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1. Introduction 

Neural networks have been widely applied in image processing, pattern recognition, 

optimization solvers, fixed-point computation and other engineering areas. It has been 

known that these applications heavily depend on the dynamic behaviors of neural 

networks. The stability of neural networks has been extensively studied over the past years 

because it is one of the most important behaviors of neural networks. On the other hand, 

time delays are frequently encountered in neural networks due to the finite switching speed 

of amplifiers and the inherent communication time of neurons. Since the existence of time 

delay is often a source of instability for neural networks, the stability study for delayed 

neural networks is of both theoretical and practical importance. 

Hopfield [9, 10] has proposed Hopfield neural networks (HNNs) which have found 
applications in a broad range of disciplines where the targeted problems can reduce to 
optimization problems. In recent years, HNNs and their various generalizations have 
attracted the great attention of many scientists including mathematicians, physicists, 
computer scientists due to their potential for the tasks of classification, associative memory, 
parallel computation and their ability to solve difficult optimization problems, see for 
example [4, 10, 13]. HNNs characterized by first-order interactions, [1, 14] presented their 
intrinsic limitations. Recently, the study of high-order neural networks has received much 
attention due to that they have stronger approximation property, faster convergence rate, 
greater storage capacity and higher fault tolerance than lower-order neural networks [17]. In 
[3, 5, 6, 8, 11, 12, 15, 16, 18, 19, 22], the authors have been studied the stability analysis of 
high-order neural networks with constant time delays or time varying delays. In this paper, 
we are concerned with the global stability for a class of uncertain stochastic high-order 
neural networks with time varying delays. The structure of the stochastic neural networks 
under consideration is more general than some previous ones existed in the literature. Based 
on the Lyapunov stability theory, new global asymptotic stability criteria are presented in 
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terms of LMIs . Finally, we also provide a numerical example to demonstrate the 
effectiveness of the proposed stability results. 

2. Problem description and preliminaries 

Throughout this chapter we will use the notation A > 0 (or A < 0) to denote that the matrix A 
is a symmetric and positive definite (or negative definite) matrix. The notation AT and A−1 

mean the transpose of A and the inverse of a square matrix. If A,B are symmetric matrices A 
> B (A ≥ B) means that A − B is positive definite (positive semi-definite). 
Consider the following high-order Hopfield neural networks with time varying delays 
described by 

(1) 

where i ∈ {1, 2, , ..., n}, t ≥ t0, xi(t) is the neuron state; ci is positive constant, it denotes the 

rate with which the cell resets its potential to the resting state; aij, bij are the first-order 

synaptic weights of the neural networks; Tijl is the second-order synaptic weights of the 

neural networks; ┬j(t) (j = 1, 2, ..., n) is the transmission delay of the jth neuron such that  

0 < ┬j(t) ≤ ┬j* and ,

j
τ (t) ≤ ┟j < 1, where ┬j*, ┟j are constants; the activation function fj is 

continuous on [t0 − ┬ ∗,+∞); J i is the external input. 

Assume that 
(H1) In the neuron activation function f(y) = (f1(y1), f2(y2),…, fn(yn))T , each function fi is 

continuously differentiable with fi(0) = 0 and there exists a positive scalars Li and X i such 

that for any αi, βi ∈ R, 

 

Due to the boundedness of the activation function fi, by employing the well known 

Brouwer’s fixed point theorem, we can easily obtain that there exists an equilibrium point 

of the system (1). The uniqueness of the equilibrium point can be deduced from the 

asymptotic stability which will be proved subsequently. 

Let x* be an equilibrium point of (1) and y(t) = x(t) − x*. Set gj(yj(t)) = fj(xj(t)) − fj(x*j ), 
gj(yj(t − ┬j(t))) = fj(xj(t − ┬j(t))) − fj(x*j ). Apparently, for each i = 1, 2, ..., n, we have 

 

Consider the following high-order HNNs with time varying delay is given by 

 
(2) 

where 
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In this paper the following high-order HNN with parameter uncertainties and stochastic 

perturbations is considered 

 

 (3) 

where w(t) = (w1(t), w2(t), ..., wm(t))T is an m-dimensional Brownian motion defined on a 

complete probability space (Ω,F, P) with a natural filtration {Ft}t≥0. Let ┫(t, x, y) : R+×Rn×Rn 

→ Rn×m is locally Lipschitz continuous and satisfies the linear growth condition. The 

uncertainties ΔC(t), ΔA(t), ΔB(t) are defined by 
 

 
 

where ΔC(t) is a diagonal matrix and M, NC, NA and NB are known real constant matrices 

with appropriate dimensions, which characterize how the deterministic uncertain parameter 

in F(t) enters the nominal matrices C, A and B. The matrix F(t), which is time varying 

unknown and satisfies 
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Let x(t; ξ) denote the state trajectory of the neural network (3) from the initial data x(┠) = ξ(┠) 
on −┬ * ≤ ┠ ≤ 0 in 

0

2
LF ([−┬*, 0],Rn). It can be easily seen that the system (3) admits a trivial 

solution x(t; 0) ≡ 0 corresponding to the initial data ξ = 0, see [2, 7]. 

3. Main results 

Let C2,1(Rn × R+ : R+) denote the family of all non-negative functions V (y, t) on Rn × R+  

which are continuously twice differentiable in x and once differentiable in t. For each  

V ∈ C2,1([−┬*, ∞] × Rn, R+), define an operator LV (y(t), t) associated with stochastic high 

order neural networks (3) from R+ × C([−┬*, 0]; Rn) to R by 

 

where 

 

and 

 
where i, j = 1, 2, ..., n. In order to prove our results, we need to state the following definitions 
and Lemma. 

Lemma 3.1. Given any real matrices Σ1, Σ2, Σ3 of appropriate dimensions and a scalar ∈ > 0 such 

that 0 < Σ3 = 
3

T∑ . Then, the following inequality holds: 

 

We also recall some basic facts about norms of vectors and matrices. Let y = (y1, y2, ..., yn)T ∈ 

Rn. Three commonly used vector norms are given as 
2 1/2

1 11 2
, ( )

n n

i i i i= == =∑ ∑y y y y and 

1
max

i n i≤ ≤∞
=y y . It is also known that 

1∞
≤y y . The vector |y| will denote |y| = 

(|y1|, |y2|, ..., |yn|)T . For any matrix V = (vij)n×n, λm(V ) and λM(V ) will denote respectively 

the minimum and maximum eigenvalues of V . For the matrix V , 
2

2
V  = λM(V T V ). 

Now we will prove the following theorem on global asymptotic stability in the mean square 
for equation (3). 
Theorem 3.2. Assume that there exist matrices P >0, D0 ≥ 0 and D1 ≥ 0 such that 

 
System (3) is globally asymptotically stable in the mean square, if there exist positive definite 

matrices Σ1, Σ2 and the scalars ∈k > 0 (k = 1, 2) such that 
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(4) 

 
Proof: We use the following Lyapunov functional to derive the stability result 

 
 

By Ito’s formula, we can calculate  along the trajectories of the 

system (3), then we have 

 

 (5) 

 (6) 

From (5)-(6), we get 

 

 (7) 

By Lemma 3.1 we get, 

www.intechopen.com



 Recurrent Neural Networks 

 

328 

 (8) 

 (9) 

 (10) 

 

 
 
 

(11) 

 

 
 
 

(12)

 

 
 
 

(13)

Since , it is clear that 

 

 
Since , and from (7)-(13), it follows that 
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Then we have LV (y(t), t) < 0 when Π 1 < 0, that is the inequality (4) holds, which completes 

the proof of the theorem. 

By constructing another Lyapunov functional, we can obtain the following result. 

Theorem 3.3. Assume that there exist matrices D0 ≥ 0 and D1 ≥ 0 such that 

 
System (3)is globally asymptotically stable in the mean square, if there exist positive definite matrices 

Σ1 and the scalars ∈k > 0 (k = 1, 2, 3) such that 

 

(14)

 
Proof: We use the following positive definite Lyapunov functional to derive the stability 

result, 

 
 

where Define 
 

 

which satisfies 
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and (0) 0, ( ) ( )G G G= =y y , for n

+∈x R . We have 

 

which gives a lower by a positive radially unbounded function. 

It is to verify that 

 

By Ito’s formula, we can calculate LV1(y(t), t),LV2(y(t), t) along the trajectories of the 

system (3), then we have 

 

                                 
(15) 

 
(16)

Then it follows from Lemma 3.1 that 

 

 
 
 

(17) 

 

 
 
 

(18)

            

                                                                              (19)

 

                                                                                             (20)
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(21)

Since , and from (15)-(21) it follows that 

 

Then we have LV (y(t), t) < 0 when Π2 < 0, that is the inequality (14) holds, which completes 

the proof of the theorem. 
Theorem 3.4. Assume that there exist matrices C > 0, D0 ≥ 0 and D1 ≥ 0 such that 

 

System (3)is globally asymptotically stable in the mean square, if the condition (H1) is 

satisfied and there exists positive constants β, ∈i, i = 4, 5, 6 such that 

 

(22)

 
Proof: We use the following positive definite Lyapunov functional to derive the stability 
result, 
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where W = B + ΓT TH and Q = (qij)n×n = (∈ 1

3

− +α∈ 1

6

− )N T

B
NB + L−1D1L−1. By Ito’s formula, we 

can calculate LV1,LV2,LV3,LV4 and LV5along the trajectories of the system (3), then we have 

 

                              (23)

Using the inequality technique, we have 

 

                                            (24)

 

                                                                 
(25)

From Lemma 3.1, it follows that 

 

                                                   (26)

 

                                  (27)

        

                                                                             (28)

Since the first term of the equations (24) and (25) are non-positive, we can write the 
following inequalities: 

 (29) 

(30)
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Substitute (26)-(30) in (23), we get 

 

       (31)

Also, 

 

 
 

Adding and subtracting  in the above equation, then we have 

 

                                 
(32)

From Lemma 3.1, it follows that 

 

                                                                               (33)

 

 (34)

 

 (35)
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and 

 
(36)

Using the inequality technique, we have 

 

Since the first term of the above equation is non-positive, we can write the following 
inequality 

               

                                                                               (37)

Substitute (33)-(37) in (32), we get 

 

                             (38) 

 
(39)

 
(40)

 
(41)
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From (31) and (38)-(41), it follows that 

 

 

       

Since 

 

Therefore, 
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The choice 

 

ensures that LV (y(t), t) < 0, for all g(y(t)) ≠ 0. Thus, for ensuring negativity of LV (y(t), t) for 

any possible state, it suffices to require Ω be a negative definite matrix. This implies that the 
equilibrium point of system (3) is globally asymptotically stable in the mean square. The 
proof is completed. 
Theorem 3.5. Assume that there exist matrices D0 ≥ 0 and D1 ≥ 0 such that 

 

System (3)is globally asymptotically stable in the mean square, if the condition (H1) is 
satisfied and if the following condition hold: 

 

Proof: We use the following positive definite Lyapunov functional to derive the stability 
result, 

 

where α and β are some positive constants to be determined later. Let W = B + ΓT TH, by 

Ito’s formula, we can calculate LV1(y(t), t),LV2(y(t), t),LV3(y(t), t) and LV4(y(t), t) along the 

trajectories of the system (3), then we have 
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(42)

Using the inequality technique, we have 

 

                             (43)

 

                                                                             (44)

Since the first terms of the equations (43) and (44) are non-positive, we can write the 
following inequalities 

 (45)

 (46)

From Lemma 3.1, it follows that 

 

                                                           (47)

 (48)

              

                                                                                (49)

From (45)-(49), we get 
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        (50)

 

           (51)

From Lemma 3.1, it follows that 

 

                                                                                   (52)

 

                                                                        (53)

  

                                                                           (54) 

 
(55) 

 
(56)

Using the inequality technique, we have 
 

 
 

 
Since the first term of the above equation is non-positive, we can write the following 
inequality, 

 (57)

From (42)-(57), it follows that 
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Since 
1

min i

i n

i

c
r

L
≤ ≤

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, we have 

 
 

Let Thus, in the light of 

the above inequality, LV can now be written as 
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Since 

 

the choice 
  

ensures that LV (y(t), t) < 0, for all g(y(t)) ≠ 0, where 

 

and 
 

 
Thus, for ensuring negativity of LV (y(t), t) for any possible state, it suffices to require Ω1 be 

a positive definite matrix. This implies that the equilibrium point of system (3) is globally 
asymptotically stable in the mean square. The proof is completed. 
Remark 3.6. In [12], stability of equilibrium point of High-order Hopfield neural networks with time 
varying delays has been considered by means of Lyapunov functional and LMI techniques. We extend 
this technique to study the stochastic high-order neural networks with time-varying uncertain 
parameters. In view of this, our results in this chapter extend the results in [12]. 
Remark 3.7. In [20], the authors studied the global stability of stochastic high-order neural networks 
with discrete and distributed delays. Similarly in [21], the authors studied stability results of 
stochastic high-order Markovian jumping neural networks with mixed time delays. It should be noted 
that the uncertain stochastic neural network studied in this chapter is time-varying delays. Therefore, 
our results and those established in [20, 21] are complementary each other.    

4. An illustrative example. 

The effectiveness of the theories will be demonstrated through the following example. 
Consider the following high-order stochastic Hopfield neural network with time varying 
delays 
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                   (58)

where g1(y1) = tanh(0.95y1), g2(y2) = tanh(y2), 

 

Thus we have L = I, 
2

X = 1. Now, solving the LMI in Theorem 3.2, using Matlab LMI 

Control toolbox, we get the following feasible solution 

 

∈1 = 5.5014, ∈2 = 0.2838, ∈3 = 21.7583 
It follows from Theorem 3.2 that the equilibrium point of the system (58) is globally 
asymptotically stable in the mean square. 
Now, solving the LMI in Theorem 3.3, using Matlab LMI Control toolbox, we get the 
following feasible solution 

 
Therefore, from Theorem 3.3 that the equilibrium point of the system (58) is globally 
asymptotically stable in the mean square. 

Now we let  

 

Again solving the LMI in Theorem 3.4, using Matlab 

LMI Control toolbox, we get the following feasible solution 

 
Therefore, from Theorem 3.4 that the equilibrium point of the system (58) is globally 
asymptotically stable in the mean square. 
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