We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,300
Open access books available

117,000
International authors and editors

130M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

Parallax is the effect whereby the position of a tooth or similar structure appears to differ when viewed from different positions of the X-ray tube.[1] This method (Image/Tube Shift Method, Buccal Object Rule or Clark’s Rule) has been the technique of choice to localize impacted teeth anterior to the molars in both jaws using Vertical or Horizontal Tube Shift (VTS/HTS).[2] With the continued technologic advances, the role of Cone Beam Computed Tomography (CBCT) is changing in orthodontic workup and should be viewed as complementary to plain X-rays or 2D X-rays in effective diagnosis, especially in impaction cases as a 3D evaluation. Effective dose of radiation measured in micro-Sievert (μSv)) is decreased from full field of view (FOV) to both jaws (13 cm) and single jaws (6 cm), from large-volume to small-volume and from high resolution (HR) to conventional.[3] Therefore, as the effective dose is of foremost concern, it can be decreased by appropriate selection of exposure parameters, FOV and resolution (only for impacted tooth/teeth) to be comparable from a “dose” perspective with several periapical and occlusal radiographs (parallax). However, the results of dosimetry on a specific CBCT scanner may not be transferable to another CBCT scanner and every image involving ionizing radiation, including CBCT, must be justified and optimized.

The treatment (including decision makings) of impacted teeth can be categorized into five steps:

1. Cost-Benefit Analysis/ Cost-Effectiveness Analysis
2. Space preparation/Barrier removal
3. Selection of the method for eruption (Closed vs. Open)
4. Selection of the appropriate (effective) biomechanical approach
 a. Anchorage preparation (Direct vs. Indirect)
 b. Force application

5. Alignment/ Leveling Torque/Angulation (ALTA) corrections

2. Cost-Benefit Analysis (CBA)/ Cost-Effectiveness Analysis (CEA)

Cost-benefit analysis (CBA) or Cost-effectiveness analysis (CEA) requires quantifiable input data; both methods are accounting techniques that have been applied to medical decision-making. Using Standard CEA, benefits are expressed either directly or indirectly in terms of “quality of life” improvement, and costs are expressed in monetary values and in morbidity and mortality. Using CBA, benefits and costs are all converted into monetary equivalents.[4] The CBA is also defined as a systematic process for calculating and comparing benefits and costs of a project or decision i.e. exposure of impacted tooth and ALTA correction versus alternative treatment modalities. Results must be treated with caution, making it difficult to make robust claims about the comparative cost-effectiveness of either treatment plan.

Systemic conditions or metabolic disturbances may be related to multiple impacted teeth. To achieve optimum results, an interdisciplinary teamwork is needed between the orthodontist, oral surgeon, prosthodontist and possibly some other specialties. The patient shown in Figure 1 an active social person, had several impactions in both jaws but was seeking a swift procedure to get his anterior teeth. The facial profile, esthetic smile, and time spent for each appointment in a nonprofit dental center were also among his concerns. It seems that the selected option for the patient had more benefit gain in comparison to cost (time, pain, inconveniences, and risks and...etc.).

In the first step clinicians should make a decision from the CBA/CEA perspective to select the best option appropriate for the individual looking for treatment of the impacted tooth/teeth.

2.1. Early intervention for impaction prevention

Space deficiency has been mentioned as the first etiologic factor for a palatal impaction. Many other contributing factors are associated with a palatal impaction such as over-retention of the primary canines, abnormal position of the tooth bud, disturbances in tooth eruption, localized pathologic lesions, abnormal sequence of eruption, missing lateral incisors or abnormal form of the lateral incisor roots (e.g. dilacerations), presence of an alveolar cleft, supernumerary tooth, and idiopathic factors.[5]

Crowding, thick soft tissue, supernumerary tooth/teeth, and tipped tooth/teeth situations are considered as barriers to eruption. During the regular orthodontic examination of a patient (Figure 2) an impaction was discovered on panoramic radiography suspected to be an abnormal position of the tooth bud but proximity of developing root of tooth 14 and crown of #13 (FDI Two-Digit Notation- ISO 3950) in addition to their abnormal route are the major
In first step clinicians should make a decision from CBA/CEA perspective to select the best option appropriate for the individual looking for treatment of the impacted tooth/teeth. Orthodontic Considerations in Surgical Interventions for Impacted Teeth including the time, disturbances, risks, and... should be taken into account.

2.2. Difficulty index as a tool for expression of the “Cost”

The canine is the second most commonly impacted tooth (after the third molar), with the rate of maxillary canine impaction ranging from approximately 1% to 3% [6] and incidence of approximately 20% in orthodontic clinics. Should you ALTA correction of tooth at the expense of extra time and money or extract the impacted tooth, saving time and orthodontic payments for the patient but perhaps at the expense of esthetics and long-term function.

When treating impacted teeth, duration of treatment or chairtime, success rate or risks, and complications (root resorption of impacted or adjacent teeth, ankylosis,...) can be converted to...
a single score that would be compared to the benefits. However, sensitivity and specificity of these scores or methods are uncertain and questionable. Many variables have role in determination of difficulty for impaction cases including age (over 25 requires longer time), distance of impacted tooth from occlusal plane, mesiodistal location of the crown, angulation of the tooth, transverse relationship of the crown to the midline, location of the impacted tooth cusp/incisal tip and its relationship to the adjacent teeth (lateral incisor in canine impaction cases), apex position, and transposition with adjacent teeth (lateral incisor and first premolar in canine impaction cases).[7] Angular measurements on lateral cephalometry are Omega (ω) angle and Delta (δ) angle and linear measurement is d2 (Distance to Occlusal Plane) (Figure 3). Angular measurements in panoramic views are the canine inclination (C.I.) to midline or Alpha (α) angle and its inclination to the lateral incisor (or first premolar) or Beta (β) angle (Figure 4-second row). Mesiodistal position of the canine cusp tip in relation to adjacent lateral and central incisors on panoramic radiographs is called “Zone” and numbers 1 to 5 are assigned to its position as it gets closer to the midline (Figure 4-third row).[6] Inclination of the canine

Difficulty index as a tool for expression of the “Cost”

The canine is the second most commonly impacted tooth (after the third molar), with the rate of maxillary canine impaction ranging from approximately 1% to 3% (6) and incidence of approximately 20% in orthodontic clinics. Should you attempt correction of tooth at the expense of extra time and money or extract the impacted tooth, saving time and orthodontic payments for the patient but perhaps at the expense of esthetics and long-term function.

Figure 2. Impacted canine has angulated towards the horizontal (Top-right) and made the management more challenging and difficult. Impacted tooth 13 has tipped towards a better vertical position (bottom left to bottom right) in other words Alpha (α) angle is decreased after banded expander installed and tooth 54 (D) was extracted (D). (Bottom right is the only picture 9 months after intervention).
sensitivity and specificity of these scores or methods are uncertain and questionable. Many variables have an effect on determination of difficulty for impaction cases including age (over 25 requires longer time), distance of impacted tooth from occlusal plane, mesiodistal location of the crown, angulation of the tooth, transverse relationship of the crown to the midline, location of the apex, and sector location. Regressor analysis indicated that horizontal position, age of patient, vertical height and bucco-palatal position, in descending order of importance, are the factors which determine the difficulty of canine alignment (Figure 5). Sector location has been studied as an indicator of eventual impaction, resulting in good predictive success (Figure 5). Orthodontic Considerations in Surgical Interventions for Impacted Teeth

Regression analysis indicated that horizontal position, age of patient, vertical height and bucco-palatal position, in descending order of importance, are the factors which determine the difficulty of canine alignment. Sector location has been studied as an indicator of eventual impaction, resulting in good predictive success (Figure 5). Orthodontic Considerations in Surgical Interventions for Impacted Teeth

Regression analysis indicated that horizontal position, age of patient, vertical height and bucco-palatal position, in descending order of importance, are the factors which determine the difficulty of canine alignment.

Regression analysis indicated that horizontal position, age of patient, vertical height and bucco-palatal position, in descending order of importance, are the factors which determine the difficulty of canine alignment. Sector location has been studied as an indicator of eventual impaction, resulting in good predictive success.

Regression analysis indicated that horizontal position, age of patient, vertical height and bucco-palatal position, in descending order of importance, are the factors which determine the difficulty of canine alignment. Sector location has been studied as an indicator of eventual impaction, resulting in good predictive success.

Regression analysis indicated that horizontal position, age of patient, vertical height and bucco-palatal position, in descending order of importance, are the factors which determine the difficulty of canine alignment. Sector location has been studied as an indicator of eventual impaction, resulting in good predictive success.

Regression analysis indicated that horizontal position, age of patient, vertical height and bucco-palatal position, in descending order of importance, are the factors which determine the difficulty of canine alignment. Sector location has been studied as an indicator of eventual impaction, resulting in good predictive success.
maxillary canines like treatment difficulty index (TDI) [9] and 3D cone beam CT based classification system for canine impactions (the KPG index). [11]

maxillary canines like treatment difficulty index (TDI) (9) and 3D cone beam CT based classification system for canine impactions (the KPG index). (11)

Figure 4. Angular measurements in panoramic views are the canine inclination to midline or Alpha (α) angle and its inclination to the lateral incisor or Beta (β) angle (second row). Mesiodistal position of the canine cusp tip in relation to adjacent lateral and central incisors on panoramic radiographs is called “Zone” (third row). Inclination of the canine in the horizontal plane or the degree of mesial orientation of the canine is analyzed by measuring the Gamma (γ) angle between projection of long axis of the canine and the midline of the maxilla (bottom left).
degree of mesial orientation of the canine is analyzed by measuring the Gamma (γ) angle between the projection of the long axis of the canine and the midline of the maxilla (bottom left).

Figure 5. Sector I represents area distal to line tangent to distal heights of contour of lateral incisor crown and root. Sector II is mesial to sector I, but distal to bisector of lateral incisor’s long axis. Sector III is mesial to sector II, but distal to mesial heights of contour of lateral incisor crown and root. Sector IV includes all areas mesial to sector III (red line, Top right). The most superior point of the condyle was selected as a landmark; a bicondylar line was then drawn and used as a constructed horizontal reference line. The measurement was taken of the mesial angle formed by using the constructed horizontal and the long axis of the unerupted tooth (Top right).

3. Space preparation/Barrier removal

2- Space preparation/Barrier removal

Space is needed (space available) for bringing teeth (teeth materials) into the dental arch. Many mechanisms exist for creating the adequate space including stripping mesial or distal enamel of the teeth (proximal) with condition of existing Bolton discrepancies between upper and lower dentition, Extraction of premolars, incisors with condition of Bolton ratio considerations, or decayed teeth, Derotation or Uprighting of the posterior teeth after extractions or in the missing teeth conditions, proclination of anterior teeth, distalization of the posterior teeth, Orthopedic (Maxilla) or Orthodontic Expansion of dental arches.
Constricted arches, dental irregularities, proclinations of teeth relative to jaw bases or patient profile, deep bites and open bites with tight contacts between the teeth should be considered as space deficiency or crowding. Reproximation or proximal stripping produces up to 3.5 mm of space and 1 mm of expansion in the posterior part of maxilla is capable to produce 0.7 mm increase in arch perimeter that can be used for crowding resolution.

Upper dental arch expansion and lower dental arch uprighting (from lingual side to buccal side) produce space for bringing the impacted teeth to the dental arch. After full bonding of the arches, by incremental increase in wire diameter plus changes in cross sections (from round to rectangular) and material (from NiTi to Stainless Steel); dental arches begin to get adapted to final wire shape and size from its lingually collapsed cases to the consequent expanded arch.

Maxillary expansion can be skeletal or orthopedic if it is conducted in appropriate time i.e. before fusion of palatal suture. For maxillary expansion, banded expander (with Hyrax screw and acrylic free palate), banded+bonded (occlusal acrylic coverage) expander, and banded +palatal acrylic (Haas type) expander can be used for both dental and skeletal expansions.

In addition to space regaining in dental arches, physical barriers as supernumerary teeth, odontomas, or other pathologic lesions that inhibits tooth eruption; should be removed. Apart from hard tissue lesions, soft tissue fibrotic hyperplasia or thick fibrotic gingiva can prevent regular tooth eruption and they can be treated surgically or by laser beam.

4. Selection of the method for eruption of impacted tooth (Closed versus Open)

Method of exposure is very important to be practical for the surgeon, to be useful for application of biomechanical forces for the orthodontist, and to be beneficial for the patient. Benefits for the patient consist of several immediate and future outcomes; including periodontal health, esthetics, and stability of treatment. Facio-lingual and vertical position of the impacted teeth are very important in determining an appropriate approach for exposure. Buccally/Labially impacted teeth can be accessed after apically positioned flap or closed eruption technique. Excisional uncovering or gingivectomy necessitates special conditions including superficial position of tooth (vertically and facio-lingually), and adequate width of keratinized gingiva. An example of inappropriate surgical approach for uncovering the impacted central is conducting the procedure apical to the mucogingival junction and removing the keratinized gingiva (Figure 6).

Apically positioned flap (Open) or closed eruption technique is an aid for maintenance of the biologic width. The biological width is comprised of epithelial attachment and connective tissue attachment (both dimensions added) coronal to the crest of the alveolar bone. It should be planned to preserve an adequate apico-coronal height of keratinized gingiva (2-3 mm), especially in the presence of thin gingival biotype (transparency of the periodontal probe through gingival margin). In some cases impacted teeth are superfrontal and coronal or near mucogingival junction, in these circumstances, an apically positioned flap or open approach
Soft tissue covering the hard palate is called masticatory mucosa and it consists of keratinized or similar instruments e.g. curette to reach the coronal part of the tooth (Figure 7).

During tooth exposure, care should be given to protect root surface, for example; by avoiding the usage of sharp or rotary instrument if possible because bone and the unerupted tooth are color matched and any damage to the root leads to periodontal ligament breakdown, increased risk of ankylosis, and increased risk for future bone and gingival recession (detrimental effects to periodontal health and esthetics). Thin layers of bone can be removed by periosteal elevator or similar instruments e.g. curette to reach the coronal part of the tooth (Figure 7).

Soft tissue covering the hard palate is called masticatory mucosa and it consists of keratinized stratified squamous epithelium. Since the palate is covered with keratinized mucosa or attached gingiva, problems with alveolar mucosa are not part of this operational area. If the bulge of an impacted canine is obvious from the palatal aspect, the cuspid tooth should be located superficially and accessible after soft tissue removal plus removal of covering bone. The patient shown in Figure 8, had no canine bulge on the left side on facial aspect (top row-left and center slides) but it was seen on the palatal aspect clinically (top row-right slide) and also in CBCT (bottom- left and center). Uncovering the tooth and bonding through a small window can be hectic using a scalpel a palatal flap may help in achievement an isolated and dry environment for the bonding and open or close eruption technique. Again sufficient bone removal is recommended without damage to the tooth root because PDL is the interface for tooth movement and the enamel of the crown has no potential for participating in bone remodeling and consequent tooth movement. Absolute anchorage was used for eruption of

is indicated but the author suggests minimum apical repositioning of the flap equal to the amount needed for bonding of an orthodontic bracket in proper position for avoiding future width is comprised of epithelial attachment and connective tissue attachment (both dimensions added) coronal to the apex of the apical migration of the gingival margin. Uneven gingival contours can be corrected by cosmetic periodontal plastic surgery (laser, scalpel, or radiosurgery) if adequate soft tissue exist. Uncontrolled tipping toward labial/buccal can produce gingival/bone recession plus a long clinical crown that should be avoided.

When impacted teeth need a facial (labial or buccal) approach, and the position of tooth is deep, closed eruption is an option. In the aforementioned situation, an apically positioned flap will not be stable and rebound of soft tissue may occur in addition to unwanted exposed parts of the bone that should be covered by a flap (Figure 7).
Figure 7. Upper right central incisor is positioned horizontally. An apically positioned flap is not indicated in the present situation and a closed eruption surgical approach was used. Thin layering bone can be removed with a periosteal elevator instead of rotary instrument (burs) and bonding performed in an isolated dry environment (top row). After wound healing, tooth #11 can be pulled towards the dental arch by means of absolute anchorage (mini-screws) or after bonding upper dental arch (continuous wire). In this case, an orthodontic attachment was bonded in the lingual fossa of tooth #11 and ligature wire was placed out of the flap for biomechanical correction forces (bottom row).

Figure 8. Patient with an impacted tooth #23 underwent a surgical uncovering of a palatal left canine (mirror image, after surgery bottom right). An absolute anchorage by combination of two mini-screws and a cantilever appliance (Seifi Twin Screws/STS) was used for forced eruption of an impacted canine without creating unwanted orthodontic forces to the adjacent teeth. Mini-screws were covered by composites for better performance of springs and sustained stability.

4- Selection of the appropriate (efficient) biomechanical approach

After selection of proper approach to reach the impacted tooth, an appropriate biomechanical approach should be selected. A proper biomechanic system is capable of protecting periodontium and avoiding any unwanted tooth movement or root damage of the adjacent teeth.
5. Selection of the appropriate (effective) biomechanical approach

After selection of the proper approach to reach the impacted tooth, an appropriate biomechanical approach should be selected. A proper biomechanical system is capable of protecting periodontium and avoiding any unwanted tooth movement or root damage of the adjacent teeth.

a. Anchorage preparation (Direct vs. Indirect)

In contrast to dental implants, orthodontic miniscrews are loaded immediately, and most authors suggest the use of light forces early on.[12] Only a few studies, mostly on animals, have dealt with the investigation of tissue reaction to immediate loading of miniscrew implants. Miniscrew implants can be immediate loaded (there is no need for a waiting period for osseointegration, in contrast to orthodontic implants), reducing the total treatment time. There is no need for complicated clinical and laboratory procedures (i.e., fabrication of acrylic splints by taking imprints with additional implant copying systems to accurately transfer the implant position to cast models) to facilitate safe and precise implant insertion.[13]

Direct anchorage screws are useful when prognosis of the eruption (impacted tooth) is questionable. If the impacted tooth is ankylosed, by applying force from a continuous arch, the dental arch could be deflected towards the ankylosed tooth (sometimes creating open bites); but, an absolute anchorage could be a valuable tool to determine the sensitive stage of tooth eruption without endangering the adjacent anchored teeth (Figure 8). Direct anchorage can be used for anterior retraction in protrusion cases or non-extraction treatment of the Class III malocclusions (traction of lower anterior sextant) and cases who have midline shift toward previous extraction sites (Figure 9).

Indirect anchorage miniscrews stabilize dental units, which in turn serve as the anchor units, and open absolute anchor possibilities that can be even more flexible than direct-anchor setups. Miniscrew setups with indirect anchorage (indirect anchor setups) can enable an implant setup (e.g., a transpalatal arch) that is used to stabilize teeth (Figure 10). As they are not destined for restoration or any functional use after serving as anchor units, all indirect-anchor device are explanted at some point in time. Some authors recommend explanting the indirect anchor, which is used to stabilize teeth, at the same time as the orthodontic treatment is completed in order to prevent overloading of the anchor and to avoid potential complications (14).

Figure 9. Patient M.T. had Class III open bite with midline deviation toward left side, a previous extraction site. A miniscrew was inserted in the right retromolar area for midline correction; meanwhile retraction of anterior teeth to correct class III relationship and establishment of proper overjet and overbite was done.

Figure 10. Transpalatal arch (TPA) has served as indirect anchorage (contributing role of root surface area of upper first molars) in addition to a full size rectangle wire that resist against reactive forces produced by traction force on the impacted upper right canine.
cases (Group B), posterior protraction is almost equal to anterior retraction, and in minimum anchorage cases (Group C), posterior protraction is more than 75% of the extraction site.

Indirect anchorage miniscrew stabilizes dental units, which in turn serve as the anchor units, and opens absolute anchor possibilities that can be even more flexible than direct-anchor setups. Indirect-anchor setups will entail an implant, or TAD, placed in a non-dental location, which is then used to stabilize teeth, rendering them as indirect absolute anchors, on which orthodontic force is placed. Locations for indirect anchors include retromolar, buccal vestibule, and midpalatal (Figure 11). As they are not destined for restoration or any functional use after serving as anchor units, all indirect-anchor devices must be explanted at some time after the completion of orthodontics. Consequently, all indirect-anchor devices, be they endosseous implants or mini-screws, must be considered TADs. \[14\]

Figure 9. Patient M.T. had Class III open bite with midline deviation toward left side, a previous extraction site. A miniscrew was inserted in retromolar area of right side for midline correction and retraction of anterior teeth to correct Class II relationship and establishment of proper overjet and overbite.

Following force application, some mobility or movement of teeth will be noticeable and on X-ray examination, disappearance of the lamina dura plus widening of PDL will be evident; these are sequelae of force dispersion in the dental anchorage units. In maximum anchorage cases (Group A), mesial movement of posterior teeth (protraction) should be less than 25% of the extraction site; in moderate anchorage cases (Group B), posterior protraction is almost equal to anterior retraction, and in minimum anchorage cases (Group C), posterior protraction is more than 75% of the extraction site.

Figure 10. Transpalatal arch (TPA) has served as indirect anchorage (contributing role of root surface area of upper first molars) in addition to a full-size rectangular wire that resists reactive forces produced by traction force on the impacted upper right canine.

Figure 11. Miniscrews as an indirect anchorage resist against vertical pull of elastics for open bite closure. In the present condition, eruption of lower anterior teeth has a major role for establishment of proper overbite. Vertical movement of the maxillary dentition is controlled by ligating both upper canines to miniscrews as indirect anchorage.
b. Force application

After anchorage preparation, a pivotal phase of treatment begins i.e. force application for eruption of the impacted tooth into the dental arch. Any root damage to the impacted tooth is not acceptable e.g. ligating ligature wire around the cervical part of the tooth may destroy PDL and have a deleterious effect on periodontal health of the future leveled/aligned tooth. In addition, the author does not prefer enamel drilling for canine traction (EDCT) over accessory bonding for canine traction (ABCT) i.e. bonding orthodontic attachment for loading because of its inherent characteristics in enamel destruction. A clean, etched surface of enamel is a prerequisite for successful bonding but before force application, a recheck of bonded attachment for loading because of its inherent characteristics in enamel destruction. In Figure 12, 100 gram force plus 1000 g mm of moment equals the 100 gram force applied to the bracket with 10 mm distance. By addition of counterbalancing moment (M) i.e. insertion of rectangular archwire in the bracket slot and its engagement to the walls, the bracket system will act like system in the green box of Figure 12 (green box is hypothetical and cannot happen in clinics) and depending on the proportion of M/F, a controlled tipping (0<M<1), translation or bodily movement (M/F=1) and torque (M/F>1) can be produced. The relationship between the orthodontic force and counterbalancing moment is also expressed in the moment to force ratio (M/F). M/F ratio <1 produces controlled tipping (M/F<1), translation or bodily movement (M/F=1) and torque (M/F>1). M/F ratio =1 produces controlled tipping ratio of 8 to 10 (according to root length) produce bodily movement, and ratios greater than root length produce root torque movement.

Description of tooth movement for an impacted tooth is intricate and difficult. Only 3-dimensional analysis that contains information on both rotation and translation of the tooth movement has potential to evaluate and explain the nature of the exact movement. However, coordinate systems are used in orthodontics for better understanding of clinicians. Application of moment to the center of resistance of a rigid body can produce translation without rotation. If the vector of the force is out of the center of resistance (C), according to its distance to the

$$F \cdot r = M$$

the moment (M) is produced. If the force is perpendicular to the bracket slot and its engagement to the walls, the bracket system will act like system in the green box of Figure 12 (green box is hypothetical and cannot happen in clinics) and depending on the proportion of M/F, a controlled tipping (0<M<1), translation or bodily movement (M/F=1) and torque (M/F>1) can be produced. The relationship between the orthodontic force and counterbalancing moment is also expressed in the moment to force ratio (M/F). M/F ratio <1 produces controlled tipping (M/F<1), translation or bodily movement (M/F=1) and torque (M/F>1). M/F ratio =1 produces controlled tipping ratio of 8 to 10 (according to root length) produce bodily movement, and ratios greater than root length produce root torque movement.

The correct M/F ratio should be obtained for bringing the impacted tooth to the dental arch but it is important to maintain the ratio for a constant force of rotation. By using rectangular loop (R-loop) in a cantilever spring, load-deflection rate will be decreased i.e. make the spring more flexible (relative to straight wire), and the configuration of the spring leads to a better maintenance of M/F ratio for a constant center of rotation. Segmented R-loop has long range of action with minimal force decrease during tooth movement and acceptable control of force magnitude. If the spring is distorted by the patient, cantilever spring do not fail safely, and it can significantly move the tooth in an unwanted direction (Figure 13).

Treating a clinical case of a maxillary canine in infrabiorversion by means of the straight archwire technique used to level the tooth is a harmful procedure for adjacent teeth. Canine extrusion would occur regardless of the type of bracket, whether conventional or self-ligating, however, it would be followed by undesired intrusion and moments on the lateral incisor and first premolar (Figure 14). Many authors believe that these side effects would be solved with intermaxillary rubber bands arch.
The correct M/F ratio should be obtained for bringing the impacted tooth into the dental arch but it is important to maintain the ratio for a constant center of rotation. By using rectangular loop (R-loop) in a cantilever spring, load-deflection rate will be decreased i.e. make the spring more flexible (relative to straight wire), and the configuration of the spring leads to a better maintenance of M/F ratio for a constant center of rotation. Segmented R-loop has long range action with minimal force decrease during tooth movement and acceptable control of force magnitude. If the spring is distorted by the patient, it can significantly impede the tooth into unwanted direction (Figure 13).

To each other, but not necessarily connected to brackets and adjacent tubes. This allows a combination of wires made of different alloys and hardness to be used. Rigid and thick archwires can connect groups of teeth into anchorage units, whereas flexible archwires are used to exert forces between these units. (15)

Treating a clinical case of a maxillary canine in infralabioversion by means of the straight archwire technique used to level the tooth is a harmful procedure for adjacent teeth. Canine extrusion would occur regardless of the type of bracket, whether conventional or self-ligating; however, it would be followed by undesired intrusion and moment on the lateral incisor and first premolar (Figure 14). Many authors believe that these side effects can be solved with intermaxillary rubber bands, arch bends or wire progression. Conversely, with the aid of the segmented arch technique (SAT) and after preparation of the anchorage unit, only the canine is extracted by a cantilever or a rectangular loop (Figure 14).

Differently from the conventional techniques, which normally use an archwire made of one single alloy, connecting all brackets and adjacent tubes, the SAT uses arch segments connected to each other, but not necessarily connected to brackets and adjacent tubes. This allows a combination of wires made of different alloys, dimensions and hardness to be used. Rigid and thick archwires can connect groups of teeth into anchorage units, whereas flexible archwires are used to exert forces between these units. [15]
Orthodontic Considerations in Surgical Interventions for Impacted Teeth

5.1. Biomechanical alternatives for forced tooth eruption

The orthodontist should avoid mechanics that draw the tooth labially, which could produce a bony dehiscence and accelerated migration of the labial gingival margin, resulting in labial recession. A “Ballista” loop is a simple, convenient, unobtrusive method of applying a vertical vector of force to a labially impacted tooth to erupt the crown into the center of the alveolus. When the canine crown is displaced mesially and lies over the root of the permanent lateral

Figure 13. A straight wire is used in (A) to erupt the bicuspid. When the wire is bent (blue line) and engaged in bracket, root apex tend to go to distal, in next yellow line position, root is upright and moment drops off, and in red line position; roots tend to go to the mesial while the crown is depressed. With this configuration, several center of rotation exists and constancy of the moment to force ratio is affected (inconsistent force system). Slide B demonstrates preactivated rectangular loop (R-loop) which provides constant control of M/F ratio. R-loop is made from 0.018x0.025 inch Stainless Steel or 0.017x0.025 inch Titanium Molybdenum Alloy (TMA).

Figure 14. Top-left) Continuous arch wire (NiTi or CuNiTi) or straight archwire technique can be used to level the impacted canine/high buccal canine (infralabioversion canine) but canine extrusion would be followed by intrusive force. (A) When the wire is bent and engaged in bracket, root apex tend to go to distal, in next yellow line position, root is upright and moment drops off, and in red line position; roots tend to go to the mesial while the crown is depressed. With this configuration, several center of rotation exist and constancy of the moment to force ratio is affected (inconsistent force system). Bottom-left) Sectional cantilever spring is used to extrude the impacted canine (force 30 grams, and distance between canine and molar extrusion, about 20 mm). Extrusive force on canine (30 grams) will produce 30 gram intrusive force on upper first molar plus 600 g mm moment (M=Fxd=30x20=600) to create distal root movement (blue arrow). The moment may be created by a cantilever rectangular spring is inserted into a rectangular tube and tied to one point on the other side to produce “determinate one-couple system”. Bottom-right) the aforementioned force system from the occlusal view. Consider the moment created by the rectangular cantilever spring in molar tube (torque) and moment on the canine. If center of resistance of the canine tooth is, presumably, about 5 mm lingual to the bonded button on the crown, a 30 g intrusive force can create 150 g mm moment to rotate the molar crown palatally. If the center of resistance of the impacted canine is, presumably, 10 mm palatal to the buccal surface of the first molar, activation of spring to tie to the canine, can twist it and create 300 g mm (30x10=300g mm) moment to rotate the molar crown palataly. The result at the molar is a net 150 g mm (300 mm palatal – 150 g mm buccal =150 g mm palatal) palatal crown torque. (Bracket type and existence of continuous archwire of the model are not related to the biomechanical explanations.)
The orthodontist should avoid mechanics that draw the tooth labially, which could produce a bony dehiscence and accelerated migration of the labial gingival margin, resulting in labial recession. A "Ballista" loop is a simple, convenient, unobtrusive method of applying a vertical vector of force to a labially impacted tooth to erupt the crown into the dental arch. When the canine crown is displaced labially and lies over the root of the permanent lateral incisor, an apically positioned flap is the appropriate surgical uncovering technique. Exposure of the crown facilitates attachment of an elastomeric chain directed toward the center of the edentulous alveolar ridge to gradually guide the canine crown into the dental arch. (16) A "Vertical spring" bent into 0.14 inch stainless steel wire that faces downward before activation neutralizes the activity of the spring. Another alternative is an "Overlaid Auxiliary NiTi wire" on the rectangular stabilizing arch. These auxiliary arch wires are very efficient to bring an impacted tooth into dental arch. "Cantilever springs" can be used, either soldered to a heavy base arch or from auxiliary tube on the first molar. Some have used headgear tube plus an anti-rotation bend on wire and a helix around main arch wire for forced eruption of impacted teeth.

5.2. Molar uprighting in impacted cases

Molar uprighting is generally associated with extrusion of antagonist teeth, reduction in edentulous space, bone dehiscence in the mesial surface of tipped molars, gingival recession of tipped molars, early contact in centric relation and occlusal interference on excursion of the mandible. With regard to integrated planning, clinicians must decide whether the tooth subject to uprighting will undergo movement for space closure, opening of space for prosthetic rehabilitation or implant placement. Mesial movement of molars may be rendered difficult due to the following: alveolar bone resorption resulting from tooth loss, which causes the molar mesial bone to become too thin; unfavorable root morphology for movement of lower molars; greater mandibular bone density in relation to the maxilla; and thin buccolingual bone thickness from distal to mesial in the mandibular arch. Using straight wires to upright tipped molars is considered unfeasible, given that, in these cases, there is a strong tendency towards extrusion of molars, especially due to the short distance between brackets. Additionally, incorporating a T-loop spring into the arch will lead to extrusion of premolars. A cantilever, extended up to the anterior region, may be used to reduce the effects of extrusion on molars. A dental arch with aligned teeth and heavy main archwires can serve as an anchorage until it is used for uprighting posterior second or third molar teeth by a NiTi or sectional Stainless Steel wire incorporating loops e.g. T-loop. Absolute anchorages i.e. miniscrews or titanium miniplates are other alternatives for distalizing or uprighting impacted molar teeth (Figure 15).

Figure 15. T-loops have efficient control on angulation and torque of an inclined tooth (left). An alternative to absolute anchorage can help in uprighting the tilted impacted second or third molars without endangering other teeth as anchorage units that may be affected with orthodontic force and tooth movement or root resorption.

Molar uprighting is generally associated with extrusion of antagonist teeth, reduction in edentulous space, bone dehiscence in the mesial surface of tipped molars, gingival recession of tipped molars, early contact in centric relation and occlusal interference on excursion of the mandible. With regard to integrated planning, clinicians must decide whether the tooth subject to uprighting will undergo movement for space closure, opening of space for prosthetic rehabilitation or implant placement. Mesial movement of molars may be rendered difficult due to the following: alveolar bone resorption resulting from tooth loss, which causes the molar mesial bone to become too thin; unfavorable root morphology for movement of lower molars; greater mandibular bone density in relation to the maxilla; and thin buccolingual bone thickness from distal to mesial in the mandibular arch. Using straight wires to upright tipped
molars is considered unfeasible, given that, in these cases, there is a strong tendency towards extrusion of molars, especially due to the short distance between brackets. Additionally, incorporating a T-loop spring into the arch will lead to extrusion of premolars. A cantilever, extended up to the anterior region, may be used to reduce the effects of extrusion on molars. Researchers have proved a moment of 1200 gf.mm to be appropriate for molar uprighting. Should a 30-mm cantilever be used, an activation of 40 gf is enough for molar uprighting, in which case 40 gf corresponds to intrusive forces in the anterior region and extrusive forces in the region of molar teeth. Mesocephalic or brachycephalic patients are able to eliminate or reduce this effect of extrusion by their own muscular pattern. [15, 17]

6. Alignment/Leveling/Torque/Angulation (ALTA) corrections

The root apices are located in the apical portion of the jaws and malposition almost always develops as the eruption paths of teeth are deflected; for impacted teeth the problem is more complicated and both apex and crown are usually misplaced. ALTA corrections have been considered for the time that impacted tooth has been brought near to the dental arch. Light and continuous force is recommended for the beginning of the treatment i.e. “Alignment”, through tipping movement for impacted teeth in facio-lingual direction. As a general rule, heavy wires should be avoided at this stage. A minimum of 0.004 inch clearance is needed for sliding mechanics, in other words, in 0.018 slot an archwire with 0.014 inch stainless steel can be accepted for sliding but for severe crowding or malposition situation, more length of wire in the form of loop or helices should be incorporated. Although resilient wire with rectangular shape like A-NiTi or CuNiTi (Damon system) could be used, but because they produce unwanted root movement, possible root resorption, and possible delay in alignment progression, rectangular resilient wires are not advisable. Wires should have excellent strength and springiness, long range of action and low load deflection rate. NiTi wires are springier and stronger (in small section) than beta-titanium (TMA), for these reasons, A-NiTi and CuNiTi wires are recommended for initial stages of aligning.

In addition to alignment, impacted teeth should be “Leveled” in occluso-gingival direction. Leveling can be obtained by absolute intrusion or by relative intrusion and sometimes by differential elongation or extrusion of teeth. Utility arches e.g. 2x4 appliance, reverse curve for lower arch, intrusion arch and combination of sectional wires, segmented arches and titanium miniscrews are used for leveling the dental arch.

After establishment of proper alignment and leveling, two other crown position characteristics should be achieved i.e. “Torque” and “Angulation”. Torque is in facio-lingual direction and usually involves root movement and moment (increased M/F ratio) is needed for its correction. Angulation is related to mesio-distal characteristics of crown positioning and like the amount of torque degree, is considered in bracket prescription in straight wire appliances (SWA). Wire bending like what is performed in “Standard Edgewise” for finishing and establishment of correct torque and angulation, is needed for severe impacted cases for obtaining the proper ALTA correction and accepted occlusion (according to ABO scores).
7. Conclusion

Bone-impacted canines of the hard palatal are more likely to respond to surgical exposure and orthodontic management if angulation to midline is less than 45 degrees on the OPG; there is no root anomaly found on OPG, periapical (PA), and maxillary occlusal (MO) radiographs; and overlap of the adjacent lateral incisor root (OALIR) by the canine crown is nonexistent or less than grade 2 (half the root) on the OPG.[18] Researchers have tried to predict impaction of a maxillary canine using geometric measurements made on panoramic radiographs. Diagnosis of an outcome can be performed cross-sectionally, however; for prediction, two separate prospective data sets should be used. [19]

Deimpaction of the impacted teeth can be accelerated by means of thick soft tissue removal with laser application. Laser-assisted surgical removal of the fibrous tissue over erupting premolars (DTE) with appropriate irradiation parameters appears to be a promising adjunct to orthodontic treatment for bringing them to the aligned and leveled dental arch.[20] Orthodontic tooth movement and root resorption of impacted teeth can be influenced by laser [21] and administration of different drugs.[22,23]

Author details

Massoud Seifi* and Mohammad Hosein Kalantar Motamedi2

*Address all correspondence to: seifimassoud@gmail.com

1 Dentofacial Deformities Research Center, Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Trauma Research Center, Baqiyatallah Medical Sciences University, Tehran, Iran

References

