We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,500
Open access books available

177,000
International authors and editors

195M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 13

Subject Index

Gyula Mozsik and Imre Szabó

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/60497

Adenosine triphosphate (ATP),
Adenosine cyclic 3',5'-adenosine monophosphate, (cAMP),
ATP transformation into ADP
 under physiological circumstances,
 under different pathological conditions,
 human gastric basal acid out,
 human gastric maximal acid output,
 human gastric antral ulcer,
 human duodenal ulcer,
 human jejunal ulcer,
 gastric acid secretion in pylorus-ligated rats,
 under different drug actions,
ATP transformation into cyclic adenosine 3',5'-AMP
 under physiological circumstances,
 under different pathological conditions,
 human gastric basal acid out,
 human gastric maximal acid output,
 gastric acid secretion in pylorus-ligated rats,
 gastric ulcer in pylorus-ligated rats,
 epinephrine ulcer model,
 stress ulcer model,
Aspirin-induced mucosal damage
 Gastric H+ secretion,
 Gastric mucosal biochemistry

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
During ulcer development
During gastric mucosal protection produced by atropine
During gastric mucosal protection by vitamin A and β-carotene

Indomethacin ulcer model
Biochemical backgrounds
Cellular mechanisms,
During gastric ulcer development,
During gastric mucosal protection
by atropine,
by cimetidine,
β-carotene,
by vitamin A,
Gastric mucosal cAMP vs gastric mucosal damage,
Gastric mucosal cAMP vs, gastric mucosal protection,
Prostaglandin system vs gastric mucosal protection by β-carotene,

Reserpine ulcer model
NaOH, NaCl, HCl and ethanol-induced gastric mucosal damage
Time-sequence between the mucosal damage vs. introduction of chemical agents,
Biochemical mechanisms vs. mucosal damage,
Acid-dependent ulcer model vs. gastric mucosal biochemistry,
Non-acid-dependent ulcer model vs. mucosal biochemistry,
Gastric mucosal protection by PGI₂
Gastric mucosal protection by β-carotene
Gastric mucosal damage vs. oxygen free radicals
Gastric mucosal protection vs. oxygen free radicals,

Evidence-based medicine
Problem-orientated medicine,
Human clinical pharmacology,
Acute comparative clinical pharmacology in patients,
Chronic atropine treatment in patients with duodenal ulcer
Development of tolerance to atropine
Development of drug tolerance to parasympatholytics,
Pharmacological denervation phenomenon,

Cytoprotection
In patients with duodenal ulcer,
In patients with gastric ulcer,
In experimental circumstances,
Prostaglandins,
Retinoids,
Small doses of atropine, cimetidine,
Biochemical mechanisms of cytoprotection,
Gastrointestinal mucosal biochemistry in patients,
In gastric fundic mucosa with different gastric secretory responses,
Biochemical and energetic gradients in mucosa of fundus vs. antrum vs. jejunum,
Cholinergic regulation of ATP-ADP transformation in the human gastric tissues
Biochemistry of chronic ulcer in patients
 gastric antral ulcer,
 duodenal ulcer
 jejunal ulcer,
 exclusion of tissue hypoxia in the ulcerated mucosa,
ATP-membrane ATPase-ADP system.

First and second messenger systems
 Feedback mechanisms between Na⁺-K⁺-dependent ATPase and adenylate cyclase systems in intact gastrointestinal mucosal tissues
 In vitro observations
 In vivo observations

Under development of mucosal damage in different animal models
Drug action on dependence of the functional states of target organs
 Na⁺-K⁺-dependent ATPase vs. activity of membrane ATPase,
 Changes in the feedback regulations of cellular energy systems,

Cellular energy systems
 „energy charge“ [(ATP+0.5 ADP)/(ATP+ADP+AMP)]
Na⁺-K⁺-dependent (transport) energy system
 Short review,
 In the gastrointestinal mucosa
 Gastric basal acid output in humans
 Gastric maximanl acid output in humans
H⁺-K⁺-dependent ATPase
 Short review
Adenylate cyclase system
 Short review,
Isolated gastric mucosal cells (GMCs)
 Ethanol,
 Indomethacin,
 Helicobacter pylori
 Cellular damage at the levels of cell membrane mitochondion, DNA
Stable cell lines

Mouse cell myeloma cell line (Sp2/0-Ag14 cell line),

Human hepatocellular carcinoma cell line (Hep G2),

“surgical” and “chemical” vagotomy

Gastric acid secretion,

Gastric mucosal protection,

Biochemistry in the gastric mucosal biochemistry,

Biochemistry of “use” and “disuse” in the rat gastric mucosa,

Chronic atropine treatment

In patients with chronic duodenal ulcer

In rats

Chronic treatment of rats with Neostigmine (choline)

Author details

Gyula Mozsik1 and Imre Szabó2

1 First Department of Medicine, Medical and Health Centre, University of Pécs, Hungary

2 Associate Professor at the First Department of Medicine, University of Pécs, Hungary