We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,000
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Absorption and Transport of Inorganic Carbon in Kelps with Emphasis on Saccharina japonica

Yanhui Bi and Zhigang Zhou

Abstract

Due to the low CO$_2$ concentration in seawater, macroalgae including Saccharina japonica have developed mechanisms for using the abundant external pool of HCO$_3^-$ as an exogenous inorganic carbon (C$_i$) source. Otherwise, the high photosynthetic efficiency of some macroalgae indicates that they might possess CO$_2$ concentrating mechanisms (CCMs) to elevate CO$_2$ concentration intracellularly around the active site of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCo). As the photosynthetic modes of macroalgae are diverse (C$_3$, C$_4$ or a combination of C$_3$ and C$_4$ pathway), CCMs in different carbon fixation pathways should vary correspondingly. However, both in C$_3$ and C$_4$ pathways, carbonic anhydrase (CA) plays a key role by supplying either CO$_2$ to RuBisCO or HCO$_3^-$ to PEPC. Over the past decade, although CA activities have been detected in a number of macroalgae, genes of CA family, expression levels of CA genes under different CO$_2$ concentrations, as well as subcellular location of each CA have been rarely reported. Based on analysis the reported high-throughput sequencing data of S. japonica, 12 CAs of S. japonica (SjCA) genes were obtained. Neighbor-Joining (NJ) phylogenetic tree of SjCAs constructed using Mega6.0 and the subcellular location prediction of each CA by WoLFPSORT are also conducted in this article.

Keywords: Macroalgae, Inorganic carbon uptake, C$_3$ and C$_4$ metabolism, Carbonic anhydrase, Saccharina japonica

1. Introduction

Kelps demonstrate high photosynthetic rates. According to the reports, productivity of large brown algae (e.g., Macrocystis, Laminaria, Ecklonia, Sargassum) ranges from 1000 to 3400 g m$^{-2}$ yr$^{-1}$ C or about 3300 to 11,300 g m$^{-2}$ yr$^{-1}$ dry weight, and red algae show a similar range of produc-
Cultivated macroalgae can yield even higher values. The projected yield of cultivated *Laminaria japonica* on an annualized basis is equivalent to 1300 t ha⁻¹ fresh weight or 6.5 times the maximum projected yield for sugarcane, the most productive of land plants under cultivation. In general, 45% yield of the dry weight of plants is accounted by carbon, which is assimilated in plant through Calvin cycle. The high productivities of kelps indicate their higher photosynthetic efficiency than C4 terrestrial plants [1].

The enzyme ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCo) is crucial in CO₂ assimilation. This bifunctional enzyme could catalyse the initial steps of photosynthetic carbon reduction and photorespiratory carbon oxidation cycles by combining CO₂ and O₂ with ribulose-1, 5-bisphosphate (RuBP) [2, 3]. RuBP carboxylation determines the net photosynthetic efficiency of photoautotrophs [4]. However, RuBisCo has a surprisingly low affinity for CO₂ and the oxygenase activity is intrinsic to RuBisCo. For kelps, the enzymatic efficiency of RuBisCo is also limited by the low concentration and diffusion coefficient of CO₂ in seawater [5]. At a natural pH of about 8, the major part of the dissolved inorganic carbon (DIC) is in the form of bicarbonate (HCO₃⁻), and only about 12 μM is present as dissolved CO₂ [6], which is much lower than the half-saturation constant (Ks) of RuBisCo for CO₂ ranges from 30 μM to 60 μM in marine macroalgae [7, 8]. To support photosynthesis and growth, seaweeds require an exogenous inorganic carbon (Cᵢ), while only CO₂ and HCO₃⁻ can be used as a CO₂ source for photosynthesis. Due to the low CO₂ concentration in seawater, it is not surprising that most seaweed have developed mechanisms for using the abundant external pool of HCO₃⁻ as an exogenous Cᵢ source [9–11]. And it seems likely that those macrophytes that are able to use HCO₃⁻ would possess advantages compared with that rely solely on diffusive CO₂ entry. Here the question is how Cᵢ is absorbed, transported to supply high CO₂ concentration around RuBisCo in kelps since unlike CO₂, HCO₃⁻ cannot diffuse through the lipid bilayer of the plasma membrane [12] and the produced or absorbed CO₂ are readily leaked out due to the high CO₂ permeability of cytomembrane. Otherwise, different models of photosynthesis such as C3, C4 and CAM might employ different CCMs in kelps. Thus, this review mainly focuses on the mechanisms of Cᵢ absorption, transportation and concentration mechanisms of multicellular marine algae, including representatives of Chlorophyceae, Rhodophyceae and Phaeophyceae with different photosynthetic types.

2. Photosynthetic modes of macroalgae

As with terrestrial angiosperms where a single family may possess species with divergent photosynthetic modes [13], the marine macroagal divisions also exhibit diversity. The photosynthetic carbon fixation pathways of marine macrophytic algae generally follow that of C3 plants [14]. However, for certain genera, a number of studies have shown photosynthesis to possess C4-like photosynthetic characteristics, including the high phosphoenolpyruvate carboxykinase (PEPCK) activity with low phosphoenolpyruvate carboxylase (PEPC) activity, little photorespiration and the labelling of malate and aspartate as an early product of carbon
fixation. Based on this, it has been suggested that these macroalgae are of the C4 type, or a combination of C3 and C4, type [15–17], although Kremer and Küppers [18] had contradicted the decision whether a species is a C4 plant or not based only on chromatographic and enzymatic analysis. In recent decades, our understanding of the possible metabolic pathways of macroalgae has been extended with using the available sequencing resources and molecular technologies and applying molecular approaches. Reiskind et al. [19] reported that a limited C4-like system in the green alga *Udotea* with the high PEPCK activity and low PEPC activity was a novel characteristic. Whereafter, Reiskind and Bowes [20] found that when PEPCK activity was inhibited *in vivo* with 3-mercaptopicolinic acid, thallus photosynthesis was decreased by 70% and the labelling of early photosynthetic products such as malate and aspartate was reduced by 66% and thus provided new evidences for the existence of C4 acid metabolism in this green alga. In contrast to *Udotea*, *Codium*, a macroalga closely related to *Udotea*, exhibits gas exchange characteristics that resemble terrestrial C3 plants, and neither C4 acids nor PEPCK plays a part in photosynthesis [19]. This demonstrates the diversity of photosynthetic mechanisms in the Chlorophyta. *Ulva*, a common green seaweed, was previously reported as a typical C3 plant based on some biochemical evidences that 3-phosphoglyceric acid (3-PGA) was the main primary product formed photosynthetically and a high RuBPcase/PEPcase ratio was found in it [21], while, recently, it was reported that *Ulva* possessed rather comprehensive carbon fixation pathways including C3, C4 and CAM mechanisms because key genes of enzymes involved in these photosynthetic modes were got from the expressed sequence tag (EST) using Kyoto encyclopedia of genes and genomes (KEGG) [22]. Recently, C4-like carbon fixation pathway was also found in representatives of Rhodophyceae and Phaeophyceae based on the analysis of ESTs or transcriptomes. In red algae, Fan et al. [23] speculated that the sporophyte of *Pyropia haitanensis* most likely possesses a C4-like carbon fixation pathway since genes of the key enzymes in the PCK-type C4 carbon-fixation pathway were abundantly transcribed. Wang et al. [24] assumed that a C4-like carbon-fixation pathway might play a special role in fixing inorganic CO₂ in *Porphyra yezoensis* with the evidence that except pyruvate-phosphate dikinase all genes involved in C4-pathway were discovered from the transcriptome. Xu et al. [25] had reported that PEPCK, an important enzyme in carbon fixation in C4 plants, had very high activity in the sporophyte of *L. japonica*. Besides, haploid gametophytes and diploid sporophytes of some marine macroalgae with dimorphic life cycles might even employ different photosynthetic mode. Wang et al. [24] found that both the RuBisCo content and the initial carboxylase activity were notably higher in gametophytes than in the sporophytes of four seaweed species — *P. yezoensis*, *P. haitanensis*, *Bangia fuscopurpurea* (Rhodophyte) and *L. japonica* (Phaeophyceae). They assumed that in the sporophyte of these algae, the major carbon fixation pathway may be a C4-like carbon fixation pathway, and thus a high abundance of RuBisCo would not be necessary for the sporophytes. And for *L. japonica*, the higher RuBisCo content and activity in gametophyte was corresponding to the lower photosynthetic rate, which implied there might be a greater difference between sporophytes and gametophytes of this alga in their photosynthetic mode. Conclusively, the existence of C4-like pathway in macroalgae has been verified using more evidence, while the distribution between C3 and C4 pathways was unknown during growth of macroalgae with comprehensive carbon fixation pathways including C3 and C4.
In C3 and C4 metabolisms, CO$_2$ is the substrate of RuBisCo and assimilated through the Calvin cycle. In this cycle, CO$_2$, catalysed with RuBisCo, combines with RuBP to form two molecules of 3-PGA. PGA is reduced to triose. RuBisCo, a bifunctional enzyme, may catalyse the combination of RuBP and CO$_2$ for photosynthetic carbon reduction or may combine with O$_2$ for C$_2$ photorespiration [3]. The ratio of CO$_2$ to O$_2$ around RuBisCo is a major factor for the enzyme to choose the photosynthetic carbon reduction or C$_2$ photorespiration [26]. The low CO$_2$ concentration around RuBisCo may not only impose restrictions on photosynthesis but also cause permanent light injuries to photosynthetic organelle [27–29]. The speciation of DIC (C$_i$) is pH dependent. Above pH 4.5, the proportion occurring as CO$_2$ (aq) decreases and HCO$_3^-$ increases, while above pH 8.3, the bicarbonate equivalence point, the equilibrium begins to shift towards carbonate (CO$_3^{2-}$). In the upper layer of the oceans, HCO$_3^-$ ions predominate, and the dissolved CO$_2$ represents only about 1% of the total dissolved carbon with a concentration of about 21 μM [30]. The Km (CO$_2$) value of RuBisCO is significantly higher than this, having been reported as being as high as 200 μM in some cyanobacteria [31]. To survive under the selective pressure of low CO$_2$ concentration, high permeability of CO$_2$ for plasma membrane and low affinity of CO$_2$ for RuBisCo, many algae, including macroalgae living in the subtidal zone, have evolved with inorganic CCM that allows them to overcome this potentially limiting shortage of CO$_2$ [9, 32–36]. So, the productivity of most macroalgae is not currently considered limited by DIC. Unlike terrestrial C4 plants possessing Kranz anatomy to prevent futile recycling of CO$_2$ by segregating the initial carboxylation and decarboxylation reactions in different cells, macroalgae concentrate CO$_2$ internally, which is mediated by C$_i$ transporters at the plasma membrane or chloroplast envelope and CA. As for carboxylases are different between C3 and C4 metabolism, C$_i$ acquisition, transportation and concentration mechanisms might be diverse.

Based on a series of reports on the presence of CCM in blue-green algae and *Chlamydomonas* (*Chlamydomonas reinhardtii*) and some other microalgae [37–40], Badger [41] reported that the CCM of algae possess at least three functional elements: (1) the transportation of the C$_i$ dissolved in seawater into cells in the form of CO$_2$ and/or HCO$_3^-$; (2) the accumulation of the C$_i$ in cells in the form of HCO$_3^-$, forming pools of the dissolved C$_i$ and (3) the delivery of CO$_2$ to the periphery of RuBisCo from such pools.

3. Inorganic carbon absorption mechanisms of macroalgae

The methods of CO$_2$ and/or HCO$_3^-$ absorption of macroalgae cells (Figure 1) include the following: (1) non-CCM macroalgae (that do not possess or use CCM) rely exclusively on diffusive uptake of CO$_2$, (2) CCM macroalgae uptake of C$_i$ as CO$_2$ and/or HCO$_3^-$ via mechanisms of the external carbonic anhydrase (CA$_{ext}$) mechanism, the anion exchange (AE) transport mechanism, the plasma membrane associated with H$^+$/ATPase mechanism and passive transport of CO$_2$ by diffusion. In the first mechanism, HCO$_3^-$ in the periplasmic space is converted to CO$_2$ at the presence of CA$_{ext}$, an enzyme that is located in the cell wall in the...
majority of seaweeds and could be inhibited by the membrane impermeable acetazolamide (AZ), and then the resulting CO$_2$ is readily taken into the cell by passive diffusion. This seems to be the most prevalent for HCO$_3^-$ utilization among seaweeds [42, 43], but it may be non-functional under high pH (>9.00) [44, 45]. The AE transport mechanism is HCO$_3^-$ direct uptake through the AE protein in plasma membrane [11, 43, 46–48], which is 4,4’-diisothiocyanostilbene-2,2’-disulfonate (DIDS) sensitive. This operates equally well at pH 8.4 and 9.4 [44, 45].

H$^+$/ATPase mechanism refers to a plasma membrane associated H$^+$/ATPase pump that extrudes the excess cellular H$^+$ to the outside of the plasma membrane facilitating a H$^+$/HCO_3^- co-transportation or enhancement of the external uncatalysed dehydration of HCO$_3^-$ to CO$_2$ in the periplasmic space [49]. However, this has only been reported in some Laminariales such as S. latissima and L. digitata. Along with the uptake of CO$_2$ and/or HCO$_3^-$, the internal charge balance (OH$^-$/H$^+$) will be absolutely changed. To maintain intracellular ion balance, macroalgae employ diverse strategies. In AE mechanism, the active transport of HCO$_3^-$ into the cell might result in an outward flux of OH$^-$ [50–53, 45] as this mechanism is involved in a one-for-one exchange of anions across the plasma membrane. The OH$^-$ efflux can increase H$^+$ in the cell [52]. To maintain the intracellular OH$^-$/H$^+$ balance, H$^+$ extrusion might be required. In macroalgae possessing H$^+$/ATPase mechanism, their plasma membrane associated with H$^-$
ATPase pump might extrude excess cellular H+ to the outside of the plasma membrane, while in macroalgae that do not have H+-ATPase pump in their plasma membrane, the regulation of intracellular ion balance might be related to a high activity of internal carbonic anhydrase (CA\text{int}), including the CA in cytoplasm, chloroplast stroma, thylakoid lumen and mitochondria [45].

The extent to which marine macroalgae are able to acquire HCO$_3^-$ for photosynthesis varies among taxa and/or species, and the special strategies by which the alga acquire C\text{\textsubscript{i}} is closely related to habitat including pH and depth, conferring as adaptation advantage to the alga [9, 33, 36, 54–56]. Cornwall et al. [57] reported when light is low, CCM activity of macroalgae is reduced in favour of diffusive CO$_2$ uptake and the proportion of non-CCM (diffusive uptake of CO$_2$) species increased with depth. Otherwise, pH might also control C\text{\textsubscript{i}} use by macroalgae. In Ulva lactuca, the CA\text{\textsubscript{ext}}-mediated mechanism is the main method of HCO$_3^-$ utilization under normal pH conditions, whereas when they were grown at high pH, direct uptake of HCO$_3^-$ via a DIDS-sensitive mechanism can be induced [44]. Similar HCO$_3^-$ utilizing mechanisms were found in another green macroalgae Enteromorpha intestinalis [54]. For the red alga Gracilaria gadingana, the HCO$_3^-$ use is also carried out by the two DIC uptake mechanisms, in which the indirect use of HCO$_3^-$ by an external CA activity being the main pathway and the potential contribution to HCO$_3^-$ acquisition by the DIDS-sensitive AE mechanism was higher after culturing at a high pH [58]. However, these two mechanisms do not occur simultaneously, and the DIDS-sensitive mechanism is induced only under high pH. Solieria filiformis, another red marine macroalgae, in which the general form of C\text{\textsubscript{i}} transported across the plasma membrane is CO$_2$, but HCO$_3^-$ acquisition takes place simultaneously between CA\text{\textsubscript{ext}} mechanism and direct uptake [59]. CA\text{\textsubscript{ext}} mechanism is also the main pathway for DIC acquisition for the species of Phaeophyta. S. latissima mainly uses CA\text{\textsubscript{ext}} mechanism for HCO$_3^-$ absorption, since when AZ is used to treat S. latissima, its photosynthetic efficiency drops by 80% [11]. Otherwise, S. latissima also has a H+-ATPase mechanism, of which the proton pump may support the antiport of H$^+$/HCO$_3^-$ or the discharge of H$^+$, creating an acid environment in the periplasmic space and causing the dehydration of HCO$_3^-$ into CO$_2$ with CA to quickly diffuse into cells [49].

Similar to S. latissima, L. digitata also has a CA\text{\textsubscript{ext}} mechanism of absorbing HCO$_3^-$ and a P-H$^+$-ATPase mechanism [49]. Gametophytes of Ectocarpus siliculosus utilize the CA\text{\textsubscript{ext}} mechanism and the HCO$_3^-$ transport protein [60] on the cell membrane to absorb HCO$_3^-$, Macroystis pyrifera utilizes the CA\text{\textsubscript{ext}} mechanism and the AE protein mechanism to absorb HCO$_3^-$, in which the main mechanism of HCO$_3^-$ uptake is via AE protein and CA\text{\textsubscript{ext}} contributes little [45]. For Sargassum henslowianum, like most seaweed, the main C\text{\textsubscript{i}} acquisition strategy is also CA\text{\textsubscript{ext}} metabolism, since its photosynthetic O$_2$ evolution could be drastically depressed by AZ at pH 8.1 (i.e., the normal seawater pH value) and at pH 9.0. And direct uptake for HCO$_3^-$ via DIDS-sensitive AE protein mechanism was unlikely to be present in C\text{\textsubscript{i}} acquisition of this kelp, because the photosynthesis in either blade or receptacle tissue of this alga was not affected by DIDS [61]. For Hizikia fusiformis, CA\text{\textsubscript{ext}}+ diffusive uptake of CO$_2$ could support its metabolic
requirements sufficiently since there is no known other active C_i transport mechanisms [62]. For <i>S. japonica</i>, Yue et al. [63] found that the C_i absorption of the CA_{ext} mechanism in its juvenile sporophytes accounts for 75% of the total C_i absorption in algae cells, whereas free CO₂ absorption accounts for 25% only.

Thus, the CA_{ext} mechanism plays an important role in the CCM macroalgae absorption and the utilization of the relatively abundant HCO₃⁻ in seawater.

4. C_i transition process in CCMs of macroalgae

C_i acquisition mechanisms are extensively studied and well-known in microalgae [44, 38]. For instance, regardless of the C_i form (CO₂ or HCO₃⁻) taken up by the microalga <i>C. reinhardtii</i>, HCO₃⁻ is the primary form accumulated into the cell to prevent CO₂ leakage [38]. In macroalgae, most C_i use processes are speculated based on some biochemical evidence. For C₃ photosynthesis, the CO₂ that entered the cytoplasm is transformed into HCO₃⁻ under the catalytic action of CA in the cytoplasm and stored in the cytoplasm [38] to maintain the equilibrium of different forms of C_i and to regulate the pH value of the cytoplasm [26, 38]. The HCO₃⁻ in the cytoplasm enters the chloroplast stroma via the C_i transport protein on the chloroplast membrane, and the CO₂ in the cytoplasm directly enters the stroma via the chloroplast membrane. In diatom <i>Phaeodactylum tricornutum</i>, genes with homology to bicarbonate transporters from SLC4 and SLC6 families, two HCO₃⁻ transporters studied thoroughly in human, were got from its genome and one of these SLC4-type HCO₃⁻ transporters has recently been confirmed to function as a Na⁺-dependent HCO₃⁻ transporter on the outer membrane [64, 65]. However, the molecular nature of HCO₃⁻ transporters of macroalgae is unknown now, and their similarity to those found in diatoms is uncertain. The transportation of C_i from the cytoplasm to the chloroplast is the major C_i flux in the cell and the primary driving force for the CCM. This flux drives the accumulation of C_i in the chloroplast stroma and generates a CO₂ deficit in the cytoplasm, inducing CO₂ influx into the cell. Given that the pH value of the chloroplast stroma is closer to 8, the stroma C_i is mostly enriched in the form of HCO₃⁻, forming C_i pools [66]. In macroalgae, which have pyrenoids, HCO₃⁻ is putatively carried into the thylakoid by the C_i transport protein on the thylakoid membrane, forming CO₂ in the thylakoid space under the catalytic action of thylakoid CA [67, 68]. The thylakoid membrane partially sinks into the pyrenoids [69], where the diffused CO₂ is quickly fixed by the RuBisCo in the pyrenoids. The diffused CO₂ from the thylakoid space outside the pyrenoids or the unfixed CO₂ leaked from the pyrenoids is transformed into HCO₃⁻ under the action of CA in the starch sheath on the periphery of the pyrenoid, thus increasing the number of HCO₃⁻ pools in the matrix [70]. For macroalgae without pyrenoids, such as <i>L. japonica</i>, HCO₃⁻ entered the chloroplast stroma after being dehydrated under the action of chloroplast stroma CA and provided CO₂ for the RuBisCo in the matrix (Figure 1).
For C4 photosynthesis, CA is required to convert CO$_2$ to HCO$_3^-$ in the cytosol, and thus supply PEPC with substrate. HCO$_3^-$ will be fixed into malate. For non-PEPC algae with PEPCK, the CO$_2$ entering the cytoplasm will be directly fixed in the form of four-carbon acid [71]. The produced four-carbon acid may be transported into the mitochondria, forming pyruvate after decarboxylation and CO$_2$ release, which is fixed in the form of carbohydrate in the Calvin cycle. In fact, the presence of CA in C4 plants has been suggested to accelerate the rate of photosynthesis in C4 plants 104-fold over what it would be if this enzyme were absent [72].

In conclusion, CA (CA$_{ext}$+CA$_{int}$) is essential for the reversible HCO$_3^-$–CO$_2$ conversion both in the cell and in the periplasm. They participate in photosynthesis by supplying either CO$_2$ to RuBisCO or HCO$_3^-$ to PEPC for C4 type.

5. Carbonic anhydrase

CAs are metalloenzymes that catalyse the reversible interconversion of CO$_2$ and HCO$_3^-$ [73]. They are encoded by six evolutionary divergent gene families and the corresponding enzymes are designated as α, β, γ, δ, ϵ and ζ-CA [39]. These six types of CAs share no sequence similarity in their primary amino acid sequences and seem to have evolved independently [26, 74]. In macroalgae, almost all known CAs belong to α, β and γ classes, with the β class predominating [26, 39]. The δ, ϵ and ζ classes of CA are found only in some diatoms [75], bacteria [76] and marine protists [77, 78]. The active site of CA contains a zinc ion (Zn$^{2+}$), which plays a critical role in the catalytic activity of the enzyme. The ζ and γ classes of CAs represent exceptions to this rule since they can use cadmium (ζ), iron (γ) or cobalt (γ) as cofactors [79–81]. CA plays an important role in photosynthesis by supplying either CO$_2$ to RuBPCO or HCO$_3^-$ to PEPC. They also participate in some other physiological reactions such as respiration, pH homeostasis, ion transport and catalysis of key steps in the pathways for the biosynthesis of physiologically important metabolites [41]. The CA synthesis in the cytoplasm [82] is located in the periplasmic space, mitochondria, chloroplast stroma and chloroplast thylakoid lumen, carboxysome and pyrenoid [66, 70, 83, 84]. Different subcellular localizations make different CA functions in CCM. Periplasmic CA (CA$_{ext}$) can catalyse the conversion of HCO$_3^-$ into CO$_2$ to promote the diffusion of CO$_2$ at the cell surface across the plasma membrane [85, 86]. Therefore, CA$_{ext}$ has been postulated to be part of the CCM in most macroalgae. The cytoplasm CA stores Ci in the form of HCO$_3^-$ to avoid leakage of CO$_2$ and to regulate the pH value of cytoplasm by maintaining the equilibrium of different forms of Ci, which is important for algal CCM [39]. CAs on the chloroplast membrane and in the stroma mainly provide CO$_2$ for RuBisCo [26, 38, 87]. In cyanobacteria, CAs in the carboxysomal shell function to convert accumulated HCO$_3^-$ into CO$_2$ and pass it to RuBisCo inside the cytoxysome [88]. CA in the thylakoid lumen was proposed to function to create an efficient CO$_2$ supply to RuBisCo by taking advantage of the acidity of the lumenal compartment [69]. Stromal CA is also thought to operate by converting leaking CO$_2$ into HCO$_3^-$ [70]. Recently, data provided by various genome sequencing studies have revealed the multiplicity of CA isoforms in algae. For
example, in the model microalga \textit{C. reinhardtii}, there are at least 12 genes that encode CA isoforms, including three α, six β and three γ or γ-like CAs [39]. For marine diatom, nine and thirteen CA sequences were found in the genomes of \textit{P. tricornutum} and \textit{Thalassiosira pseu- donana}, respectively [89]. \textit{P. tricornutum} contains two β-CA genes, five α and two γ CA genes, whereas \textit{T. pseudonana} has three α-, five γ-, four δ- and one ζ-CA genes [89]. As for macroalgae, CA genes have only been reported in few species. Six full-length CA of \textit{P. haitanensis} (PhCA) genes were reported, which include two α-CAs, three β-CAs and one γ-CA [90]. Besides, one β-CA and one α-CA were reported in \textit{P. yezoensis} [91] and \textit{S. japonica} [92, 93]. Otherwise, although the activity of CA\textsubscript{ext} and CA\textsubscript{int} has been detected in many macroalgae, the subcellular localization and functions of CA\textsubscript{ext} and CA\textsubscript{int} remain unclear [71, 93].

Conclusively, CAs, including CA\textsubscript{ext} and CA\textsubscript{int} (Figure 1), play an important role in the transportation or concentration process of the \(C_i \). And as for C3 and C4 metabolisms have different carboxylase, CAs might play different roles in CCMs of macroalgae with different photosynthetic mode. Thus, isolating of the CA genes, studies on their expression levels in different \(CO_2 \) concentrations, in different life phase, and under different environmental stress, as well as studies on subcellular locations of CAs should be conducted in macroalgae to help reveal their \(C_i \) assimilation processes.

6. Studies of \textit{S. japonica} CCM

\textit{S. japonica} is an economically important brown seaweed. It has been cultivated extensively for food and industrial alginate in East Asia, such as in China, Japan and South Korea. China is by far the largest producer, and in 2009, its production in China rose sharply to \(4.14 \times 10^9 \) kg wet weight [94], accounting for approximately 80% of the global production, over several decades. This has been attributed to both its large-scale farming and high kelp yield per unit area. Production of this kelp in China under natural conditions is within the range of 3,300 to 11,300 g dry matter m\(^2\)·year\(^{-1}\), whereas that under artificial conditions is higher [1]. For example, its production during the 7-month cultivation is 15,000 g dry matter m\(^2\) area (equivalent to 150 t per ha), which is 2.8 times higher than the maximum productivity of sugarcane in the United States (fresh weight about 95 t per ha-year) [1], which indicates that \textit{S. japonica} has higher photosynthetic efficiency than sugarcane and other C4 plants. In fact, the photosynthetic efficiency of macroalgae (e.g., kelp) is 6%–8%, which is 1.8%–2.2% higher than that of land plants [95]. In seawater, the dominant species of \(C_i \) is HCO\(_3^−\) [11]. Since there is a fairly high photosynthetic rate in these kelps [34], a CCM involving an efficient HCO\(_3^−\) utilization mechanism is expected to exist. Indeed, 75% of the total \(C_i \) absorption in the juvenile sporophytes of this kelp is via the CA\textsubscript{ext} mechanism [63], whereas \(CO_2 \) diffusion accounts for 25% only. By analysis of genome annotation data of \textit{S. japonica} [96], all the essential genes related to C3-pathway (23 unigenes) were discovered (Table 1), which provided the unequivocal molecular evidence that there existed C3-pathway in \textit{S. japonica}. Otherwise, 16 enzyme-encoding unigenes involved in C4-pathway were found, covering almost all enzymes needed
for C4-carbon fixation except the malic enzyme (Table 1). The results helped us to understand the carbon fixation process of this species.

<table>
<thead>
<tr>
<th>Photosynthesis modes</th>
<th>Enzyme names</th>
<th>Unigenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3-pathway</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) (GAPDH)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Transketolase</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Phosphoribulokinase</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Phosphoglycerate kinase (PGK)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Fructose-1,6-bisphosphatase (FBPase)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sedoheptulose-bisphosphatase (SBPase)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fructose-bisphosphate aldolase</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ribulose-phosphate 3-epimerase</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Triose-phosphate isomerase (TIM)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ribose-5-phosphate isomerase</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), small</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), large</td>
<td>1</td>
</tr>
<tr>
<td>C4-pathway</td>
<td>Malate dehydrogenase</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Aspartate aminotransferase (AST)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pyruvate kinase</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Phosphoenolpyruvate carboxylase (PEPC)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Phosphoenolpyruvate carboxykinase (PEPCK)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pyruvate phosphate dikinase</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Arginine/alanine aminopeptidase</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1. Statistics of C3/C4-pathway related enzymes of *S. japonica*.

Considering CAs play key roles in CCMs of macroalgae, it is important to determine the numbers and characterizations of CA genes of *S. japonica*. Herein, based on unigene sequences [96], the high-throughput sequencing data of *S. japonica* [97, 98] and *S. latissima* [99], as well as combined with the preparatory work of our group [92, 93], 12 CAs of *S. japonica* (*SjCA*) genes were obtained. Among them, we have cloned the full-length complementary DNA (cDNA) sequences of *SjCA1*, *SjCA1* and *SjCA2* using rapid amplification of cDNA ends, which are 2804 [94], 1291 and 1261 nucleotides, respectively. The encoded proteins were 290, 314 and 307 amino acids. For further analysis the gene subtypes of CAs, a phylogenetic tree was constructed...
by using the neighbour-joining algorithm of the MEGA6.0 software [100] with Poisson correction and pairwise deletion parameters. A total of 1000 bootstrap replicates were performed. On the basis of conserved motifs and phylogenetic tree analysis (Figure 2), the SjCAs were divided into three CA classes: from SjαCA1 to SjαCA7 are α-CA; SjβCA1 and SjβCA2 are β-CA; SjγCA1, SjγCA2 and SjγCA3 are γ-CA. Among them, only one α-CA (SjαCA1) has been localized in the chloroplast and thylakoid membrane of the gametocytes of S. japonica under immunogold electron microscopy [93]. To get a general idea of functions of each SjCA, herein, the subcellular localizations of SjCAs were predicted using WoLFPSORT (http://www.genscript.com/wolf-psort.html). Based on the predicted results (Table 2), SjαCA2 might be an external CA and exist in periplasmic space, SjαCA3; SjαCA4, SjαCA6, SjβCA7 and SjγCA1 might be cytoplasmic CA; SjαCA5, SjβCA2 and SjγCA2 might present in mito-

Figure 2. Phylogenetic tree constructed using SjCA amino acid sequences.
chondria; SjβCA1 and SjγCA3 might exist in chloroplasts. However, most of the SjCAs’ subcellular localizations are predicted, which need to be verified by further studies. Otherwise, sporophyte and gametophyte of this kelp might employ different carbon fixation process since the content and activity of RubisCo enzyme in gametophyte are significantly higher than those in sporophyte implying they may have different types of photosynthetic metabolism [24]. As for CA might play different role in CCMs of C3 and C4 pathway, full-length cDNA as well as DNA sequences of each SjCA should be cloned from sporophytes and gametophytes of this kelp in the future studies. CA gene expression levels under different CO₂ concentrations and the subcellular location of each CA should also be conducted to help reveal C₅ assimilation process of S japonica.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Gene ID*</th>
<th>AA no.</th>
<th>Full length (Y/N)</th>
<th>Subcellular location prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SjαCA1</td>
<td>JF827608</td>
<td>290</td>
<td>Y</td>
<td>Chloroplast and thylakoid membrane [93]</td>
</tr>
<tr>
<td>SjαCA2</td>
<td>SJ07762</td>
<td>205</td>
<td>N</td>
<td>Secreted</td>
</tr>
<tr>
<td>SjαCA3</td>
<td>SJ07765</td>
<td>160</td>
<td>N</td>
<td>Cytoplasmic</td>
</tr>
<tr>
<td>SjαCA4</td>
<td>SJ13238</td>
<td>151</td>
<td>N</td>
<td>Cytoplasmic</td>
</tr>
<tr>
<td>SjαCA5</td>
<td>SJ13240</td>
<td>294</td>
<td>N</td>
<td>Mitochondrial inner membrane</td>
</tr>
<tr>
<td>SjαCA6</td>
<td>SJ18135</td>
<td>257</td>
<td>N</td>
<td>Cytoplasmic</td>
</tr>
<tr>
<td>SjαCA7</td>
<td>SJ18141</td>
<td>189</td>
<td>N</td>
<td>Cytoplasmic</td>
</tr>
<tr>
<td>SjβCA1</td>
<td>SJ12311</td>
<td>314</td>
<td>Y</td>
<td>Chloroplast thylakoid membrane</td>
</tr>
<tr>
<td>SjβCA2</td>
<td>SJ17783</td>
<td>307</td>
<td>Y</td>
<td>Mitochondrial</td>
</tr>
<tr>
<td>SjγCA1</td>
<td>SJ07587</td>
<td>305</td>
<td>N</td>
<td>Cytoplasmic</td>
</tr>
<tr>
<td>SjγCA2</td>
<td>SJ22175</td>
<td>161</td>
<td>N</td>
<td>Mitochondrial</td>
</tr>
<tr>
<td>SjγCA3</td>
<td>SJ21158</td>
<td>246</td>
<td>N</td>
<td>Chloroplast</td>
</tr>
</tbody>
</table>

Abbreviation: AA, amino acid.
* JF827608 is the NCBI gene accession number; ‘SJ’ in the table stands for the gene IDs for S. japonica.

Table 2. Prediction of subcellular locations of SjCAs.

The completion of the CCM modelling of sporophyte and gametophyte in S. japonica will give a solid foundation for further exploring its highly efficient photosynthetic mechanism. In addition, conducting studies on the inorganic carbon metabolism of macroalgae is of positive significance on developing the biomass energy from kelp and other algae and slowing down seawater acidification and global warming.

Author details

Yanhui Bi and Zhigang Zhou
College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, People’s, Republic of China

References

[61] Zou D, Gao K, Chen W. Photosynthetic carbon acquisition in *Sargassum henslowianum* (Fucales, Phaeophyta), with special reference to the comparison between the vegetative

[68] Hanson DT, Franklin LA, Samuelsson G. The *Chlamydomonas reinhardtii* cia3 mutant lacking a thylakoid lumen-localized carbonic anhydrase is limited by CO₂ supply to RuBisCo and not photosystem II function in vivo. *Plant Physiology*. 2003; 132(4): 2267–2275. DOI: 10.1104/pp.103.023481

[77] Lane TW, Morel FMM. Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom *Thalassiosira weissflogii*. *Plant Physiology*. 2000; 123: 345–352. DOI: 10.1104/pp.123.1.345

[79] Lane TW, Saito MA, George GN. Biochemistry: a cadmium enzyme from a marine diatom. *Nature*. 2005; 435(7038): 42. DOI: 10.1038/435042a

[81] Ferry JG. The γ class of carbonic anhydrases. *Biochimica et Biophysica Acta*. 2010; 1804(2): 374–381. DOI: 10.1016/j.bbabio.2009.08.026

