We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,200
Open access books available

116,000
International authors and editors

125M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter 12

References

[27] Harindranath K, Viswanath KA, Chandran CV, Bräuniger T, Madhu PK, Ajithkumar TG, Joy PA. Evidence for the co-existence of distorted tetrahedral and trigonal bipyr-
amidal aluminium sites in SrAl$_{12}$O$_{19}$ from 27Al NMR studies. Solid State Communications 2010;150(5-6) 262-266.

[30] Chawla S, Yadav A. Role of valence state of dopant (Eu$^{2+}$, Eu$^{3+}$) and growth environment in luminescence and morphology of SrAl$_{12}$O$_{19}$ nano- and microcrystals. Materials Chemistry and Physics 2010;122(2-3) 582-587.

[32] Verduin HR, Wortman DE, Morrison CA, Bradshaw JL. Optical properties of Nd$^{3+}$ in single crystal SrAl$_{12}$O$_{19}$. Optical Materials 1997;7(3) 117-128.

[34] Li YJ, Ma YY, Ye S, Hu GP, Zhang QY. Site-related near-infrared luminescence in MA1$_{12}$O$_{19}$ (M = Ca, Sr, Ba):Fe$^{3+}$ phosphors. Materials Research Bulletin 2014;51 1-5.

[38] Verstegen JMPJ, Stevels ALN. The relation between crystal structure and luminescence in β-alumina and magnetoplumbite phases. Journal of Luminescence 1974;9(5) 406-414.

[55] Tarnopol’skaya RA, Gol’ko NV. The CaO-SrO-Al\textsubscript{2}O\textsubscript{3}-ZrO\textsubscript{2} system and its importance for refractories technology. Refractories and Industrial Ceramics 1967;8(11-12) 760-763.

[56] Pitak YN, Proskurnya EM. On the subsolidus structure in the CaAl\textsubscript{4}O\textsubscript{7} – Ca\textsubscript{7}Al\textsubscript{6}ZrO\textsubscript{18} – CaAl\textsubscript{2}O\textsubscript{4} – CaZrO\textsubscript{3} – SrZrO\textsubscript{3} – SrAl\textsubscript{2}O\textsubscript{4} – CaZrO\textsubscript{3} – SrZrO\textsubscript{3} – SrAl\textsubscript{2}O\textsubscript{4} region of the CaO – SrO – Al\textsubscript{2}O\textsubscript{3} – ZrO\textsubscript{2} system. Refractories and Industrial Ceramics 2000;41(9-10) 360-363.

[58] Latimer WM. Methods of estimating the entropies of solid compounds. Journal of the American Chemical Society 1951;73(4) 1480-1482.

[61] Votruba P, Leitner J. A method for the estimation of the enthalpy of formation of mixed oxides in Al\textsubscript{2}O\textsubscript{3}–Ln\textsubscript{2}O\textsubscript{3} systems. Journal of Solid State Chemistry 2009;182(4) 744-748.

[68] Boyko ER, Wisnyi LG. The optical properties and structures of CaO⋅(Al\textsubscript{2}O\textsubscript{3})\textsubscript{2} and SrO⋅(Al\textsubscript{2}O\textsubscript{3})\textsubscript{2}. Acta Crystallographica 1958;11 444-445.

[94] Casey WH, Chal L, Navrotsky A, Rock PA. Thermochemistry of mixing strontianite [SrCO$_3$(s)] and aragonite [CaCO$_3$(s)] to form Ca$_x$Sr$_{1-x}$CO$_3$(s) solid solutions. Geochimica et Cosmochimica Acta 1996;60(6) 933-940.

[98] Fubini B, Renzo FD, Stone FS. Strontianite-aragonite solid solutions Sr\(_x\)Ca\(_{1-x}\)CO\(_3\): Effect of composition on the orthorhombic-rhombohedral phase transition and the conversion to oxide solid solutions Sr\(_x\)Ca\(_{1-x}\)O. Journal of Solid State Chemistry 1988;77(2) 281-292.

[143] Bayer KJ. Verfahren zur darstellung von thonerhydrat und alkalialuminat; 1892.

[183] Alavi MA, Morsali A. Syntheses and characterization of Sr(OH)$_2$ and SrCO$_3$ nanostructures by ultrasonic method. Ultrasonics Sonochemistry 2010;17(1) 132-138.

[257] Ishii H, Satoh KZ. Determination of micro amounts of samarium and europium by analogue derivative spectrophotometryAnalytical Chemistry 1982;312(2) 114-120.

[281] Bond FC. Crushing and Grinding Calculations Parts I and II. British Chemical Engineering 6 (6&8); 1961.

[327] Megaw HD. Zeitschrift für Kristallographie, Mineralogie und Petrographie 1934;87 185-204.

[358] Bettman M, Peters CR. The crystal structure of Na₂O·MgO·5Al₂O₃ with reference to Na₂O·5Al₂O₃ and other isotypal compounds. Journal of Physical Chemistry 1969;73 1774-1780.

Gerstig M, Wadsö L. A method based on isothermal calorimetry to quantify the influence of moisture on the hydration rate of young cement pastes. Cement and Concrete Research 2010;40(6) 867-874.

...Early hydration of calcium sulfoaluminate cement through electrical resistivity measurement and microstructure investigations. Construction and Building Materials 2011;25(4) 1572-1579.

References 301

[521] Dondero M, Cisilino AP, Carella JM, Pablo TJ. Effective thermal conductivity of functionally graded random micro-heterogeneous materials using representative volume

[532] Carey E, Stubenrauch C. Free drainage of aqueous foams stabilized by mixtures of a non-ionic (C12DMPO) and an ionic (C12TAB) surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013;419 7-14.

[570] Valore RC. Cellular concrete part 1, Composition and methods of production. published in American Concrete Institute Journal 1954;50 773-796.

[580] Manu KM, Joseph T, Sebastian MT. Temperature compensated $\text{Sr}_2\text{Al}_2\text{SiO}_7$ ceramic for microwave applications. Materials Chemistry and Physics 2012;133(1) 21-23.
Dear PS. Isomorphism of åkermanite and strontio-gehlenite. Lithos 1970;3(1) 13-16.

[613] Rivas-Mercury JM, Pena P, de Aza AH, Turrillas X. Dehydration of Ca$_3$Al$_2$(SiO$_4$)$_3$(OH)$_4(3-y)$ ($0 < y < 0.176$) studied by neutron thermodiffractometry. Journal of the European Ceramic Society 2008;28(9) 1737-1748.

[618] Stöber S, Redhammer G, Schorr S, Prokhnenko O, Pöllmann H. Structure refinements of members in the brownmillerite solid solution series Ca$_3$Al$_x$(Fe$_{0.5}$Mn$_{0.5}$)$_2$O$_{5+δ}$ with $1/2 ≤ x ≤ 4/3$. Journal of Solid State Chemistry 2013;197420-428.

[624] Casey PS, Barker D, Hayward MA. Charge and structural ordering in the brownmillerite phases: La$_{1-x}$Sr$_x$MnO$_{2.5}$ (0.2<x<0.4). Journal of Solid State Chemistry 2006;179(5) 1375-1382.

[628] Mahboub MS, Zeroual S, Boudjada A. Synthesis of homogeneous Ca$_{0.5}$Sr$_{0.5}$FeO$_{2.5+δ}$ compound using a mirror furnace method. Materials Research Bulletin 2012;47(2) 370-374.

[629] Prado F, Grunbaum N, Caneiro A, Manthiram A. Effect of La$^{3+}$ doping on the perovskite-to-brownmillerite transformation in Sr$_{1-x}$La$_x$Co$_{0.8}$Fe$_{0.2}$O$_{3-δ}$ (0≤x≤0.4). Solid State Ionics 167(2004) 147-154.

[635] Abakumov AM, Rozova MG, Ph Pavlyuk B, Lobanov MV, Antipov EV, Lebedev OL, van Tendeloo G, Ignatchik OL, Ovtchenkov EA, Koksharov YA, Vasil’ev AN. Syn-

[641] Leonidov IA, Patrakeev MV, Bahteeva JA, Mitberg EB, Kozhevnikov VL, Colomban P, Poeppelmeier KR. High-temperature phase equilibria in the oxide systems SrFe$_{1\text{x}}$,Ga$_{2\text{x}}$:SrFe$_{1\text{x}}$,Ga$_{0\text{x}}$ ($x = 0, 0.1, 0.2$). Journal of Solid State Chemistry 2006;179(4):1093-1099.

Cho S.-A, Arenas FJ, Ochoa J. Densification and hardness of Al$_2$O$_3$-Cr$_2$O$_3$ system with and without Ti addition. Ceramics International 1990;16(5) 301-309.

Mitra NK, Maitra S, Gnanabharathi D, Parya TK, Dey R. Effect of Cr$_2$O$_3$ on the sintering of aluminosilicate precursor leading to mullite formation. Ceramics International 2001;27(3) 277-282.

Pakhomov NA, Kashkin VN, Nemykina EI, MolchanovVV, Nadtochiy VI, Noskov AS. Dehydrogenation of C3–C4 paraffins on Cr$_2$O$_3$/Al$_2$O$_3$ catalysts in fluidized and fixed bed reactors. Chemical Engineering Journal 2009;154(1-3) 185-188.

Shee D, Sayari A. Light alkane dehydrogenation over mesoporous Cr$_2$O$_3$/Al$_2$O$_3$ catalysts. Applied Catalysis A: General 2010;389(1-2) 155-164.

Peters D, Hummel FA. Phase studies in the systems CaO Al$_2$O$_3$ CaCrO$_4$ and SrO Al$_2$O$_3$ SrCrO$_4$. Cement and Concrete Research 1979;9(2) 259-268.

[711] Poellmann H, St. Auer H-J, Wenda KR. Solid solution of ettringites: Part II: Incorporation of B(OH)$_4^-$ and CrO$_4^{2-}$ in 3CaO·Al$_2$O$_3$·3CaSO$_4$·32H$_2$O. Cement and Concrete Research 1993;23(2) 422-430.

[712] Baur I, Johnson CA. The solubility of selenate-AFt (3CaO·Al$_2$O$_3$·3CaSeO$_4$·37.5H$_2$O) and selenate-AFm (3CaO·Al$_2$O$_3$·CaSeO$_4$·xH$_2$O). Cement and Concrete Research 2003;33(11) 1741-1748.

[715] Perkins RB, Palmer CD. Solubility of Ca$_6$[Al(OH)$_6$]$_2$[(CrO$_4$)$_3$·26H$_2$O, the chromate analog of ettringite at 5–75 °C. Applied Geochemistry 2000;15 1203-1218.

[719] Barnett SJ, Adam CD, Jackson ARW. An XRPD profile fitting investigation of the solid solution between ettringite, Ca₆Al₂(SO₄)₃(OH)₁₂·26H₂O, and carbonate ettringite, Ca₆Al₂(CO₃)₃(OH)₁₂·26H₂O. Cement and Concrete Research 2001;31(1) 13-17.

[734] Vladu CM, Hall Ch, Maitland GC. Flow properties of freshly prepared ettringite suspensions in water at 25 °C. Journal of Colloid and Interface Science 2006;294(2) 466-472.

[736] Perkins RB, Palmer CD. Solubility of chromate hydrocalumite (3CaO·Al₂O₃·CaCrO₄·nH₂O) 5-75°C. Cement and Concrete Research 2001;31(7) 983-992.

[746] Narayanan PS, Lakshmanan BR. Infrared and raman spectra fo witherite (BaCO₃) and strontianite (SrCO₃). Journal of the Indian Institute of Science 1957;40(1) 1-12.

[756] Xiang Ying Chen, Zhao Li, Shi Ping Bao, Ping Ting Ji. Porous MAI$_2$O$_4$:Eu$^{2+}$ (Eu$^{3+}$), Dy$^{3+}$ (M=Sr, Ca, Ba) phosphors prepared by Pechini-type sol-gel method: The effects of solvents. Optical Materials 34 (2011) 48-55.

[774] Li X, Qu Y, Xie X, Wang Z, Li R. Preparation of SrAl$_2$O$_4$: Eu$_{0.1}$, Dy$_{0.9}$ nanometer phosphors by detonation method. Materials Letters 2006;60(29-30) 3673-3677.

[793] Garcés RS, Torres JT, Valdés AF. Synthesis of SrAl$_2$O$_4$ and Sr$_3$Al$_2$O$_6$ at high temperature, starting from mechanically activated SrCO$_3$ and Al$_2$O$_3$ in blends of 3:1 molar ratio. Ceramics International 2012;38(2) 889-894.

[801] Nsimama PD, Ntwaeaborwa OM, Coetsee E, Swart HC. The influence of the number of pulses on the morphological and photoluminescence properties of SrAl$_2$O$_4$: Eu$^{2+}$, Dy$^{3+}$ thin films prepared by pulsed laser deposition. Physica B 2009;404 4489-4492.

[811] Mothudi BM, Ntwaeaborwa OM, Botha JR, Swart HC. Photoluminescence and phosphorescence properties of MAI$_2$O$_5$:Eu$^{2+}$, Dy$^{3+}$ (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500°C. Physica B: Condensed Matter 2009;404(22) 4440-4444.

[814] Sharma SK, Pitale SS, Malik MM, Qureshi MS, Dubey RN. Spectral and kinetic characterization of orange-red emitting Sr$_2$Al$_2$O$_7$:Eu$^{3+}$/Sm$^{3+}$ phosphor. Journal of Alloys and Compounds 2009;482(1-2) 468-475.

[824] Shafia E, Bodaghi M, Tahriri M. The influence of some processing conditions on host crystal structure and phosphorescence properties of SrAl₂O₄:Eu²⁺, Dy³⁺ nanoparticle pigments synthesized by combustion technique. Current Applied Physics 2010;10(2) 596-600.

[829] Cui Z, Ye R, Deng D, Hua Y, Zhao S, Jia G, Li Ch, Xu S. Eu3+/Sm3+ ions co-doped white light luminescence SrSiO\textsubscript{3} glass-ceramics phosphor for White LED. Journal of Alloys and Compounds 2011;509(8) 3553-3558.

[831] Liu H, Wang Y, Yang J, Li L, Su W, Guan Z, Yu B. The structure and luminescence characteristics of SrSiO\textsubscript{3}:Eu3+:Bi3+ synthesized at a high pressure and high temperature. Journal of Alloys and Compounds 1993;191(1) 1-4.

[832] Tshabalala MA, Dejene FB, Pitale SS, Swart HC, Ntwaeaborwa OM. Generation of white-light from Dy3+ doped Sr\textsubscript{2}SiO\textsubscript{4} phosphor. Physica B: Condensed Matter 2014;439 126-129.

[833] Saradhi MP, Lakshminarasimhan N, Boudin S, Gupta KVK, Varadaraju UV, Raveau B. Enhanced luminescence of Sr\textsubscript{2}SiO\textsubscript{4}:Dy3+ by sensitization (Ce3+/Eu2+) and fabrication of white light-emitting-diodes. Materials Letters 2014;117 302-304.

[834] Gupta SK, Kumar M, Natarajan V, Godbole SV. Optical properties of sol-gel derived Sr\textsubscript{2}SiO\textsubscript{4}:Dy3+ - Photo and thermally stimulated luminescence. Optical Materials 2013;35(12) 2320-2328.

[835] Yang R.-Y, Chen H.-Y, Chang S.-J, Yang Y.-K. Effect of Eu3+ concentration on microstructure and photoluminescence of Sr\textsubscript{2}SiO\textsubscript{4}:Eu3+ phosphors prepared by microwave assisted sintering. Journal of Luminescence 2012;132(3) 780-783.

[837] Qiao Y, Zhang X, Ye X, Chen Y, Guo H. Photoluminescent properties of Sr\textsubscript{2}SiO\textsubscript{4}:Eu3+ and Sr\textsubscript{2}SiO\textsubscript{4}:Eu2+ phosphors prepared by solid-state reaction method. Journal of Rare Earths 2009;27(2) 323-326.

[838] Dutczak D, Milbrat A, Katelnikovas A, Meijerink A, Ronda C, Jüstel T. Yellow persistent luminescence of Sr\textsubscript{2}SiO\textsubscript{4}:Eu3+,Dy3+. Journal of Luminescence 2012;132(9) 2398-2403.

[858] Sudarsanan K, Young RA. Structure of strontium hydroxide phosphate, Sr$_5$(PO$_4$)$_3$OH. Acta Crystallographica Section B 1972;B28(12) 3668-3670.

[888] Wang X, Gan J, Huang Y, Seo HJ. The doping concentration dependent tunable yellow luminescence of Sr$_2$(PO$_4$)$_2$(SiO$_4$)$_2$Eu$^{2+}$. Ceramics International 2012;38(1) 701-706.

[892] Krzmanc MM, Valant M, Suvorov D. The synthesis and microwave dielectric properties of Sr\(_x\)Ba\(_{1-x}\)Al\(_2\)Si\(_2\)O\(_8\) and Ca\(_x\)Ba\(_{1-x}\)Al\(_2\)Si\(_2\)O\(_8\) ceramics. Journal of the European Ceramic Society 2007;27(2-3) 1181-1185.

[899] Limeng L, Feng Y, Haijiao Z, Jie Y, Zhiguo Z. Celsian formation in Si\(_3\)N\(_4\)-Ba\(_{0.75}\)Sr\(_{0.25}\)Si\(_2\)Al\(_2\)O\(_8\) composites. Scripta Materialia 2009;60(6) 463-466.

[900] Strnad Z. Glass-Ceramic Materials, Glass Science and Technology; Volume 8; Amsterdam: Elsevier; 1986.

[908] Lan Z, Chengyu L, Qiang S. Long lasting phosphorescence in Eu²⁺ and Ce³⁺ co-doped strontium borate glasses. Journal of Rare Earths 2006;24(1) 196-198.

Sekhar KC, Hong KP, Key SH, Han ChS, Kim JCh, Kim DS, Park JCh, Cho YS. Enhanced dielectric and tunable characteristics of K-doped $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$ thin films prepared by pulsed laser deposition. Current Applied Physics 2012;12(3) 654-658.

Hu T, Jantunen H, Uusimäki A, Leppävuori S. $\text{Ba}_{0.7}\text{Sr}_{0.3}\text{TiO}_3$ powders with B_2O_3 additive prepared by the sol–gel method for use as microwave material. Materials Science in Semiconductor Processing 2002;5(2-3) 215-221.

Lichtenberg F, Herrmberger A, Wiedenmann K, Mannhart J. Synthesis of perovskite-related layered $\text{A}_n\text{B}_n\text{O}_{3n+2} = \text{ABOX}$ type niobates and titanates and study of their structural, electric and magnetic properties. Progress in Solid State Chemistry 2001;29(1-2) 1-70.

[970] Li S, Hu QY, Liu HK, Dou SX, Gao W. The grain alignment of Bi2223, Bi2212 and Bi2223 + Bi2212 phases in mechanical deformation and annealing processes. Physica C: Superconductivity 1997;279(3-4) 265-276.

[977] Marcos MD, Attfield JP. Crystal structure of Tl0.5Pb0.5Sr2Ca2Cu3O9 at 300 K and around Tc (118 K). Physica C: Superconductivity 1996;270(3-4) 267-273.

[979] Singh B, Gupta S, Sharma N, Goyal SC. Higher order elastic constants of La1.8Sr0.2CuO4 high temperature superconductor. Physica C: Superconductivity 2005;419(1-2) 1-6.

[981] Jayachandran KP, Menon CS. Mode Grüneisen parameters and the low temperature thermal expansion of high-Tc superconductor La1.8Sr0.2CuO4. Physica C: Superconductivity 2002;383(1-2) 159-168.

[990] Xiao B, Feng J, Chen JC, Yu L. Crystal structures and electronic properties of MC₂ (M = Mg, Ca, Sr, Ba) by comparative studies based on ab-initio calculations. Chemical Physics Letters 2007;448(1-3) 35-40.

[1024] Zhou L, Guo J, Yang N, Li L. KISolid-state magnetic resonance and infrared spectroscopy of alkali feldspars. Science in China (Series D) 1997;40(2) 159-165.

[1036] Mallik A, Kundu P, Basumajumdar A. Nucleation, crystallization behavior and microstructure of mica glass-ceramics in the system SrO–4MgO·xAl₂O₃·6SiO₂·2MgF₂ (x=1, 1.5 and 2). Ceramics International 2013;39(6) 6963-6969.

