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Abstract

Breast cancer is the most common cancer type amongst women, accounting for most fe‐
male cancer deaths second to cervical cancer worldwide. It is, therefore, highly crucial to
understand the molecular biology and explore other pathways involved in carcinogenesis
in order to select appropriate treatment not only for breast cancer but for other cancers as
well. Cancer progression is favoured by DNA damage and in most cases a consequent
disruption of the apoptotic pathway, thus leading to uncontrolled cell proliferation.
Therefore, current therapeutic strategies aim at targeting the apoptotic pathways in order
to combat cancer. In this manuscript, we discuss the ways in which evasion of apoptosis
during carcinogenesis occurs and the types of current therapeutic strategies as well as
promising future approaches against breast cancer.
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1. Introduction

The human body is composed of trillions of cells that behave and function to provide structure
of the body, convert nutrients into energy and carry out specialised functions [1, 3]. Growing,
dividing, differentiating and dying are the cells’ behavioural mechanisms to maintain tissue
homeostasis [3]. However, molecular disturbances that disrupt this balance may potentially
lead to disease. Such molecular disturbances include mutations, among others, during which
any change to the DNA sequence might result in abnormality in the cell or tissue [4]. With a
population of more than a trillion cells, the human body is prone to mutations that may give
one cell a selective advantage of growing and dividing more vigorously to become a growing
mutant clone [4, 5]. Such mutations, in which a mutant clone of cells grows and divides out of
control at an expense of neighbouring wild-type cell populations, serve as a prerequisite for
the development of cancer [3].

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Cancer is defined as uncontrolled cell proliferation that leads to the formation of abnormal
cells and invasion of other adjacent tissues [1, 3-5]. The migration of cells from the origin of
tumour to another part of the body is referred to as metastasis. Tumours can either be
malignant or benign. While malignant tumours have the ability to invade surrounding tissue,
benign tumours cannot invade other tissues and are therefore not as life-threatening [3].
Efficient treatment against malignant tumours is therefore necessary in cancer management.
In this chapter, we discuss current anticancer strategies that are targeted on the apoptosis
pathway in breast cancer management.

In order to understand breast cancer, it is necessary to understand the normal anatomy of the
female breast [3, 20]. The female breast is made up of milk-producing glands called lobules
which are connected to ducts that transport milk from the glands to the nipples. The ducts and
lobules are surrounded by connective tissue, fatty tissue, blood vessels and lymphatic vessels.
In most cases, breast cancer starts in cells surrounding the ducts or the lobules [23]. Metastatic
breast cancer is as a result of migration of cancerous cells from ducts and/or lobules via
lymphatic vessels to the lymph nodes of the lymphatic system [3, 20, 23].

Breast cancer is the most common cancer type amongst women accounting for many cancer
deaths, second to cervical cancer. Risk factors of breast cancer are divided into non-modifiable
and modifiable factors [39]. Advanced age, female gender, menarche before the age of 12,
menopause after the age of 45, genetic mutations and family history are the major non-
modifiable risk factors associated with breast cancer [6, 11, 26, 46, 56, 57]. Breast cancer risk
factors that can be controlled include hormone replacement therapy, oral contraceptives,
pregnancy, breast feeding and high breast density [31]. Behavioural and life-style risk factors
associated with the development of breast cancer include poor diet, i.e. high fat, low vegetable/
fruit, low fibre and high in simple carbohydrates; overweight and obesity; and decreasing
physical activity [29, 39].

Nearly 80% of human breast cancers are hormone-positive (estrogen and progesterone),
followed by human epidermal growth factor receptor 2 (HER2)-positive, then vascular
endothelial growth factor (VEGF)-positive breast tumours [8, 9]. Targeting estrogen receptor
(ER) pathway, VEGF and HER2 are the long-established breast cancer therapeutic approaches
responsible for the improvements of breast cancer prevention and treatment. However,
resistance to these endocrine and cell-growth-inhibiting treatments is the main drawback that
reduces the benefits of these novel treatment approaches [8, 9, 20, 23]. It is therefore highly
crucial to understand the molecular biology and explore other pathways involved in carcino‐
genesis in order to select appropriate treatment not only for breast cancer but for other cancers
as well. In this chapter we discuss different ways of targeting apoptosis in breast cancer
management.

2. Targeting apoptosis in breast cancer treatment

During the process of breast cancer progression, normal cells transform into malignant types
as a result of genetic alterations [12]. This leads to dysregulation of cellular processes such as
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angiogenesis, cell cycle and apoptosis [17]. Therefore, current therapeutic strategies aim at
targeting these pathways, more especially apoptosis, in order to combat cancer [18]. Apoptosis
is a form of programmed cell death in which cells are programmed to die if found to be cellular
damaged [21, 25]. Apoptosis is made up of two major pathways called the death receptor
pathway and the mitochondrial pathway, which are both propagated by a caspase cascade
that ultimately leads to apoptosis induction [27, 34]. Evasion of apoptosis during carcinogen‐
esis occurs by three distinct mechanisms: disrupted signalling of death receptors, loss of
caspase activity as well as impaired balance between anti-apoptotic and pro-apoptotic proteins
[14, 42, 50, 59]. Targeting the caspase cascade, Bcl-2 family proteins as well as other factors
associated with apoptosis signalling have thus become the major strategy in anticancer
therapeutics (table 1).

Reagent Target Technology Function Status

Apoptin Caspases in the
extrinsic pathway

Vector-based
(adenoviral and virus
vectors)

Caspase 3 and 8
activation

Preclinical

Flavipirodol, gossypol,
depsipeptide, ABT-737,
ABT-264, fenretinide, HA
14-1, GX15-070

Anti-Bcl-2 family
proteins

Small molecule Inhibit BCl-2 family
proteins by reducing their
expression

Phase I/II

ABT 737 Anti-apoptotic
proteins

Small molecule Inhibit expression of anti-
apoptotic proteins such as
Bcl-xL, Bcl-2 and Bcl-W

Phase I

Oblimersen Sodium Anti-Bcl-2 targeted
drug

Antisense Bcl-2 antisense increases
survival rates in chronic
myeloid leukaemia
patients when combined
with chemotherapy

Phase II

ONYX-015 drug p53-based gene
therapy

Adenoviral Genetically engineered
adenovirus that has been
modified to infect and
lyse p53-deficient cells

Phase III

CD8+ cytotoxic T-
lymphocytes (CTLs)

Tumour associated
antigens (mutant
p53)

Vaccine Recognize TAA-derived
peptides that are
processed and presented
on the tumours cell
surface in association
with MHC class I
molecules, leading to
killing of tumour cells

Phase I
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Reagent Target Technology Function Status

Phikan083,
CP-31398

p53-targeted Small molecule Restores p53 function by
intercalating with p53-
bound DNA and
destabilising the p53-
DNA interaction

Phase I/II

Tenovins, Nutlins, MI-219 p53-MDM2
interaction

Small Molecule Interrupt the p53-MDM2
interaction to prevent
inactivation of p53 by
MDM2

Phase I/II

siMDM2, siE6/7, siBBP6 p53-MDM2, p53-E6,
p53-RBBP6
interaction

Liposomal
encapsulated synthetic
siRNA

Interrupt p53 interaction
with its negative
regulators

Research

Table 1. Apoptosis-based anticancer drugs in development

2.1. Caspase-targeted therapy

Pathogenic as they are, disruptions in the apoptotic pathway provide compelling possible
strategies for the treatment of breast cancer and other related types of cancers [59]. Therapeutic
agents designed to re-establish the normal functioning of the apoptotic signalling pathways
have the potential to get rid of over 50% of human cancers including breast cancer [34]. Novel
drug discoveries in recent years have led to promising advances in the treatment of breast
cancer as well as other cancers. For example, the caspase-targeting therapies that use small
molecules to act as caspase activators have been identified [24, 32]. These small molecule
caspase activators are pro-apoptotic due to their characteristic arginine-glycine-aspartate motif
that enables them to directly convert non-active procaspase-3 into active caspase-3 thus leading
to apoptosis induction.

Apoptotin is a caspase-based drug therapy that has the ability to induce caspase activity thus
increasing apoptosis induction [32]. MCF-7 breast cancer cells completely lack the expression
of caspase-3 due to frame-shift mutation in exon 3 of the caspase-3 gene [13]. As a result,
caspase-based gene therapy that relies on caspase-3 gene delivery techniques in order to up-
regulate caspase-3 expression in caspase 3-deficient breast cancers has been invented. In
human liver tumorigenesis, caspase-3 gene therapy led to a significant increase in apoptosis
and shrinkage in tumour size when combined with other chemotherapeutic drugs [13, 32].
Caspase-8 expression has also been found to be impaired due to hypermethylation in several
cancer cells. In small cell lung carcinomas, demethylation treatments have been shown to
sensitise these cancer cells to drug-induced apoptosis [32, 53].

2.2. Anti-Bcl-2 therapy

The mitochondrial pathway is down-regulated by the anti-apoptotic Bcl-2 family proteins [19,
22, 40, 43, 60]. Drug-based therapy using anti-Bcl-2 small molecules has led to a significant
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induction of apoptosis in several cancers. Flavipirodol, gossypol, depsipeptide, ABT-737,
ABT-264, fenretinide, HA 14-1 and GX15-070 are some of the small molecules that inhibit BCl-2
by reducing their expression [41, 45, 59]. Small molecules with the ability to mimic pro-
apoptotic or anti-apoptotic BH3-only Bcl-2 family proteins in order to induce apoptosis have
also been designed [2, 41]. This class of drugs that imitate BH3-only pro-apoptotic and anti-
apoptotic Bcl-2 family proteins is referred to as BH3-only mimetic drugs [2, 35]. ABT 737 is one
example of the BH3-only mimetics that has been shown to inhibit expression of anti-apoptotic
proteins such as Bcl-xL, Bcl-2 and Bcl-W; and is showing promising results in clinical trials [2,
59]. The first anti-Bcl-2 targeted drug to enter clinical trials in leukemic patients is known as
oblimersen sodium [41, 59]. This Bcl-2 antisense has been shown to increase survival rates in
chronic myeloid leukaemia patients when combined with chemotherapy [41, 59].

2.3. p53-based gene therapy

The loss of p53 function is a common feature in almost all human cancer including breast cancer
[37, 43, 47]. Because of this, there is a lot of interest in targeting p53 for anticancer therapeutic
drugs [7, 10, 16, 55]. The first biological approach which is now widely used in targeting p53
is gene delivery of wild-type p53 into tumour cells using adenoviral or retroviral techniques
[28, 48]. p53-based gene therapy is however not effective on its own in killing cancer cells and
for this reason combinational therapies involving other modes of treatments in the presence
of p53 therapy are being investigated [10, 55, 59].

For example, it was discovered that concurrent treatment using adenoviral-mediated wild-
type p53 injection with ionising therapy significantly reduces tumour size in cancers of
prostate, brain and spine as well as head and neck [28, 59]. Elimination of p53-defective cells
using synthetic viruses designed to infect and kill cancer cells is another breakthrough in p53-
based gene therapy [28, 48, 59]. One example is the ONYX-015 drug, which is a genetically
engineered adenovirus that has been modified to infect and lyse p53-deficient cells [28].
Genetic alterations that take place in p53 during tumorigenesis can trigger the immune
responses in both T- and B-cells [10]. This provides yet another interesting platform for p53-
based anticancer therapy, and a number of p53-based vaccines are currently undergoing
clinical trials [10, 59].

2.4. Small molecule approach in p53-based drug therapy

In comparison to large biological drugs that are present with complex structures, small
molecular drugs are organic compounds designed to be extremely low in molecular weight
and are made up of well-defined chemical structures that enable them to pass through the cell
membrane when taken orally. A further advantage of small molecule drugs over biologics is
that they are stable, mostly non-immunogenic and it is easy to characterise their molecular
composition and heterogeneity. The mode of action for small molecules relies on their binding
to specific biopolymers such as proteins and nucleic acids and act as effectors to alter function
or activity of the specific biopolymer.
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In cancer, small molecules are used to restore mutated proteins back to their wild-type forms
and induce activity of proteins responsible for elimination of tumorigenic cells [30]. In p53-
based drug therapy, several small molecules that can restore the function of mutated p53 have
been investigated. One example of a small molecule drug known is CP-31398; which has been
shown to restore p53 function by intercalating with p53-bound DNA and destabilising the p53-
DNA interaction [30]. Another small molecule called Phikan083, which is a derivative of
carbazole, has been identified as one of the small molecules that has the ability to restore
mutant p53 too. The most advanced of these small molecules are those that act by interrupting
the p53-MDM2 interaction which is responsible for the inactivation of wild-type p53 [51, 52,
54]. These include the nutlins, tenovins and the MI-219 [52]. MDM2 acts as a negative regulator
of p53 by binding to and inactivating the function of p53. This activity results in the loss of
p53-mediated apoptosis in cancer cells, thus promoting carcinogenesis. While the MI-219 small
molecular drugs are responsible for the destabilisation of the MDM2-p53 interactions in order
to selectively induce apoptosis and inhibit apoptosis, nutlins disrupt the MSM2-p53 complex
and selectively induce senescence [51, 52, 54].

2.5. siRNA-based p53 therapy

There are certain cancers with no mutations in p53 but in which non-mutated p53 might be
down-regulated by certain p53 negative regulators [30]. In these cancers, development of
specific siRNAs for silencing of the negative regulatory genes is often used to activate p53 [10,
30, 55]. MDM2 E3 ligase and the viral E6 protein are two extensively studied negative regu‐
lators of p53 that are associated with cancer progression [51, 52, 54].

Under normal cellular conditions, p53 tumour suppressor gene is kept under tight regulation
by the MDM2-p53 auto-regulatory feedback loop [36, 51, 52]. In response to stress stimuli such
as DNA damage or radiation, activated p53 interacts with genes responsible for the induction
of cell cycle arrest or apoptosis (figure 1) [36]. During cancer development, the interaction
between p53 and MDM2 mediates p53 interaction with the ring finger domain of the MDM2
ubiquitin ligase for degradation of the p53 tumour suppressor protein [54]. This event
compromises the occurrence of cell cycle arrest and p53-mediated apoptosis and facilitates
abnormal cell proliferation52. The use of MDM2-specific siRNA to disrupt the p53-MDM2
interaction in breast cancer cells has been shown to induce apoptosis, inhibit cell proliferation
and lead to decreased tumour size [36, 51, 52, 54].

The E6 viral  protein  is  another  thoroughly studied p53 negative  regulator  in  HPV (hu‐
man papillomavirus)-related cancers such as anogenital,  cervical,  head and neck cancers.
During HPV infection, E6 protein expression increases in order to facilitate HPV replica‐
tion and viral integration into the host cell. The E6 protein achieves this outcome by using
its E3 ligase Hect domain to bind to and degrade the cellular tumour suppressor proteins
p53  and  pRB,  thus  abrogating  the  host  cells’  potential  to  initiate  cell  cycle  arrest  and
apoptosis. Therapeutic strategies to disrupt E6-p53 interactions in the form of antisense and
siRNA application specific to E6 viral  protein have received the most attention in HPV-
related cancer therapeutics [10, 30, 55].

A third ubiquitous protein suspected to be yet another negative regulator of active p53
especially in breast cancer progression is known as retinoblastoma binding protein 6 (RBBP6)
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[36]. RBBP6 is a 250kDa protein that has been shown to interact with and possibly lead to the
degradation of p53 tumour suppressor gene since it possesses an E3 ligase activity [44, 49]. Its
mRNA codes for a p53-binding domain as well as other domains known as DWNN domain,
zinc finger domain and a ring finger domain, which are responsible for the ubiquitous nature
of RBBP6 [44]. Besides the p53 domain, which is only present in human RBBP6, the above-
mentioned domains are conserved in about all eukaryotic organisms such as humans, plants,
protozoa, fungi, microsporidia and the single-celled parasite Encephalitozoon cuniculi [44].
RBBP6 is a spliced-associated protein and therefore exists in different other homologues
known as PACT and P2P-R [44, 58].

A critical insight into the role played by RBBP6 in certain cancers via p53 has been elucidated
[15]. Transfection of lung cancer cells with siRBBP6 led to a decrease in RBBP6 expression
whereas sip53 transfection led to an increase in RBBP6 expression and, according to this study,
RBBP6 may be involved in the degradation of p53 thereby enhancing abnormal cell prolifer‐

Figure 1. A simplified diagrammatic representation of the apoptotic signalling pathway and p53 negative regulation
by MDM2 and another ubiquitous protein (RBBP6) suspected to be involved in p53 degradation. Current drugs that
target different points of the apoptotic pathways are highlighted in light-green
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ation [38]. In one study, it was demonstrated that down-regulation of the PACT homologue
of RBBP6 in mice induces embryonic lethality with a consequent accumulation of p53 and a
widespread apoptosis [33]. In addition to identifying PACT as a negative regulator of p53,
further discoveries suggest that PACT knockdown enhances p53-Hdm2 interaction thus
reducing p53 poly-ubiquitination by RBBP6 [33].

In recent studies, it was found that silencing RBBP6 gene in MCF-7 and CAMA-1 cells led to
p53 up-regulation and sensitised the breast cancer cells to apoptosis induction [36]. Concurrent
treatment of these cells with apoptosis-inducing agents, camptothecin or staurosporine,
further increased apoptosis induction [36]. Furthermore, up-regulation of bax as a result of the
co-treatment provided early insights into the possible mechanism behind the observed
apoptosis [36]. Taken together, it is suspected that RBBP6 silencing may be responsible for the
identified p53 up-regulation in breast cancer and other cancers and that the observed apoptosis
is more likely p53-dependent; however, further in vivo investigations would validate these
observations.

3. Conclusions

Taken all together, it is evident that anticancer therapeutics primarily depend on apoptosis
pathway activation in breast cancer and several other cancers. However, a few milestones still
need to be reached with regard to this novel anti-tumour molecular approach. For example,
most of the experimentally studied apoptosis-inducing regimens in breast cancer cells have
not reached the clinical stages. Another important factor that needs to be addressed in
apoptosis-targeted therapy is to determine whether the observed cytotoxicity of breast cancer
cells in experimental settings is comparable in clinical settings. Moreover, understanding
tumour biology of individual cancer patients can help select therapeutic interventions that are
highly specific to a presented tumour. Nonetheless, the link between apoptosis and tumori‐
genesis has been thoroughly investigated in breast cancer and has led to lots of promising
strategies that attempt to eradicate cancer cells by targeting the apoptosis signalling pathway.
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