized Hamiltonian flow along x.$\frac{\partial \tilde{\omega}}{\partial x(t)}dt.$ (23)

For each element $\tilde{x} := (x, [u]) \in \tilde{LM}$ and $\tilde{\omega} \in T_{x(t)} \tilde{LM}$, we have
\[
d\tilde{\omega} = \int_{-\infty}^{\infty} \tilde{\omega} \left(\tilde{\dot{x}}(t) - X_{\tilde{\xi}}(x(t)), \tilde{\xi} \right) dt. \tag{24}
\]
Thus the critical points of $\tilde{\omega}$ are one-to-one correspondence with the periodic solutions of $\tilde{\dot{x}}(t) - X_{\tilde{\xi}}(x(t)) = 0$. Denote by $PH \subset \tilde{LM}$ the critical points of $\tilde{\omega}$ and by $PH \subset \tilde{LM}$ the set of periodic solutions.

The gradient flow lines of $\tilde{\omega}$ are the solutions $u : \mathbb{R}^2 \to M$ of the partial differential equation
\[
\partial_s + J(u) \left(\partial_s - X_{\tilde{\xi}}(u) \right) = 0
\]
with conditions $u(s, t + 1) = u(s, t), \lim_{s \to -\infty} u(s, t) = x(t) \tag{25}$

for some $x \in PH$.

Let $M(\tilde{x}^-, \tilde{x}^+)$ be the space of such solutions u with $\tilde{x}^+ = \tilde{x}^- \# u$. This space is invariant under the shift $u(s, t) \mapsto u(s + s_0, t)$ for each $s_0 \in \mathbb{R}$. For a generic Hamiltonian function, the space $M(\tilde{x}^-, \tilde{x}^+)$ is a manifold of dimension
\[
\dim M(\tilde{x}^-, \tilde{x}^+) = \mu(\tilde{x}^-) - \mu(\tilde{x}^+). \tag{26}
\]
Here $\mu : PH \to \mathbb{Z}$ is a version of Maslov index defined by the path of symplectic matrices generated by the linearized Hamiltonian flow along $x(t)$.

Let $\mu(\tilde{x}) - \mu(\tilde{y}) = 1$. Then $M(\tilde{x}, \tilde{y})$ is a one-dimensional manifold and the quotient by shift $M(\tilde{x}, \tilde{y}) / \mathbb{R}$ is finite. In this case, we denote by $n(\tilde{x}, \tilde{y}) = \# \left(\frac{M(\tilde{x}, \tilde{y})}{\mathbb{R}} \right)$ the number of connecting orbits from \tilde{x} to \tilde{y} counted with appropriate signs.

We define the Floer cochain group $FC^*(M, H)$ as the set of all functions $\tilde{\omega} : PH \to Q$ that satisfy the finiteness condition,
\[
\# \{ \tilde{x} \in PH | \tilde{\omega}(\tilde{x}) \neq 0, a_H(\tilde{x}) \leq c \} < \infty \tag{27}
\]
for every $c \in \mathbb{R}$.

The complex $FC^*(M, H)$ is a Λ_ω-module with action
\[
(\lambda * \tilde{\omega})(\tilde{x}) := \sum_{A} \lambda(A) \tilde{\omega}(A \# \tilde{x}). \tag{28}
\]

The degree k part $FC^*(M, H)$ consists of all $\tilde{\omega} \in FC^*(M, H)$ that are nonzero only on elements $\tilde{x} \in PH$ with $\mu(\tilde{x}) = k$. Thus the dimension of $FC^*(M, H)$ as a Λ_ω-module is the number $\#(PH)$.
We define a cochain complex that satisfy the finiteness condition

\[\delta(\xi)(\check{x}) = \sum_{\mu(y) = k} n(\check{x}, \check{y}) \xi(\check{y}). \] (29)

The coefficients of \(\delta(\delta(\xi)(\check{x})) \) are given by counting the numbers of pairs of connecting orbits from \(\check{x} \) to \(\check{y} \) where \(\mu(\check{x}) - \mu(\check{y}) = 2 = \dim M(\check{x}, \check{y}). \) The quotient \(M(\check{x}, \check{y})/\mathbb{R} \) is a one-dimensional oriented manifold that consists of pairs counted by \(\delta(\delta(\xi)(\check{x})) \). Thus the numbers cancel out in pairs, so that \(\delta(\delta(\xi)) = 0. \)

Definition. The cochain complex \((FC^*(M, H), \delta) \) induces its cohomology groups

\[FH^k(M, H) := \frac{\text{Ker} \delta : FC^k(M, H) \to FC^{k+1}(M, H)}{\text{Im} \delta : FC^{k+1}(M, H) \to FC^k(M, H)} \] (30)

which are called the Floer cohomology groups of \((M, \omega, H, J). \)

Remark. By the usual cobordism argument, the Floer cohomology groups \(FH^*(M, H) \) are independent to the generic choices of \(H \) and \(J. \) Let \(f : M \to \mathbb{R} \) be a Morse function such that the negative gradient flow of \(f \) with respect to the metric \(g(\cdot, \cdot) = \omega(\cdot, J \cdot) \) is Morse-Smale. Let \(H = -\varepsilon f : M \to \mathbb{R} \) be the time-independent Hamiltonian. If \(\varepsilon \) is small, then the 1-periodic solutions of \(\dot{x}(t) - X_H(x(t)) = 0 \) are one-to-one correspondence with the critical points of \(f. \) Thus we have \(PH = \text{Crit}(f) \) and the Maslov type index can be normalized as

\[\mu(x, [u]) = \text{ind}_J(x) - n \] (31)

where \(u : D \to M \) is the constant map \(u(D) = x. \)

We define a cochain complex \(MC^*(M; \Lambda_\omega) \) as the graded \(\Lambda_\omega \)-module of all functions

\[\xi : \text{Crit}(f)H_2(M) \to Q \] (32)

that satisfy the finiteness condition

\[\#\{(x, A)|\xi(x, A)\neq 0, \omega(A)2c_x < \infty \} < \infty \] (33)

for every \(c \in \mathbb{R}. \) The \(\Lambda_\omega \)-module structure is given by \((\lambda + \xi)(x, A) = \sum \lambda(B)\xi(x, A + B) \) and the grading \(\text{deg}(x, A) = \text{ind}_J(x) - 2c_1(A). \) The gradient flow lines \(u : \mathbb{R} \to M \) of \(f \) are the solutions of \(\dot{u}(s) = -\nabla f(u(s)). \) These solutions determine coboundary operator

\[\delta : MC^k(M; \Lambda_\omega) \to MC^{k+1}(M; \Lambda_\omega) \] (34)

\[\delta(\xi)(x, A) = \sum_y n_f(x, y)\xi(y, A) \] (35)

where \(n_f(x, y) \) is the number of connecting orbits \(u \) from \(x \) to \(y \) satisfying \(\lim_{s \to \pm \infty} u(s) = x, \lim_{s \to +\infty} u(s) = y, \) counted with appropriate signs and \(\text{ind}_J(x) - \text{ind}_J(y) = 1. \)
Definition–Theorem 2.2.1. (1) The cochain complex $\left(MC^*(M;\Lambda\omega),\delta \right)$ defines a cohomology group

\[
MH^*(M;\Lambda\omega) := \frac{\ker \delta : MC^*(M;\Lambda\omega) \rightarrow MC^{*+1}(M;\Lambda\omega)}{\text{Im} \delta : MC^{*-1}(M;\Lambda\omega) \rightarrow MC^*(M;\Lambda\omega)}
\]

(36)

which is called the Morse-Witten cohomology of M.

(2) $MH^*(M;\Lambda\omega)$ is naturally isomorphic to the quantum cohomology $QH^*(M;\Lambda\omega)$.

Theorem 2.2.2 ([5]). Let a compact symplectic manifold (M,ω) be semipositive. There is an isomorphism

\[
\Phi : FH^*(M,H) \rightarrow QH^*(M;\Lambda\omega)
\]

(37)

which is linear over the Novikov ring $\Lambda\omega$.

Let $H : M \rightarrow R$ be a generic Hamiltonian function and $\phi : M \rightarrow M$ the Hamiltonian symplectomorphism of H. By Theorems 2.2.1 and 2.2.2

\[
FH^*(M,H) \simeq QH^*(M;\Lambda\omega) \simeq H^*(M) \otimes \Lambda\omega
\]

(38)

The rank of $FC^*(M,H)$ as an $\Lambda\omega$-module must be at least equal to the dimension of $H^*(M)$. The rank is the number $\#(PH)$ which is the number of the fixed points of ϕ.

Theorem 2.2.3 (Arnold conjecture). Let a compact symplectic manifold (M,ω) be semipositive. If a Hamiltonian symplectomorphism $\phi : M \rightarrow M$ has only nondegenerate fixed points, then

\[
\#(\text{Fix}(\phi)) \geq \sum_{j=0}^{2n} b_j(M)
\]

(39)

where $b_j(M)$ is the jth Betti number of M.

3. Almost contact metric manifolds

Let be a real $(2n+1)$-dimensional smooth manifold. An almost cocomplex structure on M is defined by a smooth $(1,1)$ type tensor ϕ, a smooth vector field ξ, and a smooth 1-form η on M such that for each point $x \in M$,

\[
\phi_x^2 = -I + \eta_x \otimes \xi_x, \eta_x(\xi_x) = 1,
\]

(40)

where $I : T_xM \rightarrow T_xM$ is the identity map of the tangent space T_xM.

A Riemannian manifold M with a metric tensor g and with an almost co-complex structure (ϕ, ξ, η) such that

\[
g(X,Y) = g(\phi X,\phi Y) + \eta(X)\eta(Y), X,Y \in \Gamma(TM),
\]

(41)

is called an almost contact metric manifold.
The fundamental 2-form ϕ of an almost contact metric manifold $(M, g, \varphi, \xi, \eta)$ is defined by

$$\phi(X, Y) = g(X, \varphi Y)$$

for all $X, Y \in \Gamma(TM)$. The $(2n + 1)$-form $\phi^* \wedge \eta$ does not vanish on M, and so M is orientable. The Nijenhuis tensor \cite{8, 11} of the (1,1) type tensor φ is the (1,2) type tensor field N_φ, defined by

$$N_\varphi(X, Y) = [\varphi X, \varphi Y] - [X, Y] \varphi - [\varphi X, Y] - [X, \varphi Y]$$

for all $X, Y \in \Gamma(TM)$, where $[X, Y]$ is the Lie bracket of X and Y. An almost cocomplex structure (φ, ξ, η) on M is said to be integrable if the tensor field $N_\varphi = 0$, and is normal if $N_\varphi + 2d\eta \xi = 0$.

Definition. An almost contact metric manifold $(M, g, \varphi, \xi, \eta, \phi)$ is said to be

1. almost cosymplectic (or almost co-Kähler) if $d\phi = 0$ and $d\eta = 0$,
2. contact (or almost Sasakian) if $\phi = d\eta$,
3. an almost C-manifold if $d\phi = 0$, $d\eta \neq 0$, and $d\eta \neq \phi$,
4. cosymplectic (co-Kähler) if M is an integrable almost cosymplectic manifold,
5. Sasakian if M is a normal almost Sasakian manifold,
6. a C-manifold if M is a normal almost C-manifold.

An example of compact Sasakian manifolds is an odd-dimensional unit sphere S^{2n+1}, and the one of the co-Kähler (almost cosymplectic) manifolds is a product M^5 where M is a compact Kähler (symplectic) manifold, respectively.

Let $(M_1^{2n+1}, g_1, \varphi_1, \xi_1, \eta_1)$ and $(M_2^{2n+1}, g_2, \varphi_2, \eta_2, \xi_2)$ be almost contact metric manifolds. For the product $M := M_1 M_2$, Riemannian metric on M is defined by

$$g\left((X_1, Y_1), (X_2, Y_2)\right) = g_1(X_1, X_2) + g_2(Y_1, Y_2).$$

An almost complex structure on M is defined by

$$J(X, Y) = \left(\varphi_1(X) + \eta_1(Y)\xi_1, \varphi_2(Y) - \eta_1(X)\xi_2\right).$$

Then $J^2 = -I$ and the fundamental 2-form ϕ on M is $\phi = \phi_1 + \phi_2 + \eta_1 \wedge \eta_2$. If ϕ_1, ϕ_2 and η_1 and η_2 are closed, then ϕ is closed. Thus we have

Theorem 3.1. Let $(M_1^{2n+1}, g_1, \varphi_1, \eta_1, \xi_1)$ be almost contact metric manifolds, $j = 1, 2$, and (M, g, φ, J) be the product constructed as above.

1. If ϕ_i and η_i, $i = 1, 2$, are closed, then ϕ is closed.
2. J is an almost complex structure on M.

3. If M_i, $i = 1, 2$, are symplectic, then M is Kähler.

Let (M^{2n}, g, J_1) be a symplectic manifold, and $(M^{2n+1}, g, \varphi_2, \eta_2, \xi_2)$ be an almost contact metric manifold. Then $\xi_1 = \eta_1 = 0$, and $\omega_1 = \phi_1$ on M_1.

Theorem 3.2. Let $(M, g, \varphi, \eta, \xi)$ be the product constructed as above.

1. If M_2 is contact, then M is an almost C-manifold.
2. If M_2 is a C-manifold, then M is an almost C-manifold.
3. If M_2 is almost cosymplectic, then M is almost cosymplectic.

3.1. Quantum type cohomology

In [10, 11] we have studied the quantum type cohomology on contact manifolds. In this section, we want to introduce the quantum type cohomologies on almost cosymplectic, contact, and C-manifolds.

Let $(M^{2n+1}, g, \varphi, \eta, \xi)$ be an almost contact metric manifold. Then the distribution $\mathcal{H} = \{X \in TM | \eta(X) = 0\}$ is an n-dimensional complex vector bundle on M.

Now fix the vector bundle $\mathcal{H} \to M$. As the symplectic manifolds, a $(1,1)$ type tensor field $\varphi : \mathcal{H} \to M$ with $\varphi^2 = -I$ is said to be tamed by ϕ if $\phi(X, \varphi X) > 0$ for $X \in \mathcal{H}[0]$ is said to be compatible if $\phi(\varphi X, \varphi Y) = \phi(X, Y)$.

Assume that the almost contact metric manifold M has a closed fundamental 2-form ϕ, i.e., $d\phi = 0$. An almost contact metric manifold M with the ϕ is called semipositive if for every $A \in \pi_2(M)$, $\phi(A) > 0$, $c_1(\mathcal{H})(A) \geq 3-n$, then $c_1(\mathcal{H})(A) > 0$ [13]. A smooth map $u : (\Sigma, j) \to (M, \varphi)$ from a Riemann surface (Σ, j) into (M, φ) is said to be φ-coholomorphic if $du^\gamma = \varphi^\gamma du$.

Let $A \in H_2(M; \mathbb{Z})$ be a two-dimensional integral homology class in M. Let $M_{0,3}(M; A, \varphi)$ be the moduli space of stable rational φ-coholomorphic maps with three marked points, which represent class A.

Lemma 3.1.1. For a generic almost complex structure φ on the distribution, $\mathbb{C}^n \to H \to M$, the moduli space $M_{0,3}(M; A, \varphi)$ is a compact stratified manifold with virtual dimension $2c_1(\mathcal{H})(A) + 2n$.

Consider the evaluation map given by

$$ev : M_{0,3}(M; A, \varphi) \to M^3,$$

$$ev(\Sigma; z_1, z_2, z_3, u) = \left(u(z_1), u(z_2), u(z_3) \right). \quad (47)$$

We have a Gromov-Witten type invariant given by

$$\Phi_{0,3}^{M, A, \varphi} : H^*(M^3) \to \mathbb{Q} \quad (48)$$

$$\Phi_{0,3}^{M, A, \varphi}(\alpha) = \int_{M_{0,3}(M; A, \varphi)} ev^*(\alpha) = ev_*[M_{0,3}(M; A, \varphi)] \cdot PD(\alpha) \quad (49)$$

http://dx.doi.org/10.5772/65663
which is the number of these intersection points counted with signs according to their orientations.

We define a quantum type product \(\ast \) on \(H^*(M) \), for \(\alpha \in H^k(M) \) and \(\beta \in H^l(M) \),

\[
\alpha \ast \beta = \sum_{A \in H^2(M)} (\alpha \ast \beta)_A q^3(A)[A]^N, \quad (50)
\]

where \(N \) is called the minimal Chern number defined by

\[
< c_1(\mathfrak{g}), H_2(M) > = N \mathbb{Z} \quad (51)
\]

The \((\alpha \ast \beta)_A \in H^{k+l-2c_1(\mathfrak{g})}(M) \) is defined for each \(C \in H_{k+l-2c_1(\mathfrak{g})}(M) \),

\[
\int_C (\alpha \ast \beta)_A = \phi^{M,A}_{0,3}(\alpha \otimes \beta \otimes \gamma), \gamma = PD(C). \quad (52)
\]

We denote a quantum type cohomology \([11, 13]\) of \(M \) by

\[
QH^*(M) := H^*(M) \otimes \mathbb{Q}[q] \quad (53)
\]

where \(\mathbb{Q}[q] \) is the ring of Laurent polynomials in \(q \) of degree \(2N \) with coefficients in the rational numbers \(\mathbb{Q} \). By linearly extending the product \(\ast \) on \(QH^*(M) \), we have

Theorem 3.1.2. The quantum type cohomology \(QH^*(M) \) of the manifold \(M \) is an associative ring under the product \(\ast \).

Let \((M_1^{2n_1}, g_1, J_1, \omega_1) \) be a symplectic manifold and \((M_2^{2n_2+1}, g_2, \varphi_2, \eta_2, \xi_2, \phi_2) \) be an either almost cosymplectic or contact or C-manifold.

Let the product \((M^{2n+1}, g, \varphi, \eta, \xi, \phi) \) be construct as Theorem 3.2 where \(n = n_1 + n_2 \). Now we will only consider the free parts of the cohomologies. By the Künneth formula, \(H^*(M) \simeq H^*(M_1) \otimes H^*(M_2) \) in particular, \(H_2(M) \simeq H_2(M_1) \otimes H_2(M_2) \).

Assume that a two-dimensional class \(A = A_1 + A_2 \in H_2(M_1) \otimes H_2(2) \subset H_2(M) \).

Lemma 3.1.3. Let \((M, g, \varphi, \eta, \xi, \phi) \) be the product \(M = M_1 M_2 \) constructed as above. For a generic almost cocomplex structure \(\varphi \) on \(M \)

(1) the moduli space \(\mathcal{M}_{0,3}(M; A, \varphi) \) is homeomorphic to the product

\[
\mathcal{M}_{0,3}(M_1, A_1, J_1) \times \mathcal{M}_{0,3}(M_2, A_2, \varphi), \quad (54)
\]

\[
\dim \mathcal{M}_{0,3}(M, A, \varphi) = 2[c_1(TM_1)(A_1) + c_1(TM_2)(A_2)] + 2(n_1 + n_2). \quad (55)
\]

Theorem 3.1.4. For the product \((M, g, \varphi, \eta, \xi, \phi) = (M_1, g_1, J_1, \omega_1)(M_2, g_2, \varphi_2, \eta_2, \xi_2, \phi_2) \), if

\[
A = A_1 + A_2 \in H_2(M_1) \otimes H_2(M_2) \subset H_2(M), \quad \text{then the Gromov-Witten type invariants satisfy the following equality}
\]
The complex \((n_1 + n_2)\)-dimensional vector bundle

\[
TM_1 \oplus \mathcal{H}_2 \rightarrow M = M_1M_2
\]

has the first Chern class \(c_1(TM_1 \oplus \mathcal{H}_2) = c_1(TM_1) + c_1(\mathcal{H}_2)\).

The minimal Chern numbers \(N_1\) and \(N_2\) are given by

\[
N_1 = <c_1(TM_1), H_2(M_1)> \quad \text{and} \quad N_2 = <c_1(\mathcal{H}_2), H_2(M_2)>.
\]

For cohomology classes

\[
\alpha = a_1 \otimes a_2 \in H^k_1(M_1) \otimes H^k_2(M_2) \subset H^k(M),
\]

\[
\beta = b_1 \otimes b_2 \in H^l_1(M_1) \otimes H^l_2(M_2) \subset H^l(M),
\]

\(k_1 + k_2 = k\), the quantum type product \(\alpha * \beta\) is defined by

\[
(\alpha * \beta)_{\Phi^1, \Phi^2} = \sum_{\phi, \eta} \phi \otimes (\alpha * \beta)_{\eta} \otimes \eta
\]

where \(q_i\) is a degree \(2N_i\) auxiliary variable, \(i = 1, 2\), and the cohomology class \((\alpha_1 * \beta_1)_{\eta} \in H_{2k_1 - 2\delta_1(A)}(M_1)\) is defined by the Gromov-Witten type invariants as follows:

\[
(\alpha_1, \beta_1)_{\eta} = \Phi^M_{0,3} = \Phi^M_{0,3} \otimes \Phi^M_{0,3} \cdot \Phi^M_{0,3}.
\]

Theorem 3.1.5. There is a natural ring isomorphism between quantum type cohomology rings constructed as above,

\[
QH^*(M) = QH^*(M_1) \otimes QH^*(M_2).
\]
bases, \(e_0, e_1, \ldots, e_k \) of \(H^\ast(M_1) \) and \(f_0, f_1, \ldots, f_k \) of \(H^\ast(M_2) \) such that \(e_0 = 1 \in H^0(M_1) \), \(f_0 = 1 \in H^0(M_2) \) and each basis element has a pure degree. We introduce a linear polynomial of \(k_1 + 1 \) variables \(t_0, t_1, \ldots, t_{k_1} \), with coefficients in \(H^\ast(M_1) \)

\[
a_i := t_0 e_0 + t_1 e_1 + \cdots + t_{k_1} e_{k_1},
\]

and a linear polynomial of \(k_2 + 1 \) variables \(s_0, s_1, \ldots, s_{k_2} \) with coefficients in \(H^\ast(M_2) \)

\[
a_s := s_0 f_0 + s_1 f_1 + \cdots + s_{k_2} f_{k_2}.
\]

By choosing the coefficients in \(\mathbb{Q} \), the cohomology of \(M \) is

\[
H^\ast(M) = H^\ast(M_1) \otimes H^\ast(M_2).
\]

Then, \(H^\ast(M) \) has an integral basis \([e_i \otimes f_j]_{i = 0, \ldots, k_1, j = 0, \ldots, k_2}\). The rational Gromov-Witten type potential of the product \((M, \omega)\) is a formal power series in the variables \([t_i, s_j]_{i = 0, \ldots, k_1, j = 0, \ldots, k_2}\) with coefficients in the Novikov ring \(\Lambda_\omega \) as follows:

\[
\Psi^M_0(t, s) = \sum_{\lambda} \frac{1}{m!} \Phi^{M, \lambda, \psi}_{0, m}(a_1 \otimes a_2, \ldots, a_n \otimes a_n) e^{\lambda}
\]

\[
= \sum_{\lambda} \sum_{\mu_1} \frac{1}{m_1 !} \Phi^{M_{1, \lambda_{1, \mu_1}}}_{0, m_1}(a_1, \ldots, a_{\mu_1}) e^{\lambda_{1, \mu_1}} \cdot \sum_{\lambda_2} \sum_{\mu_2} \frac{1}{m_2 !} \Phi^{M_{2, \lambda_2 \mu_2}}_{0, m_2}(a_1, \ldots, a_{\mu_2}) e^{\lambda_{2, \mu_2}}
\]

\[
= \Psi^M_0(t) \cdot \Psi^M_0(s).
\]

Theorem 3.1.6. The rational Gromov-Witten type potential of \((M, \varphi)\) is the product of the rational Gromov-Witten potentials of \(M_1\) and \(M_2\), that is,

\[
\Psi^M_0(t, s) = \Psi^M_0(t) \cdot \Psi^M_0(s).
\]

3.2. Floer type cohomology

In this subsection, we assume that our manifold \((M^{2n+1}, \xi, \varphi, \eta, \xi, \phi)\) is either a almost symplectic, contact, or \(C\)-manifold.

Let \(H_t = H_{t, 1} : M \to R \) be a smooth 1-periodic family of Hamiltonian functions. Denoted by \(X_t : M \to TM \) the Hamiltonian vector field of \(H_t \).

The vector fields \(X_t \) generate a family of Hamiltonian contactomorphisms \(\psi_1 : M \to M \) satisfying \(\frac{d}{dt} \psi_t = X_{t} \psi_t \) and \(\psi_0 = id \).

Let \(a : \mathbb{R}/\mathbb{Z} \to M \) be a contractible loop, then there is a smooth map \(u : D \to M \), defined on the unit disk \(D = \{z \in \mathbb{C} | |z|<1\} \), which satisfies \(u(e^{2 \pi i t}) = a(t) \). Two such maps \(u_1, u_2 : D \to M \) are called equivalent if their boundary sum \(u_1 \# (-u_2) : S^2 \to M \) is homologous to zero in \(H_2(M) \).
Let \(\tilde{a} := (a, [u]) \) be an equivalence class and denoted by \(\widetilde{LM} \) the space of equivalence classes. The space \(\widetilde{LM} \) is the universal covering space of the space \(LM \) of contractible loops in \(M \) whose group of deck transformation is \(H_2(M) \).

The symplectic type action functional \(a_H : \widetilde{LM} \to \mathbb{R} \) is defined by
\[
a_H(a, [u]) = \int_{D} a^* \phi - \int_{0}^{1} H_t(a(t)) \, dt,
\]
then satisfies \(a_H(A \# \tilde{a}) = a_H(\tilde{a}) - \phi(A) \).

Lemma 3.2.1. Let \((M, \phi) \) the manifold with a closed fundamental 2-form \(\phi \) and fix a Hamiltonian function \(H \in C^\infty(\mathbb{R}/\mathbb{Z}) \). Let \((a, [u]) \in LM \) and \(V \in T_{a}LM = C^\infty(\mathbb{R}/\mathbb{Z}, a^*TM) \). Then
\[
(d a_H)_{(a, [u])}(V) = \int_{0}^{1} \phi(\dot{a} - X_{t}(a), V) \, dt.
\]

We denote by \(P(H) \subseteq \widetilde{LM} \) the set of critical points of \(a_H \) and by \(P(H) \subseteq LM \) the corresponding set of periodic solutions.

Consider the downward gradient flow lines of \(a_H \) with respect to an \(L^2 \)-norm on \(LM \). The solutions are
\[
u : \mathbb{R}^2 \to M, (s, t) \mapsto u(s, t)
\]
of the partial differential equation
\[
\partial_s u + \phi(u) \left(\partial_t u - X_{t}(u) \right) = 0
\]
with periodicity condition
\[
u(s, t + 1) = \nu(s, t)
\]
and limit condition
\[
\lim_{s \to -\infty} \nu(s, t) = a(t), \quad \lim_{s \to +\infty} \nu(s, t) = b(t),
\]
where \(a, b \in P(H) \).

Let \(M(\tilde{a}, \tilde{b}) := M(\tilde{a}, \tilde{b}, H, \phi) \) be the space of all solutions \(\nu(s, t) \) satisfying (74)–(76) with
\[
\tilde{a} \# \tilde{u} = \tilde{b}.
\]
The solutions are invariant under the action \(\nu(s, t) \mapsto \nu(s + r, t) \) of the time shift \(r \in \mathbb{R} \). Equivalent classes of solutions are called Floer connecting orbits.
For a generic Hamiltonian function H, the space $\mathcal{M}(\~a, \~b)$ is a finite dimensional manifold of
dimension
\begin{equation}
\dim \mathcal{M}(\~a, \~b) = \mu(\~a) - \mu(\~b),
\end{equation}
where the function $\mu : P(\hat{H}) \to \mathbb{Z}$ is a version of the Maslov index defined by the path of
unitary matrices generated by the linealized Hamiltonian flow along $a(t)$ on D.

If $H_t \equiv H$ is a C^2-small Morse function, then a critical point $(a, [u]_c)$ of H_t is a constant map
$u(D) = a$ with index $\text{ind}_H(a)$.

If $\mu(\~a) - \mu(\~b) = 1$, then the space $\mathcal{M}(\~a, \~b)$ is a one-dimensional manifold with
\mathbb{R} action by time shift and the quotient $\mathcal{M}(\~a, \~b)/\mathbb{R}$ is a finite set. In fact, $\mu(\~a) \in \pi_1(U(n)) \cong \mathbb{Z}$.

If $\mu(\~a) - \mu(\~b) = 1$, $\~a, \~b \in P(\hat{H})$, then we denote
\begin{equation}
\eta(\~a, \~b) := \# \left(\frac{\mathcal{M}(\~a, \~b)}{\mathbb{R}} \right),
\end{equation}
where the connection orbits are to be counted with signs determined by a system of coherent
orientation s of the moduli space $\mathcal{M}(\~a, \~b)$. These numbers give us a Floer type cochain com-
plex.

Let $FC^k(M, H)$ be the set of functions
\begin{equation}
\xi : P(\hat{H}) \to \mathbb{R}
\end{equation}
that satisfy the finiteness condition
\begin{equation}
\# \{ \~x \in P(\hat{H}) ; \xi(\~x) \neq 0, a_H(\~x) \leq c \} < \infty
\end{equation}
for all $c \in \mathbb{R}$.

Now we define a coboundary operator
\begin{equation}
\delta^k : FC^k(M, H) \to FC^{k+1}(M, H),
\end{equation}
\begin{equation}
(\delta^k \xi)(\~a) = \sum_{\mu(\~a) = \mu(\~b) + 1} \eta(\~a, \~b) \xi(\~b)
\end{equation}
where $\xi \in FC^k(M, H)$, $\mu(\~a) = k + 1$ and $\mu(\~b) = k$.

Lemma 3.2.2. Let (M, φ) be a semipositive almost contact metric manifold with a closed functional 2-
forms. The coboundary operators satisfy $\delta^{k+1} \circ \delta^k = 0$, for all k.

Definition - Theorem 3.2.3. (1) For a generic pair (H, φ) on M, the cochain complex (FC^*, δ) defines
cohomology groups
which are called the Floer type cohomology groups of the \((M, \phi, H, \varphi)\).

(2) The Floer type cohomology group \(FH^*(M, \phi, H, \varphi)\) is a module over Novikov ring \(\Lambda_{\phi}\) and is independent of the generic choices of \(H\) and \(\varphi\).

4. Quantum and Floer type cohomologies

In this section, we assume that our manifold \(M\) is a compact either almost cosymplectic or contact or \(\mathcal{C}\)-manifold. In Section 3.1, we study quantum type cohomology of \(M\) and in Section 3.2 Floer type cohomology of \(M\). Consequently, we have:

Theorem 4.1. Let \((M, g, \eta, \xi, \phi)\) be a compact semipositive almost contact metric manifold with a closed fundamental 2-form \(\phi\). Then, for every regular pair \((H, \varphi)\), there is an isomorphism between Floer type cohomology and quantum type cohomology

\[
\Phi : FH^*(M, \phi, H, \varphi) \sim QH^*(M, \Lambda_{\phi}).
\]

Proof. Let \(h : M \to \mathbb{R}\) be a Morse function such that the negative gradient flow of \(h\) with respect to the metric \(\phi(\cdot, \cdot)\) is Morse-Smale and consider the time-independent Hamiltonian

\[
H_t := -\varepsilon h, \quad t \in \mathbb{R}.
\]

If \(\varepsilon\) is sufficiently small, then the 1-periodic solutions of

\[
\dot{a}(t) = X_{t}(a(t))
\]

are precisely the critical point of \(h\). The index is

\[
\mu(a, u_a) = n - \text{ind}_h(a) = \text{ind}_{\varphi}(a) - n
\]

where \(u_a : D \to M\) is the constant map \(u_a(z) = a\).

The downward gradient flow lines \(u : \mathbb{R} \to M\) of \(h\) are solutions of the ordinary differential equation

\[
\dot{u}(s) = J(u)X_t(u).
\]

These solutions determine a coboundary operator

\[
\delta : C^*(M, h, \Lambda_{\phi}) \to C^*(M, h, \Lambda_{\phi}).
\]

This coboundary operator is defined on the same cochain complex as the Floer coboundary \(\delta\), and the cochain complex has the same grading for both complex \(C^*(M, h, \Lambda_{\phi})\), which can be identified with the graded \(\Lambda_{\phi}\) module of all functions.
that satisfy the finiteness condition
\[\#[(a, A)|\xi(a, A)\neq 0, \phi(A)\neq c] < \infty \]
(92)

for all \(c \in R \). The \(\Lambda_\varphi \)-module structure is given by
\[(v \ast \xi)(a, A) = \sum_B v(B)\xi(a, A + B), \]
(93)

the grading is \(\deg(a, A) = \text{ind}_a(a) - 2c_1(A) \), and the coboundary operator \(\delta \) is defined by
\[(\delta \xi)(a, A) = \sum_B n_b(a, b)\xi(b, A), (a, A) \in \text{Crit}(h)H_2(M), \]
(94)

where \(n_b(a, b) \) is the number of connecting orbits from \(a \) to \(b \) of shift equivalence classes of solutions of
\[\{ u(s) + Vu(s) = 0, \lim_{s \to -\infty} u(s) = a, \lim_{s \to -\infty} u(s) = b \}, \]
(95)

counted with appropriate signs.

Here we assume that the gradient flow of \(h \) is Morse-Smale and so the number of connecting orbits is finite when \(\text{ind}_a(a) - \text{ind}_b(b) = 1 \). Then the coboundary operator \(\delta \) is a \(\Lambda_\varphi \)-module homomorphism of degree one and satisfies \(\delta \circ \delta = 0 \). Its cohomology is canonically isomorphic to the quantum type cohomology of \(M \) with coefficients in \(\Lambda_\varphi \).

For each element \(\tilde{a} \in P(H) \) we denote \(M(\tilde{a}, H, \varphi) \) by the space of perturbed \(\varphi \)-cohomomorphic maps \(u : \mathbb{C} \to M \) such that \(u(re^{2\pi i t}) \) converges to a periodic solution \(a(t) \) of the Hamiltonian system \(H \), as \(r \to \infty \). The space \(M(\tilde{a}, H, \varphi) \) has dimension \(n - \mu(\tilde{a}) \). Now fix a Morse function \(h : M \to R \) such that the downward gradient flow \(u : R \to M \) satisfying (95) is Morse-Smale. For a critical point \(b \in \text{Crit}(h) \) the unstable manifold \(W^u(b, h) \) of \(b \) has dimension \(\text{ind}_b(b) \) and codimension \(2n - \text{ind}_b(b) \) in the distribution \(D \).

The submanifold \(M(b, \tilde{a}) \) of all \(u \in M(\tilde{a}, H, \varphi) \) with \(u(0) \in W^u(b) \) has dimension
\[\dim M(b, \tilde{a}) = \text{ind}_b(b) - \mu(\tilde{a}) - n, \]
(96)

If \(\text{ind}_b(b) = \mu(\tilde{a}) + n \), then \(M(b, \tilde{a}) \) is \(\theta \)-zero-dimensional and hence the numbers \(n(b, \tilde{a}) \) of its elements can be used to construct the chain map defined by
\[\Phi : FC'(M, H) \to C'(M, h, \Lambda_\varphi) \]
(97)
\[(\Phi \xi)(b, A) = \sum_{\text{ind}_b(b) - \mu(\tilde{a}) + n} n(b, \tilde{a})\xi(A\tilde{a}) \]
(98)
which is a \(\Lambda_\varphi \)-module homomorphism and raises the degree by \(n \). The chain map \(\Phi \) induces a homomorphism on cohomology.
\[\Phi : FH^*(M, \Lambda_\phi) \to H^*(M, h, \Lambda_\phi) \cong \ker \delta \overset{\text{im} \delta}{\to} QH^*(M, \Lambda_\phi). \]

(99)

Similarly, we can construct a chain map,

\[\Psi : C^*(M, h, \Lambda_\phi) \to FC^*(M, H) \]

(100)

\[
(\Psi \xi)(\tilde{a}) := \sum_{i+\text{ind}(\tilde{b}) = n-\text{ind}(0) - 2c_1(A)} n(-A)^{-\tilde{a}} b \xi(b, A).
\]

(101)

Then \(\Phi \Psi \) and \(\Psi \Phi \) are chain homotopic to the identity. Thus we have an isomorphism \(\Phi \).

We have studied the Gromov-Witten invariants on symplectic manifolds \((M, \omega, J)\) using the theory of \(J\)-holomorphic curves, and the Gromov-Witten type invariants on almost contact metric manifolds \((N, g, \phi, \eta, \xi, \tilde{\phi})\) with a closed fundamental 2-form \(\phi\) using the theory of \(\phi\)-coholomorphic curves. We also have some relations between them. We can apply the theories to many cases.

Examples 4.2.

1. The product of a symplectic manifold and a unit circle.
2. The circle bundles over symplectic manifolds.
3. The almost cosymplectic fibrations over symplectic manifolds.
4. The preimage of a regular value of a Morse function on a Kähler manifold.
5. The product of two cosymplectic manifolds is Kähler.
6. The symplectic fibrations over almost cosymplectic manifolds.
7. The number of a contactomorphism is greater than or equal to the sum of the Betti numbers of an almost contact metric manifold with a closed fundamental 2-form.

Examples 4.3. Let \(N\) be a quintic hypersurface in \(\mathbb{CP}^4\) which is called a Calabi-Yau threefold. Then \(N\) is symplectic connected, \(c_1(TN) = 0\) and its Betti numbers are \(b_0 = b_6 = 1, b_1 = b_5 = 0, b_2 = b_4 = 1\) and \(b_3 = 204\).

Let \(A\) be the standard generator in \(H_2(N)\) and \(h \in H^2(N)\) such that \(h(A) = 1\). The moduli space \(\mathcal{M}_{0,3}(N, A)\) has the dimension zero. The Gromov-Witten invariant \(\Phi_{0,3}^{N, A}(a_1, a_2, a_3)\) is nonzero only when \(\text{deg}(a_i) = 2, i = 1, 2, 3\). In fact, \(\Phi_{0,3}^{N, A}(h, h, h) = 5\) [4, 5]. The quantum cohomology of \(N\) is \(QH^*(N) = H^*(N) \otimes \Lambda\) where \(\Lambda\) is the universal Novikov ring [5].

Let \((N, g_1, \omega_1, J_1)\) be the standard Kähler structure on \(N\) and \((S^1, g_2, \phi_2 = 0, \eta_2 = d\theta, \xi_2 = \frac{d\varphi}{\sin \varphi}, \phi_2 = 0)\) the standard contact structure on \(S^1\). Then the product \(M = NS^1\) has a canonical cosymplectic structure \((M, g, \phi, \eta, \xi, \phi)\) as in Section 3. The quantum type cohomology of \(M\) is
\[QH^*(M) = QH^*(N) \otimes QH^*(S^1) \] (102)

Let \(\psi_1 : N \to N \) be a Hamiltonian symplectomorphism with nondegenerate critical points. Then \(\# \text{Fix}(\psi_1) \geq \sum_{i=0}^6 b_i(N) = 208 \).

Let \(\psi_2 : M \to M \) be a Hamiltonian contactomorphism with nondegenerate critical points. Then
\[\# \text{Fix}(\psi_2) \geq \sum_{i=0}^7 b_i(M) = 416. \]

Author details

Yong Seung Cho

Address all correspondence to: yescho@ewha.ac.kr

Department of Mathematics, Ewha Womans University, Seoul, Republic of Korea

References

