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1. Introduction 

Neural networks have been widely applied in image processing, pattern recognition, 
optimization solvers, fixed-point computation and other engineering areas. It has been 
known that these applications heavily depe nd on the dynamic behaviors of neural 
networks. The stability of neural networks has been extensively studied over the past years 
because it is one of the most important behaviors of neural networks. On the other hand, 
time delays are frequently encountered in neur al networks due to the finite switching speed 
of amplifiers and the inherent communication ti me of neurons. Since the existence of time 
delay is often a source of instability for neural networks, the stability study for delayed 
neural networks is of both theoretical and practical importance. 
Hopfield [9, 10] has proposed Hopfield neural networks (HNNs) which have found 
applications in a broad range of disciplines where the targeted problems can reduce to 
optimization problems. In recent years, HNNs and their various generalizations have 
attracted the great attention of many scientists including mathematicians, physicists, 
computer scientists due to their potential for the tasks of classification, associative memory, 
parallel computation and their ability to solve difficult optimization problems, see for 
example [4, 10, 13]. HNNs characterized by first-order interactions, [1, 14] presented their 
intrinsic limitations. Recently, the study of hi gh-order neural networks has received much 
attention due to that they have stronger approximation property, faster convergence rate, 
greater storage capacity and higher fault tolerance than lower-order neural networks [17]. In 
[3, 5, 6, 8, 11, 12, 15, 16, 18, 19, 22], the authors have been studied the stability analysis of 
high-order neural networks with constant time delays or time varying delays. In this paper,  
we are concerned with the global stability for a class of uncertain stochastic high-order 
neural networks with time varying delays. The structure of the stochastic neural networks 
under consideration is more general than some previous ones existed in the literature. Based 
on the Lyapunov stability theory, new global asymptotic stability criteria are presented in 
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terms of LMIs . Finally, we also provid e a numerical example to demonstrate the 
effectiveness of the proposed stability results. 

2. Problem description and preliminaries 

Throughout this chapter we will use the notation A > 0 (or A < 0) to denote that the matrix A 
is a symmetric and positive definite (or negative definite) matrix. The notation AT and A �ï1 

mean the transpose of A and the inverse of a square matrix. If A,B are symmetric matrices A 
> B (A �• B) means that A �ï B is positive definite (positive semi-definite). 
Consider the following high-order Hopfield neural networks with time varying delays 
described by 

(1) 

where i �å  {1, 2, , ..., n}, t �• t0, xi(t) is the neuron state; ci is positive constant, it denotes the 
rate with which the cell resets its potential to the resting state; aij, bij are the first-order 
synaptic weights of the neural networks; Tijl is the second-order synaptic weights of the 
neural networks; �Õj(t) (j = 1, 2, ..., n) is the transmission delay of the jth neuron such that  

0 < �Õj(t) �” �Õj* and ,
j�W(t) �” �Èj < 1, where �Õj*, �Èj are constants; the activation function fj is 

continuous on [ t0 �ï �Õ �8,+�¿ ); Ji is the external input. 

Assume that 
(H1) In the neuron activation function f(y) = (f1(y1), f2(y2),…, fn(yn))T , each function fi is 

continuously differentiable with fi(0) = 0 and there exists a positive scalars Li and �0��i such 

that for any �Di, �Ãi �å  �� , 

 
Due to the boundedness of the activation function fi, by employing the well known 
Brouwer �` s fixed point theorem, we can easily obtain that there exists an equilibrium point 
of the system (1). The uniqueness of the equilibrium point can be deduced from the 
asymptotic stability which will be proved subsequently. 
Let x* be an equilibrium point of (1) and y(t) = x(t) �ï x*. Set gj(yj(t)) = fj(xj(t)) �ï fj(x*j ), 
gj(yj(t �ï �Õj(t))) = fj(xj(t �ï �Õj(t))) �ï fj(x*j ). Apparently, for each i = 1, 2, ..., n, we have 

 
Consider the following high-order HNNs with time varying delay is given by 

 (2) 

where 
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In this paper the following high-order HNN with parameter uncertainties and stochastic 
perturbations is considered 

 

 (3) 

where w(t) = (w1(t), w2(t), ..., wm(t))T is an m-dimensional Browni an motion defined on a 

complete probability space (�º ,�� , P) with a natural filtration { �� t}t�•0. Let �Ô(t, x, y) : �� +×�� n×�� n 

�à  �� n×m is locally Lipschitz continuous and sati sfies the linear growth condition. The 

uncertainties �¦ C(t), �¦ A(t), �¦ B(t) are defined by 
 

 
 

where �¦ C(t) is a diagonal matrix and M, NC, NA and NB are known real constant matrices 
with appropriate dimensions, wh ich characterize how the deterministic uncertain parameter 
in F(t) enters the nominal matrices C, A and B. The matrix F(t), which is time varying 
unknown and satisfies 
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Let x(t; �Ï) denote the state trajectory of the neural network (3) from the initial data x(�É) = �Ï(�É) 

on �ï�Õ * �” �É �” 0 in 
0

2L�� ([�ï�Õ*, 0],�� n). It can be easily seen that the system (3) admits a trivial 

solution x(t; 0) �K 0 corresponding to the initial data �Ï = 0, see [2, 7]. 

3. Main results 

Let C2,1(�� n × �� + : �� +) denote the family of all non-negative functions V (y, t) on �� n × �� +  

which are continuously twice differentiable in x and once differentiable in t. For each  

V �•  C2,1([�ï�Õ*, �’ ] × �� n, �� +), define an operator LV (y(t), t) associated with stochastic high 

order neural networks (3) from �� + × C([�ï�Õ*, 0]; �� n) to ����by 

 
where 

 
and 

 
where i, j = 1, 2, ..., n. In order to prove our results, we need to state the following definitions 
and Lemma. 
Lemma 3.1. Given any real matrices �´1, �´2, �´3 of appropriate dimensions and a scalar �•  > 0 such 

that 0 < �´3 = 3
T�¦ . Then, the following inequality holds: 

 
We also recall some basic facts about norms of vectors and matrices. Let y = (y1, y2, ..., yn)T �å  

�� n. Three commonly used vector norms are given as 
2 1/2

1 11 2
, ( )n n

i i i i�  �  �  �  � ¦ � ¦y y y y and 

1max i n i� d � d�f
� y y . It is also known that 

1�f
�dy y . The vector | y| will denote | y| = 

(| y1| , | y2| , ..., | yn|) T . For any matrix V = (vij)n×n, �Ìm(V ) and �ÌM(V ) will denote respectively 

the minimum and maximum eigenvalues of V . For the matrix V , 
2

2
V  = �ÌM(V T V ). 

Now we will prove the following theorem on glob al asymptotic stability in the mean square 
for equation (3). 
Theorem 3.2. Assume that there exist matrices P >0, D0 �• 0 and D1 �• 0 such that 

 
System (3) is globally asymptotically stable in the mean square, if there exist positive definite 
matrices �´1, �´2 and the scalars �• k > 0 (k = 1, 2) such that 

www.intechopen.com



Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks   
 with Time Varying Delays 

 

327 

 

(4) 

 
Proof: We use the following Lyapunov function al to derive the stability result 

 
 

By Ito�` s formula, we can calculate  along the trajectories of the 
system (3), then we have 

 

 (5) 

 (6) 

From (5)-(6), we get 

 

 (7) 
By Lemma 3.1 we get, 
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 (8) 

 (9) 

 (10) 

 

 
 
 

(11) 

 

 
 
 

(12)

 

 
 
 

(13)

Since , it is clear that 

 
 
Since , and from (7)-(13), it follows that 
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Then we have �$V (y(t), t) < 0 when ��  1 < 0, that is the inequality (4) holds, which completes 

the proof of the theorem. 
By constructing another Lyapunov function al, we can obtain the following result. 
Theorem 3.3. Assume that there exist matrices D0 �• 0 and D1 �• 0 such that 

 
System (3)is globally asymptotically stable in the mean square, if there exist positive definite matrices 
�´1 and the scalars �• k > 0 (k = 1, 2, 3) such that 

 

(14)

 
Proof: We use the following positive definite Lyapunov functional to derive the stability 
result, 

 
 

where Define 
 

 
which satisfies 
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and (0) 0, ( ) ( )G G G�  �  y y , for n
���•x �� . We have 

 
which gives a lower by a positive  radially unbounded function. 
It is to verify that 

 

By Ito�` s formula, we can calculate �$V1(y(t), t),�$V2(y(t), t) along the trajectories of the 

system (3), then we have 

 

                                 
(15) 

 
(16)

Then it follows from Lemma 3.1 that 

 

 
 
 

(17) 

 

 
 
 

(18)

            

                                                                              (19)

 

                                                                                             (20)
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(21)

Since , and from (15)-(21) it follows that 

 

Then we have �$V (y(t), t) < 0 when �� 2 < 0, that is the inequality (14) holds, which completes 

the proof of the theorem. 
Theorem 3.4. Assume that there exist matrices C > 0, D0 �• 0 and D1 �• 0 such that 

 
System (3)is globally asymptotically stable in the mean square, if the condition (H1) is 
satisfied and there exists positive constants �Ã, �• i, i = 4, 5, 6 such that 

 

(22)

 
Proof: We use the following positive definite Lyapunov functional to derive the stability 
result, 
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where W = B + �õ T TH and Q = (qij)n×n = (�• 1
3
�� +�D�• 1

6
�� )N T

B NB + L�ï1D1L�ï1. By Ito�` s formula, we 

can calculate �$V1,�$V2,�$V3,�$V4 and �$V5along the trajectories of the system (3), then we have 

 

                              (23)

Using the inequality technique, we have 

 

                                            (24)

 

                                                                 (25)

From Lemma 3.1, it follows that 

 

                                                   (26)

 

                                  (27)

        

                                                                             (28)

Since the first term of the equations (24) and (25) are non-positive, we can write the 
following inequalities: 

 (29) 

(30)
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Substitute (26)-(30) in (23), we get 

 

       (31)

Also, 

 

 
 

Adding and subtracting  in the above equation, then we have 

 

                                 (32)

From Lemma 3.1, it follows that 

 

                                                                               (33)

 

 (34)

 

 (35)
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