We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,200
Open access books available

116,000
International authors and editors

125M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 6

Electrocaloric Properties of (Pb,La)(Zr,Ti)O$_3$ and BaTiO$_3$ Ceramics

Hiroshi Maiwa

Abstract

The electrocaloric properties of (Pb,La)(Zr,Ti)O$_3$ (PLZT) and BaTiO$_3$ ceramics were investigated by the indirect estimation and direct measurement of temperature–electric field (T–E) hysteresis loops. The measured T–E loops showed a similar shape to strain–electric field (s–E) loops. The adiabatic temperature change ΔT due to electrocaloric effects was estimated from the polarization change of these samples. ΔTs of 0.58 and 0.36 K were estimated for the (Pb,La)(Zr,Ti)O$_3$ (PLZT)(9.1/65/35) ceramics and BaTiO$_3$ ceramics sintered at 1400°C, respectively. The measured temperature changes ΔTs in these samples upon the release of the electric field from 30 kV/cm to zero were 0.26 and 0.29 K, respectively.

Keywords: Electrocaloric effect, PLZT, BaTiO$_3$, refrigerator

1. Introduction

The electrocaloric effect (ECE) is a phenomenon in which a material shows a reversible temperature change under an applied electric field [1, 2]. There has been some problem in the conventional refrigerator. Since the conventional refrigerator operates by using a compressor, vibration generation is inevitable. The conventional refrigerator uses Freon as refrigerants; however, Freon acts implicated in ozone depletion. The other disadvantage includes the difficulty in down-scaling. Thermoelectric cooling using the Peltier device has been considered as a solid state cooling device; however, low efficiency has been a hindrance to the wide applications. In addition, common thermoelectric materials used as semi-conductors include bismuth telluride, lead telluride, silicon germanium, and bismuth-antimony alloys. Some of them are toxic. Although new high-performance materials for thermoelectric cooling are being actively researched, the good results have not been obtained. From the viewpoint of the refrigerator innovation, new refrigerators based on the new mechanism are expected. ECE is
considered to be one of the new cooling mechanisms [1, 3, 4]. By using ECE, the application to compact a high energy-effective, inexpensive, and safe refrigerator would be considered, as shown in Fig. 1. ECE was discovered in 1930 by Kobeko and Kurchakov [5]. The research activities on ECE have been not active until the year 2006. In that year, “giant” temperature change in Pb(Zr,TiO$_3$ (PZT) thin films were activated at one sweep [6]. Figure 2 shows the relation between the numbers of the published papers and the published year. After 2006, the number of papers on ECE increased rapidly [7-17]. The operation principle of the refrigerator using ECE is shown in Fig. 3. By applying the electric field, the ferroelectrics are heated by ECE. This process corresponds to the compression process in the compressor type refrigerator. By removing the electric field, the directions of the polarization become random. This process is endothermic, corresponds to the expansion process in the compressor type refrigerator, and the object is cooled. The electrocaloric effect (ECE) is a phenomenon in which a material shows a reversible temperature change under an applied electric field. In order to create ECE cooling devices, materials with large ECEs are required. The electrocaloric temperature change ΔT due to applied ΔE is calculated from the following equation [6]:

$$\Delta T = -\frac{T}{\rho C \rho} \int_{E_i}^{E_f} \left(\frac{\partial P}{\partial T} \right)_E \, dE \quad (1)$$

Here, C and ρ are the specific heat and density, respectively. Based on equation (1), a large ($\partial P/\partial T)_E$ (i.e., a large polarization change with temperature under high electric field) is desirable. With respect to achieving large ($\partial P/\partial T)_E$, relaxor materials have recently attracted attention [1, 3, 4]. For direct measurement of the ΔT, there are some difficulties. Most temperature changes are less than 1 K. And heat dissipation from ferroelectric materials through electrode, wire, and/or the supporting jig for field application occurs. Most probably due to these difficulties, the reports on the direct measurement of ΔT are limited thus far [13, 17, 18]. In this study, the electrocaloric temperature change, ΔT, due to applied ΔE, of the PLZT ceramics and BaTiO$_3$ ceramics is estimated and directly measured. Concerning direct measurement of temperature–electric field (T–E) hysteresis loops, the reports have been limited. Detailed measurements of various measurements are required to clarify the insights of the ECE [4, 18, 19, 20].

2. Experimental procedure

PLZT(7/65/35) and PLZT(9.1/65/35) ceramics and BaTiO$_3$ ceramics were used for ECE measurement. PLZT(7/65/35) and PLZT(9.1/65/35) ceramics were sintered from the commercial powders (Hayashi Chemical) as starting materials. BaTiO$_3$ ceramics were sintered from the commercial powders (Toda Kogyo). The powders were fired at 1225–1275°C for PLZT ceramics at 1300–1400°C for BaTiO$_3$ ceramics, respectively [20-22].

The ceramics were polished and then produced electrodes using a silver paste. And the ceramics were polarized for 20 min in a silicone bath under a DC field of 20 kV/cm at room temperature. The dielectric constant and $\tan\delta$ were measured at 1 kHz with an oscillating
A voltage of 1 V. An alternating electric field of 0.1 Hz was used in these measurements. The dielectric constant was measured using an Agilent Technology impedance analyzer, 4192A. Piezoelectric d_{33} meter (IACAS ZJ-3B) was used for piezoelectric measurements. Polarization—
electric field (P–E) hysteresis loops of the samples at various temperatures were measured using a combination of a programmable signal generator and a charge amplifier (POEL 101). The samples were cut into 3–4 mm squares, and their temperatures were changed by immersing them in a heated or a cooled oil bath [21,22]. Strain–electric field (s–E) hysteresis loops of the samples at room temperature were measured using a combination of a programmable signal generator and a strain gauge. Triangular waves of 0.1 Hz with 30 kV/cm were applied to the samples in P–E and s–E measurements. The sample temperatures during the application of triangular waves of 0.1 Hz with 30 kV/cm field were measured using a platinum thermometer. The sample temperatures changed periodically in accordance with the external field. The polarization reversals of the samples were monitored on the basis of signals from the charge amplifier (POEL 101). By synchronization of electric field to sample temperature, temperature–electric field (T–E) hysteresis loops were obtained.

Figure 3. The operation mechanism of the ECE cooler.
3. Results and discussion

3.1. Microstructure

Figure 4 shows SEM micrographs of the surface of the PLZT(7/65/35) and PLZT(9.1/65/35) ceramics sintered at 1225°C. Densely packed microstructures of both ceramics are observed. In the sintering temperature range between 1225°C and 1275°C, the grain growth was not remarkable for these samples; however, the surface roughening were observed in the ceramics sintered at 1275°C, suggesting the lead evaporation loss from the samples. Figure 5 shows SEM micrographs of the surface of the BaTiO$_3$ ceramics sintered at 1300°C, 1350°C, and 1400°C. The surface of the BaTiO$_3$ ceramics sintered at 1300°C consists of the small grains of 1–2 μm. The melted grains are observed in the BaTiO$_3$ ceramics sintered at 1350°C, and large grains at 50–200 μm grains were observed in the BaTiO$_3$ ceramics sintered at 1400°C. This suggests the abrupt grain growth happened in the sintering temperature above 1350°C.

![PLZT (7/65/35) and PLZT(9.1/65/35) SEM micrographs](image)

Figure 4. SEM micrographs of the surface of the PLZT(7/65/35) and PLZT(9.1/65/35) ceramics sintered at 1225°C.

3.2. Electrical properties

Figure 6 shows the P–E hysteresis loops at 10°C, 27°C, and 100°C, s–E hysteresis loops at room temperature, and the T–E hysteresis loops of the PLZT(7/65/35) and PLZT(9.1/65/35) ceramics...
sintered at 1225°C. Those of the BaTiO₃ ceramics sintered at 1300°C, 1350°C, and 1400°C are shown in Fig. 7. The electrical properties of these ceramics are summarized in Table 1. The change to “soft” ferroelectrics with La content increase yields the increase in dielectric constant, the decrease in remanent polarization (Pr) and coercive force (Ec), the slanted and slim P-E hysteresis loops, and the parabolic s-E loops in the PLZT(9.1/65/35) ceramics, compared with the PLZT(7/65/35) ceramics. In the case of BaTiO₃ ceramics, ferroelectricity increases with the grain growth accompanying the higher sintering temperature. The increase in Pr and d₃₃, the more distinct shrink around Ec in s-E loops with sintering temperature would be due to the increase of ferroelectricity. The low Ec in the BaTiO₃ sintered at 1300°C is probably due to the
slim P-E loop in weaker ferroelectricity and the low Ec in the BaTiO$_3$ sintered at 1400°C is due to the high domain mobility in large grain ceramics. The higher dielectric constant in the BaTiO$_3$ sintered at 1300°C compared with those in the BaTiO$_3$ sintered at 1350°C and 1400°C is characteristic of BaTiO$_3$ ceramics, and the similar results that BaTiO$_3$ with grains with at around 1μm size have been reported thus far [23-25].

<table>
<thead>
<tr>
<th>Samples</th>
<th>dP/dT (μC/cm2K$^{-1}$)</th>
<th>Estimated ∆T(K)</th>
<th>Measured ∆T(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLZT (7/65/35)</td>
<td>-0.031</td>
<td>0.35</td>
<td>0.07</td>
</tr>
<tr>
<td>PLZT (9.1/65/35)</td>
<td>-0.051</td>
<td>0.58</td>
<td>0.26</td>
</tr>
<tr>
<td>BT sintered at 1300°C</td>
<td>-0.030</td>
<td>0.29</td>
<td>0.12</td>
</tr>
<tr>
<td>BT sintered at 1350°C</td>
<td>-0.026</td>
<td>0.25</td>
<td>0.08</td>
</tr>
<tr>
<td>BT sintered at 1400°C</td>
<td>-0.037</td>
<td>0.36</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Table 2. Electrocaloric properties of PLZT and BaTiO$_3$ ceramics

3.3. Indirect estimation

The dP/dT between 10°C and 100°C for the PLZT and BaTiO$_3$ ceramics were calculated using P-E hysteresis loops. Estimated ∆T for from Equation (1) for these ceramics are shown in Table 2. Among the ceramics, PLZT(9.1/65/35), which contains relaxor behavior by introducing Lanthanum substitution, estimated the largest temperature change. Among the BaTiO$_3$ ceramics, the BaTiO$_3$ sintered at 1400°C with large grains and accompanying strong ferroelectricity estimated the largest temperature change.

3.4. Direct measurement

Figures 6 and 7 contain s-E loops and T-E loops of the PLZT and BaTiO$_3$ ceramics. The similar shapes between s-E loops and T-E loops are observed in these samples. The similar results were reported by J. Wang et al. and our previous report. Field-induced displacement derives from the change in the polarization, and the appearance of similar loops is reasonable. The
Figure 6. Polarization–electric field (P–E) loops (above), strain–electric field (s–E) loop (middle), and temperature–electric field (T–E) loop (below) of the PLZT(7/65/35) and PLZT(9.1/65/35) ceramics sintered at 1225°C.

(a) PLZT(7/65/35) ceramics (b) PLZT(9.1/65/35) ceramics
The temperature change ΔT of the samples was calculated from the slope beginning with maximum field and ending at the zero field. The temperature change, ΔT, in PLZT(9.1/65/35) ceramics induced by bipolar switching field of 30 kV/cm was 0.26K, and that in the BaTiO$_3$ sintered at 1400 °C by bipolar switching field of 30 kV/cm was 0.29K. The round T-E and s-E shapes around polarization switching observed in the loop from PLZT(9.1/65/35) attributes characteristic of relaxor ferroelectric materials. The decreasing transition temperature and increasing the polarization movements in relaxor ferroelectrics provide larger temperature change.

The direct measurement shows smaller values, compared with the estimation, generally. The reasons are unknown at present; heat dissipation may play a role in real systems. Although quantitative consistency is not obtained, it is safe to say that the materials with large dP/dT provided large temperature change generally.

Figure 7. Polarization–electric field (P–E) loops (above), strain–electric field (s–E) loop (middle), and temperature–electric field (T–E) loop (below) of the BaTiO$_3$ ceramics sintered at 1300°C, 1350°C, and 1400°C.
4. Conclusion

The electrocaloric properties of (Pb,La)(Zr,Ti)O$_3$ (PLZT) and BaTiO$_3$ ceramics were investigated by the indirect estimation and direct measurement of temperature–electric field (T–E) hysteresis loops. The measured T–E loops showed a similar shape to strain–electric field (s–E) loops. This suggests the ECE of these materials are mainly governed by the change of their polarization. The extrinsic contribution from the multi-domain behavior to ECE is limited. The adiabatic temperature change ΔT due to electrocaloric effects was estimated from the polarization change of these samples. ΔTs of 0.58 and 0.36 K were estimated for the (Pb,La) (Zr,Ti)O$_3$, (PLZT)(9.1/65/35) ceramics and BaTiO$_3$ ceramics sintered at 1400°C, respectively. The measured temperature changes, ΔTs, in these samples upon the release of the electric field from 30 kV/cm to zero were 0.26 and 0.29 K, respectively.

Acknowledgements

This study is partly supported by grant from KAKENHI Grant Number. 26420684, GRENE (Green Network of Excellence) project from The Ministry of Education, Culture, Sports, Science and Technology, Japan, and Kato Science Foundation.

Author details

Hiroshi Maiwa*

Address all correspondence to: maiwa@mate.shonan-it.ac.jp

Department of Materials and Human Environmental Sciences, Shonan Institute of Technology, Fujisawa, Kanagawa, Japan

References

Mischenko AS, Zhang Q, Scott JF, Whatmore RW and Mathur ND: Giant electrocaloric effect in thin-film PbZr_{0.95}Ti_{0.05}O_{3}. Science, 2006;311: 1270–1271. DOI: 10.1126/science.1123811

Mischenko AS, Zhang Q, Whatmore RW, Mathur ND: Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg_{1/3}Nb_{2/3}O_{3}-0.1PbTiO_{3} near room temperature. Appl. Phys. Lett., 2006;89: 242912. DOI: 10.1063/1.2405889

Lin GC, Xiong XM, Zhang JX, Wei Q: Latent heat study of phase transition in Ba_{0.73}Sr_{0.27}TiO_{3} induced by electric field. J. Therm. Anal. Calor., 2005;81:41–44. DOI: 10.1007/s10973-005-6369-5

