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1. Introduction 

Most practical engineering optimization problems are multi-objective, i.e., their solution 
must consider simultaneously various performance criteria, which are often conflicting. 
Multi-Objective Evolutionary Algorithms (MOEAs) are particularly adequate for solving 
these problems, as they work with a population (of vectors or solutions) rather than with a 
single point (Schaffer, 1984; Fonseca & Fleming, 1993; Srinivas & Deb, 1995; Horn et al., 1994; 
Deb et al., 2002; Zitzler et al., 2001; Knowles & Corne, 2000; Gaspar-Cunha et al. 2004). This 
feature enables the creation of Pareto frontiers representing the trade-off between the 
criteria, simultaneously providing a link with the decision variables (Deb, 2001, Coello et al., 
2002). Moreover, since in real applications small changes of the design variables or of 
environmental parameters may frequently occur, the performance of the optimal solution 
(or solutions) should be only slightly affected by these, i.e., the solutions should also be 
robust (Ray, 2002; Jin & Branke, 2005). The optimization problems involving unmanageable 
stochastic factors can be typified as (Jin & Branke, 2005): i) those where the performance is 
affected by noise originated by sources such as sensor measurements and/or environmental 
parameters (Wiesmann et al., 1998; Das, 1997); ii) those where the design variables change 
after the optimal solution has been found (Ray, 2002; Tsutsui & Ghosh, 1997; Chen et al., 
1999); iii) problems where the process performance is estimated by an approximation to the 
real value; iv) and those where the performance changes with time, which implies that the 
optimization algorithm must be updated continuously. This text focuses exclusively 
problems of the second category. 
Given the above, optimization algorithms should determine the solutions that 
simultaneously maximize performance and guarantee satisfactory robustness, but the latter 
is rarely included in traditional algorithms. As robustness and performance can be 
conflicting, it is important to know their interdependency for each optimization problem. A 
robustness analysis should be performed as the search proceeds and not after, by 
introducing a robustness measure during the optimization. Robustness can be studied either 
by replacing the original objective function by an expression measuring both the 
performance and the expectation of each criterion in the vicinity of a specific solution, or by 
inserting an additional optimization criterion assessing robustness in addition to the original O
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criteria. As will be demonstrated in the next sections, in the first situation the role of the 
optimization algorithm is to find the solution that optimizes the expectation (in the vicinity 
of the solutions considered) of the original criterion (or criteria), while in the second case a 
trade-off between the original criteria and the robustness measure is obtained (Jin & 
Sendhoff, 2003).  
In single objective (or criterion) optimization, the best solution is the one that satisfies 
simultaneously performance and robustness. Robust single objective optimization has been 
applied to various engineering fields and using different optimization methodologies 
(Ribeiro & Elsayed, 1995; Tsutsui & Ghosh, 1997; Das, 1997; Wiesmann et al., 1998; Du & 
Chen, 1998; Chen et al. 1999; Ray, 2002; Arnold & Beyer, 2003; Sorensen, 2004). However, 
only recently robustness analysis has been extended to Multi-Objective Optimization 
Problems (MOOP) (Kouvelis & Sayin 2002; Bagchi, 2003; Jin & Sendhoff, 2003; Kazancioglu 
et al., 2003; Gaspar-Cunha & Covas, 2005; Ölvander, 2005; Guanawan & Azarm, 2005; Deb & 
Gupta, 2006; Paenke et al., 2006; Barrico & Antunes, 2006; Moshaiov & Avigrad, 2006; 
Gaspar-Cunha & Covas, 2008). Depending on the type of Pareto frontier, the aim can be: i) 
to locate the optimal Pareto front’s most robust section (Deb & Gupta, 2006; Gaspar-Cunha 
& Covas, 2008) and/or ii) in the case of a multimodal problem, to find the most robust 
Pareto frontier, and not only the most robust region of the optimal Pareto frontier 
(Guanawan & Azarm, 2005; Deb & Gupta, 2006).  
An important question arising from MOOP is the choice of the (single) solution to be used 
on the real problem under study (Ferreira et al., 2008). Generally, to select a solution from 
the pool of the available ones, the Decision Maker (DM) characterizes the relative 
importance of the criteria and subsequently applies a decision methodology. The use of a 
weighted stress function approach (Ferreira et al., 2008) is advantageous, as it enables the 
DM to define the extension of the optimal Pareto frontier to be obtained, via the use of a 
dispersion parameter. This concept could be adapted by taking into account robustness and 
not the relative criteria importance. 
Consequently, this work aims to discuss robustness assessment during multi-objective 
optimization using a MOEA, namely in terms of the identification of the robust region (or 
regions) of the optimal Pareto frontier. The text is organized as follows. In section 2, 
robustness concepts will be presented and extended to multi-objective optimization. The 
multi-objective evolutionary algorithm used and the corresponding modifications required 
to take robustness into account will be described and discussed in section 3. The 
performance of the robustness measures will be evaluated in section 4 via their application 
to several benchmark multi-objective optimization problems. Finally, the main conclusions 
are summarized in section 5. 

2. Robustness concepts 

2.1 Single objective optimization 
A single objective optimization can be formulated as follows: 

 

( )
( )
( )

maxlmin,l

lk

lj

l
x

,xlxx

K,,kxh

J,,jxg

L,,lxfmax
l

≤≤
=≥

==

=

A
A

A

10

10tosubject

1

 (1) 

www.intechopen.com



Evolutionary Multi-Objective Robust Optimization 

 

263 

where xl are the L parameters (or design vectors) x1, x2, …, xL, gj and hk are the J equality (J≥0) 
and K inequality (K≥0) constraints, respectively, and xl,min and xl,max are the lower and upper 
limits of the parameters. 
The most robust solution is that for which the objective function f is less sensitive to 
variations of the design parameters xl.  Figure 1 shows the evolution of the objective 
function f(x1,x2) (to be maximized) against the design parameter x1, when another factor 
and/or the design parameter x2 changes slightly from x2’ to x2’’. Solution S2 is less sensitive 
than solution S1 to variations of x2, since the changes in the objective function are less 
significant (Δf2 and Δf1 for S2 and S1, respectively) and, consequently, it can be considered as 
the most robust solution (taking into consideration that  here robustness is measured only as 
a function of changes occurring in the objective function). On the other hand, since S1 is 
more performing than S2, a balance between performance (or fitness) of a solution and its 
robustness has to be done. In spite of its lower fitness, solution S2 is the most robust and 
would be the selected one by an optimization algorithm (Guanawan & Azarm, 2005; 
Gaspar-Cunha & Covas, 2005; Deb & Gupta, 2006; Paenke et al., 2006; Gaspar-Cunha & 
Covas, 2008). 
 

 

Fig. 1. Concept of robustness in the case of a single objective function 

Two major approaches have been developed in order to deal with robustness in an 
optimization process (Ray, 2002; Jin & Sendhoff, 2003; Gaspar-Cunha & Covas, 2005; Deb & 
Gupta, 2006; Gaspar-Cunha & Covas, 2008): 
- Expectation measure: the original objective function is replaced by a measure of both its 
performance and expectation in the vicinity of the solution considered. Figure 2 illustrates 
this method. Figure 2-A shows that in function f(x), having five different peaks, the third is 
the most robust, since fitness fluctuations around its maximum are smaller. However, most 
probably, an optimization algorithm would select the first peak. An expectation measure 

x1 
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takes this fact into account by replacing the original function by another such as that 
illustrated in Figure 2-B. Now, if a conventional optimization is performed using this new 
function, the peak selected (peak three) will be the most robust. Various types of expectation 
measures have been proposed in the literature (Tsutsui & Ghosh, 1997; Das, 1997; Wiesmann 
et al., 1998; Jin & Sendhoff, 2003; Gaspar-Cunha & Covas, 2005; Deb & Gupta, 2006; Gaspar-
Cunha & Covas, 2008). 
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Fig. 2. Expectation measure for a single objective function 

- Variance measure: An additional criterion is appended to the objective function to 
measure the deviation of the latter around the vicinity of the design point. Variance 
measures take only into account function deviations, ignoring the associated performance. 
Thus, in the case of a single objective function, the optimization algorithm must perform a 
two-criterion optimization, one concerning performance and the other robustness (Jin & 
Sendhoff, 2003; Gaspar-Cunha & Covas, 2005; Deb & Gupta, 2006; Gaspar-Cunha & Covas, 
2008).  
Deb & Gupta (2006) denoted the above two approaches as type I and II, respectively. The 
performance of selected expectation and variance measures was evaluated in terms of their 
capacity to detect robust peaks (Gaspar-Cunha & Covas, 2008), by assessing such features 
as:  i) easy application to problems where the shape of the objective function is not known a 
priori, ii) capacity to define robustness regardless of that shape, iii) independence of the 
algorithm parameters, iv) clear definition of the function maxima in the Fitness versus 
Robustness Pareto representation, and v) efficiency. The best performance was attained 
when the following variance measure was used:  
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and 
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representing the limits of its range of variation, N´ is the number of population individuals 
whose Euclidian distance between points i and j (di,j) is lower than dmax (i.e., di,j < dmax): 
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and M is the number of criteria. The smaller fRi, the more robust the solution is. 

2.2 Extending robustness to multiple objectives 
In a multi-objective optimization various objectives, often conflicting, co-exist: 
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where fm are the M objective functions of the L parameters (or design vectors) x1, x2, …, xL 
and gj and hk are the J equality (J≥0) and K inequality (K≥0) constraints, respectively. 
The application of a robustness analysis to MOOPs must consider all the criteria 
simultaneously. As for single objective, a multi-objective robust solution must be less 
sensitive to variations of the design parameters, as illustrated in Figure 3. The figure shows 
that the same local perturbation on the parameters space (x1, x2) causes different behaviours 
of solutions I and II. Solution I is more robust, as the same perturbations on the parameters 
space causes lower changes on the objective space. Each of the Pareto optimal solutions 
must be analysed in what concerns robustness, i.e., its sensitivity to changes on the design 
parameters. Since robustness must be assessed for every criterion, the combined effect of 
changes in all the objectives must be considered simultaneously and used as a measure of 
robustness. 
 

 
Fig. 3. Concept of robustness for multi-objective functions 
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In multi-objective robust optimization the aim is to obtain a set of Pareto solutions that are, 
at the same time, multi-objectively robust and Pareto optimal. As shown in Figure 4, 
different situations may arise (Guanawan & Azarm, 2005; Deb & Gupta, 2006): 
1. All the solutions on the Pareto-optimal frontier are robust (Figure 4-A); 
2. Only some of the solutions belonging to the Pareto-optimal frontier are robust (Figure 

4-B); 
3. The solutions belonging to the Pareto-optimal frontier are not robust, but a robust 

Pareto frontier exists (Figure 4-C); 
4. Some of the robust solutions belong to the Pareto-optimal frontier, but others do not 

(Figure 4-D). 
 

 

Fig. 4. Optimal Pareto frontier versus robust Pareto frontier 
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All the above situations should be taken into consideration by a resourceful optimization 
algorithm.  When the DM is only interested in the most robust section of the optimal Pareto 
frontier (see Figure 5), this can be done by using, for example, the dispersion parameter 
referred above. 
 

 

Fig. 5. Robust region of the optimal Pareto frontier (Test Problem 1, see below) 

3. Multi-objective optimization 

3.1 Multi-Objective Evolutionary Algorithms (MOEAs) 
Multi-Objective Evolutionary Algorithms (MOEAs) are an efficient tool to deal with the 
above type of problems, since they are able to determine in a single run the optimal Pareto 
front. For that reason, they have been intensively used in the last decade (Fonseca & 
Fleming, 1998; Deb, 2001, Coello et al., 2002; Gaspar-Cunha & Covas, 2004).  
A MOEA must provide the homogeneous distribution of the population along the Pareto 
frontier, together with improving the solutions along successive generations. Usually, a 
fitness assignment operator is applied to guide the population towards the Pareto frontier 
using a robust and efficient multi-objective selection method, as well as a density estimation 
operator to maintain the solutions dispersed along the Pareto frontier, as it is able to take 
into account the proximity of the solutions. Moreover, in order to prevent fitness 
deterioration along the successive generations, an archiving process is introduced by 
maintaining an external population where the best solutions found sequentially are kept 
and periodically incorporated into the main population. 
The Reduced Pareto Set Genetic Algorithm with elitism (RPSGAe) will be adopted in this 
chapter (Gaspar-Cunha et al., 1997), although some changes in its working mode have to be 
implemented in order to take into account the robustness procedure proposed. RPSGAe is 
able to distribute the solutions uniformly along the Pareto frontier, its performance having 
been assessed using benchmark problems and statistical comparison techniques. The 
method starts by sorting the population individuals in a number of pre-defined ranks using 
a clustering technique, thus reducing the number of solutions on the efficient frontier while 

Optimal Pareto 
frontier 

Robust section 

www.intechopen.com



 Advances in Evolutionary Algorithms 

 

268 

maintaining intact its characteristics (Gaspar-Cunha & Covas, 2004). Then, the individuals’ 
fitness is calculated through a ranking function. With the aim of incorporating this 
technique, the traditional GA was modified as follows (Gaspar-Cunha & Covas, 2004): 
 

1. Random initial population (internal) 
2. Empty external population 
3. while not Stop-Condition do 
 a- Evaluate internal population 
 b- Calculate expectation and/or robustness measures 
 c- Calculate niche count (mi) 
 d- Calculate the Ranking of the individuals using the RPSGAe 
 e- Calculate the global Fitness ( )i(F

~ ) 

 f- Copy the best individuals to the external population 
 g- if the external population becomes full 
  Apply the RPSGAe to this population 
  Copy the best individuals to the internal population 
 end if 
 h- Select the individuals for reproduction 
 i- Crossover 
 j- Mutation 
end while 
 

As described above, the calculations start with the random definition of an internal 
population of size N and of an empty external population of size Ne. At each generation, a 
fixed number of the best individuals (that was obtained by reducing the internal population 
with the clustering algorithm), is copied to an external population (Gaspar-Cunha et al., 
1997). The process is repeated until the external population becomes complete. Then, the 
RPSGAe is applied to sort the individuals of this population, and a pre-defined number of 
the best individuals is incorporated in the internal population, by replacing the lowest 
fitness individuals. Detailed information on this algorithm can be found elsewhere (Gaspar-
Cunha & Covas, 2004; Gaspar-Cunha, 2000). 

3.2 Introducing robustness in MOEAs 
Three additional steps must be added on to the RPSGAe presented above, to comprise 
robustness estimation. They consist of a computation of robustness measures (taking into 
account the dispersion parameter), a niche count and the determination of the global fitness, 
yielding the general flowchart of Figure 7. The dispersion parameter (ε’) quantifies the 
extension of the robust section to be obtained (see Figure 5). This parameter can be defined 
by the DM and ranges between 0, when a single solution is to be obtained, and 1, when the 
entire optimal Pareto frontier is to be obtained. In order to consider the influence of the 
dispersion parameter (ε’), the way how the indifference limits (

jL
~ ) and the distances 

between the solutions (
k,jD

~ ) are defined in the RPSGAe algorithm was also changed (see 

Gaspar-Cunha & Covas, 2004), the following equations being used:  
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Here, max R and min R are the maximum and the minimum values of the robustness found 
for each generation, respectively, Li are the indifference limits for criterion i, Dj,k is the 
difference between the criterion value of solutions j and k, R(indk+1) is the robustness 
measure of the individual located in position k+1 after the population was ordered by 
criterion j. The robustness measure is calculated by Equation 2, thus when R increases the 
robustness of the solution decreases. In these equations, the dispersion parameter (ε’) plays 
an important role. If ε’=1, equations 5 and 6 are reduced to Li and Di,j, respectively, and the 
algorithm will converge for the entire robust Pareto frontier. Otherwise, when ε´ decreases, 
the size of the robust Pareto frontier decreases as well. In a limiting situation, i.e., when ε’ is 
approximately nil, a single point is obtained. Figure 8 shows curves of 

jj L/L
~  and 

k,jk,j D/D
~  

ratios against the dispersion parameter, for different values of R (2.0, 0.5 and 0.1).  
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Fig. 7. Flowchart of the robustness routine 
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(see equation 6). Thus, at constant R, when ε´ 

decreases means that influence of the difference between the value of solutions j and k (i.e., 
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Dj,k) on 
k,jD

~  diminishes. Therefore, for small values of the dispersion parameter, the 

attribution of the fitness by the RPSGAe algorithm is made almost exclusively by the value 
of the robustness of the solutions and not by taking into account the distance between them. 
This procedure avoids that robust solutions are eliminated during the consecutive 
generations in case they are next to each other. An identical analysis can be made for 
different robustness values (R in Figure 8). When R increases (i.e., when the robustness 
decreases) the value of 

k,jk,j D/D
~  must decreases in order to produce the same result. The 

same reasoning applies to the 
jj L/L

~ ratio. 
 

 

Fig. 8.  Shape of the curves of 
jj L/L

~  and 
k,jk,j D/D

~  rates as a function of the dispersion 

parameter for different R values  

The niche count was considered using a sharing function (Goldberg & Richardson, 1987): 
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where sh(dij) is related to individual i and takes into account its distance to all its neighbours 
j (dij).  
Finally, the global fitness was calculated using the following equation: 
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In conclusion, the following calculation steps must be carried out (see Figure 7): 
1. The robustness routine starts with the definition of the number of ranks (Nranks), the 

span of the Pareto frontier to be obtained (ε ∈ [0,1]) and the maximum radial distance to 
each solution to be considered in the robustness calculation (dmax); 
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2. To reduce the sensitivity of the algorithm to small values of the objective functions, the 
dispersion parameter is changed as ε’ = ε2; 

3. For each individual, i, robustness , R(i), and niche count, m(i) , are determined using 
equations 2 and 7, respectively; 

4. The RPSGAe algorithm is applied, with the modifications introduced by equations 5 
and 6, to calculate Rank(i); 

5. For each solution, i, the new fitness is calculated using equation 8. 

4. Results and discussion 

4.1 Test problems 
The robustness methodology presented in the previous sections will be tested using the 7 
Test Problems (TP) listed below, each of different type and with distinctive Pareto frontier 
characteristics. Each TP is presented in terms of its creator, aim, number of decision 
parameters, criteria and range of variation of the decision parameter.  
TP 1 and 2 are simple one parameter problems, the first having one region with higher 
robustness, while the second contains three such regions. TP 3 to TP5 are complex MOOPs 
with 30 parameters each, and two criteria. TP3 and TP4 have a single region with higher 
robustness and the Pareto frontier is convex and concave, respectively. TP5 has a 
discontinuous Pareto frontier with a single region with higher robustness. TP 6 and TP7 are 
the three criteria version of TP1 and TP4, respectively.  
Three studies will be performed, to determine: i) the effect of the RPSGAe algorithm, i.e., 
Nranks, and dmax; ii) the effect of the value of the dispersion parameter and iii) the performance 
of the robustness methodology for different type of problems.  
The RPSGAe algorithm parameters utilized are the following: Nranks = 20 (the values of 10 
and 30 were also used for the first study), dmax = 0.008 (0.005 and 0.03 were also tried in the 
first study), indifference limits equal to 0.1 for all criteria, SBX real crossover operator with 
an index of 10 and real polynomial mutation operator with and index of 20. 
TP 1: x ∈[-2;6]; Minimize; L=1; M=2. 
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TP 2: x ∈ [0;5]; Maximize; L=1; M=2. 
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TP 3 (ZDT1): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002. 
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TP 4 (ZDT2): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002. 
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TP 5 (ZDT3): xi ∈[0;1]; Minimize; L=30; M=2; Deb, Pratapat et al., 2002. 
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TP 6: x1 ∈[0;2π]; x2 ∈[0;5]; Minimize; L=2; M=3. 
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TP 7 (DTLZ2): xi ∈[0;1]; Minimize; L=12; M=3; Deb, Thiele et al., 2002. 

 

( )

( )

( )

∑
=

−=

⎟
⎠
⎞

⎜
⎝
⎛+=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+=

L

i

i ).x()x(g,

xsin.)x(g)x(f

xsin.xcos.)x(g)x(f

xcos.xcos.)x(g)x(f

3

2

13

212

211

50with

2
1

22
1

22
1

π

ππ

ππ

 (15) 

4.2 Effect of the RPSGAe parameters 
Figure 9 compares the results obtained with the robustness procedure for TP 1 and TP4, 
using different values of the parameter. The line indicates the optimal Pareto frontier and 
the dots identify the solutions obtained with the new procedure. As shown, the algorithm is 
able to produce good results independently of the value of Nranks (hence, in the remaining of 
this study Nranks was set as 20).  
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Similar conclusions were obtained for dmax parameter - Figure 10, so dmax was kept equal to 
0.008. 
 

 

Fig. 9. Influence of Nranks parameter for TP1 and TP4 
 

 

Fig. 10. Influence of dmax parameter for TP1 and TP4 

4.3 Effect of the dispersion parameter 
The aim of the dispersion parameter is to provide the Decision Maker with the possibility of 
choosing different sizes of the optimal/robustness Pareto frontier. Figure 11 shows the 
results obtained for TP1 using different values of that parameter, identical outcomes having 
been observed for the remaining test problems. The methodology seems to be sensitive to 
the variation on the dispersion parameter, which is a very positive feature.  
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4.4 Effect of the type of problem 

The results obtained for TP2 to TP7, using ε = 0.1, are presented in Figure 12. The algorithm 
is able to deal with the various types of test problems proposed. TP2 is a difficult test 
problem due to the need to converge to the three different sections with the same 
robustness. TP3 and TP4 show that the algorithm proposed can converge to the most robust 
region even for problems with 30 parameters or of discontinuous nature.  Finally, TP6 and 
TP7 show that the methodology proposed is able to deal with more than two dimensions 
with a good convergence, which is not generally the case for current optimization 
algorithms available. 

5. Conclusions 

This work presented and tested an optimization procedure that takes into account 
robustness in multi-objective optimization. It was shown that the method is able to deal 
with different types of problems and with different degrees of complexity.  
The extension of the robust Pareto frontier can be controlled by the Decision Maker by 
making use of a dispersion parameter. The effectiveness of this parameter was 
demonstrated in a number of test problems. 
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Fig. 11. Influence of dispersion parameter for TP1 
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Fig. 12. Results for TP2 to TP7 (ε=0.1) 
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