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1. Introduction   

Nowadays, there are many optimization problems where exact methods do not exist or 

where deterministic methods are computationally too complex to implement. Simulated 

annealing may be the answer for these cases. It is not greedy in the sense that it is not fool 

with false minima, and is pretty easy to implement. Furthermore, because it does not require 

a mathematical model, it can be used to solve a broad range of problems. 

Unfortunately, mapping a real problem to the domain of simulated annealing can be 

difficult and requires familiarity with the algorithm. More often than not, it is possible to 

encode the solution (solve the problem) using several approaches. In addition, there are 

other factors that determine the success of failure of this algorithm.  This chapter reviews 

how to plan the encoding of the solution, and discusses how to decide which encoding is 

more appropriate for each application.  

Several practical considerations for the proper implementation of simulated annealing are 

reviewed and analyzed. These include how to perturb the solution, how to decide a proper 

cooling schedule, and most important, how to properly implement the algorithm. Several 

cooling schedules are covered, including exponential, linear and temperature cycling. 

Additionally, the impact of random number generators is examined; how they affect the 

speed and quality of the algorithm. Essentially, this chapter is focused for those who want to 

solve real problems using simulated annealing for artificial intelligence, engineering, or 

research. 

An illustrative example is solved using simulated annealing and implemented in a popular 

programming language using an object-oriented approach. This chapter offers a great 

opportunity to understand the power of this algorithm as well as to appreciate its 

limitations. 

Finally, it is reviewed how is possible to combine simulated annealing with other 

optimization algorithms (including the deterministic ones) to solve complex optimization 

problems. In particular, it is discussed how to train artificial neural networks using 

simulated annealing with gradient based algorithms. 

Source:  Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and 
Publishing, Vienna, Austria
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2. Simulated annealing basics 

Simulated annealing is an optimization method that imitates the annealing process used in 

metallurgic. Generally, when a substance goes through the process of annealing, it is first 

heated until it reaches its fusion point to liquefy it, and then slowly cooled down in a control 

manner until it solids back. The final properties of this substance depend strongly on the 

cooling schedule applied; if it cools down quickly the resulting substance will be easily 

broken due to an imperfect structure, if it cools down slowly the resulting structure will be 

well organized and strong. 

When solving an optimization problem using simulated annealing the structure of the 

substance represents a codified solution of the problem, and the temperature is used to 

determined how and when new solutions are perturbed and accepted. The algorithm is 

basically a three steps process:  perturb the solution, evaluate the quality of the solution, and 

accept the solution if it is better than the new one. 

To implement simulated annealing, it is usually necessary to generate huge amounts of 

random numbers. Unfortunately, typical random generators included in programming 

languages are of low quality, and are not useful for simulated annealing. These random 

sequences have a finite length and may have correlation. Choosing an appropriate random 

generator requires specific knowledge of the problem; basically it is important to establish 

the amount of random numbers that will be required and the speed of the generator (some 

problems may require quality or speed; some others will require both quality and speed). 

(Press et al., 2002) provides a comprehensive review on the subject and includes actual code 

to implement high quality random number generators.  
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Fig. 1. The method of simulated annealing. 

 

The method of simulated annealing can be easily understood by observing Fig. 1 which 

shows a hermetic box with an internal uneven surface (with peaks and valleys), and a ball 

resting on this surface. The objective is to move the ball to a position as close as possible to 

the bottom of the box. At the beginning of the process the temperature is high and strong 

perturbations are applied to the box allowing the ball to easily jump over high peaks in 
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search of the bottom of the box.  Because of the high energy applied, it is possible for the ball 

to go down or up easily. As time goes by, the temperature decreases and the ball has less 

energy to jump high peaks. When the temperature has decreased to the point when the ball 

is able to jump only very small peaks, the ball should be hopefully very close to the bottom 

of the box and the process is completed. As it can be from this example, many things can go 

wrong with simulated annealing; these problems and how to avoid them will be discussed 

in Section 4. 

3. Advantages of using simulated annealing. 

3.1 A mathematical model is not required 
As odd at it sounds, some problems in real life do not have an exact model, or sometimes, 

the model is too complicated to be useful.  In other cases, there is so little information about 

the problem that existing models cannot be appropriately used. For these cases, simulated 

annealing may be perfect as long as two basic operations can be implemented:  perturb and 

evaluate. Thus, if a solution can be designed so that it can be perturbed and evaluated, then 

the problem can be solved using simulated annealing for sure. 

3.2 The problem has many solutions and some of them are not optimal 
Unfortunately, some problems have their solution surrounded by non optimal solutions 

(false minima), and typical optimization algorithms may have a bad time trying to escape 

from these false solutions. Consider a problem that could be described as a system of non-

linear equations, clearly, the mean-squared error may be used to measure the quality of the 

solution. 

For these problems, the mean-squared error is compute using the actual output of the 

system and the desired output of it. Generally, gradient based algorithms are a good choice 

to minimize the mean-squared error and find a solution, as they required much less time 

than solving the problem if simulated annealing is used. However, gradient based 

algorithms require knowledge of the derivative of the error with respect to each unknown 

and they are useful when the global minimum is clearly defined. On the other hand, 

simulated annealing does not required derivative information, and it is not easily fooled 

with local minima.    

Before moving our attention to another topic, it is important to mention that simulated 

annealing and gradient based algorithms can be used together as hybrids algorithms for 

global optimization. First, simulated annealing is used to find a rough estimate of the 

solution, then, gradient based algorithms are used to refine the solution (Masters, 1993); note 

that more research is needed to optimize and blend simulated annealing with other 

optimization algorithms and produce hybrids. 

4. Typical problems when using simulated annealing. 

4.1 Initial temperature is too high 
Consider again Fig. 1 that described pictorially the process of simulated annealing, at high 

temperatures the ball has enough energy to jump over high peaks and it can go easily up or 

down. If the initial temperature is too high, the ball may fall down and reach a position close 

to the bottom, but it is also very likely that the ball may jump up ending in a position even 

higher than the initial position. In other words, applying too much perturbation is useless 
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and should be avoided. This raises the questions:  how much perturbation should be 

applied? How long a level or perturbation should be applied?  

4.2 Temperature goes down to quickly 
As it can be seen from the previous example, at high temperatures the method of simulated 

annealing is searching for the global minimum in a broad region, and as the temperatures 

decreases the method is reducing this search region and tries mainly to refine the solution 

found at high temperatures. This is one of the good qualities that makes simulated 

annealing superior when the problem at hand has several deep valleys. Simulated annealing 

does not easily fall down into a deep valley located close by, instead it searches in an ample 

area trying always to go down and very occasionally up as the temperature allows. On the 

other hand, typical optimization methods fall quickly into a close deep valley even if it not 

the deepest valley. Thus, it is important to note that the temperature must go down slowly 

allowing the method to search thoroughly at each temperature.   

There are two typical cooling schedules in the literature: exponential and linear. Fig. 1 

shows a typical exponential cooling, as it can be seen from this figure, the process spends 

little time at high temperatures, and as the temperature decreases more and more time is 

spend at each temperature, allowing the algorithm to refine very well the solution found at 

high temperatures. On linear cooling, the temperature decreases linearly as the time 

increases, thus, the algorithm spends the same amount of time at each temperature. Clearly, 

linear cooling must be used when there are several deep valleys close by (note the quality of 

the final solution using linear cooling may not be good). On temperature cycling the 

temperature goes down and up cyclically refining the quality of the solution at each cycle.  

As it was indicated in (Ledesma et al., 2007), temperature cycling is beneficial for training of 

auto associative neural networks. Additionally, it has been pointed out (Reed & Marks, 

1999) that a temperature reduction schedule inversely proportional to the logarithm of time 

will guarantee converge (in probability) to a global minimum, however, in practice this 

schedule takes too long, and it is often more efficient to repeat the algorithm a number of 

times using a faster schedule. Other cooling schedules area described in (Luke, 2007).   

4.3 Process completes and the solution is not optimal 
At the beginning of the process, the temperature and error are high, as time goes by, the 

temperature decreases slowly spending some time at each temperature and the error should 

be hopefully also decreasing. However, it is possible that the process completes without 

finding an optimal solution. Carefully selecting the parameters of simulated annealing may 

reduce the probability of this to happen, but this can happen. An easy solution to increase 

the probability of success is to try again and again until a desired error is obtained. 

5. Simulated annealing implementation 

Simulated annealing is a two steps process: perturb, and then evaluate the quality of the 

solution. Usually, the algorithm uses the solution error to make decisions about the 

acceptance of a new solution. Next, some notation will be offered to make a clear 

presentation.  Let represent a problem solution of M variables as 

 X = {x1, x2, x3, … , xM} (1) 
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where x1, x2, x3, …, xM are to be found by means of simulated annealing. This representation 

may be useful for most optimization algorithms; however, simulated annealing is a 

temperature dependent algorithm and the process temperature must be introduced in 

Equation 1.  Let define T as the process temperature 

 T = T1, T2, T3, …, TN (2) 

where T1 is the initial temperature, TN is the final temperature, N is the number of 

temperatures, and the values of T are chosen following a specific cooling schedule that is 

problem dependent. Please note that T has been defined as a discrete variable because 

usually the temperature does not increase continually.  

To improve the performance of the method of simulated annealing, it is usual to spend some 

time at each temperature by performing a fixed number of iterations before decreasing the 

temperature. Let K be the number of iterations performed at each temperature, then 

Equation (1) can be written as 

 Xi = {x1,i,  x2,i,  x3,i, … , xM,i},      i = 1, 2, 3, … (3) 

where i is the number of perturbations applied to the solution, and x1,i is the value of x1  after 

it is has been perturbed i-times. Thus, at the end of temperature T1, the number of 

perturbations applied to the solution is K, and XK represents the solution at the end of this 

temperature. Usually, each solution Xi must have an error associate with it, let 

 E1, E2, E3, … (4) 

be the errors of X1, X2, X3,… respectively. Generally, a technique to estimate the solution error 

must be defined, but typically this technique is problem dependent and full knowledge of 

the problem is required. Consider for example a problem where five pieces are to be located 

at discrete positions in the plane x-y, and it is desired that each piece meets some 

constraints; without a doubt, the error may be defined as the number of pieces that do not 

meet the constraints. For other optimization problems, the mean squared error may be more 

appropriate; common sense is required as rigid rules do not exists. 

As it can be induced from the previous discussion, there are not regulations that dictate or 

limit simulated annealing implementation. There are, however, some specific criteria about 

how to accept a solution once it has been perturbed. One obvious criterion is to accept a 

solution whenever it has a less error than the previous solution. There is, though, one 

popular algorithm used to manage simulated annealing.  The metropolis algorithm, shown 

in Equation 5, follows the criterion discussed previously, and is typically used in simulated 

annealing to compute the probability of acceptance for a perturbed solution. 

p

e                 E > 0 Δ

1                   0 ≤ΔE

T

k EΔ

={a

 

(5) 

where ΔE is the difference between the solution error after it has perturbed, and the  

solution error before it was perturbed, T is the current temperature and k is a suitable 

constant.  A plot of Equation (5) is presented in Figure 2; it can be observed that when ΔE is 
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negative the solution is always accepted.   However, the algorithm may accept a new 

solution even if the solution has not a smaller error than the previous one (a positive ΔE), 

and the probability to do this decreases when the temperature decreases or when ΔE 

increases.  Consequently, at high temperatures the algorithm may wander wildly accepting 

bad solutions; as the temperature decreases, the algorithm is more selective and accepts 

perturbed solutions only when the respective ΔE is small.  This is the theory behind 

simulated annealing and should be clearly understood to properly implement the algorithm. 
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Fig. 2. Probability of acceptance following the Metropolis algorithm 

Consider now Figure 3 which shows the probability of acceptance as a function of ΔE for 

several values of k/ T.  From this figure, it can be seen that the constant k plays an important 

role on the algorithm success; if k is equal to T, the algorithm will accept solutions with high 

probability even if ΔE is not small. This is not good as the method will spend great time 

trying with bad solutions; even if an excellent solution is found, the method will easily 

discard it. Generally, a medium ration k/ T is desired at the beginning of the process. The 

authors suggest estimating the value of k as a previous step of the annealing process. This 

can save a lot of time, as there is not unique value of k that can be used for all optimization 

problems. 

6. Estimating k 

When an optimization problem is not properly solved using simulated annealing, it may 

sound suitable to increase the number of temperatures and the number of iterations at each 

temperature. Additionally, it may sound logical to start at a high temperature and end with 

a very low final temperature. However, it is most recommended to carefully choose the 

simulated annealing parameters in order to minimize the number of calculations and, 

consequently, reduce the time spend on vain perturbations.  
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Fig. 3. Probability of acceptance for several values of k/ T. 

At the beginning of annealing, it is necessary to have an initial solution to start working 

with. Let X0 be the initial solution before applying any perturbation to it, and E0 the error 

associated with X0. Typically, X0 may be created by assigning random values to {x1, x2, x3, 

…,xM}, however, in most cases, it is strongly recommended to use the problem requirements 

to create X0., this will warranty at least a good starting point.   

As it was described before, the constant k plays an important role on simulated annealing 

for global optimization. In this section, the authors suggest a simple method to estimate k 

using the essential operations of simulated annealing (perturb and evaluate). After 

inspecting Equation 9, it is clear that the value of k must be estimated using the initial 

temperate and the delta error. An estimate for ΔE can be computed from 

 ΔE = σE (6) 

which can be estimated as 

Δ ≈ Σ ΣE              E   -                  (E  )  
1 1

Q - 1 Q(Q - 1)

2

i i
i=1 i=1

Q Q

 
(7) 

that is, the sample variance of E when the solution X0 has been perturbed Q times. In 

practice, Equation 7 is an excellent estimator of the initial value of ΔE as long as Q is at least 

1000 or more. It is important to mention that an exact value of ΔE is not required as this 

value is used only to a get rough estimate of k; this implies that a big value for Q is not 

necessary.  

Once an estimate for the delta error of the solution has been found, finding an estimate for k 

is straightforward as Equation 5 can be directly used to solve for k. However, an initial 

value for the probability of acceptance needs to be defined. It is clear that the initial 

probability of acceptance must not be close to one, neither must be close to zero. A value 
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between 0.7 and 0.9 is recommended. A probability of acceptance bigger than 0.9 has not 

practical purpose as the algorithm will accept too many bad solutions. On the other hand, a 

value that is less than 0.7 will rob the algorithm the opportunity to search abroad, loosing 

one of the main advantages of simulated annealing. In general, an initial value for the 

probability of acceptance should be 0.8.  Thus, an estimate of k can be express as 

E

T   ln (0.8)
k = 

0

σ  
(8) 

where an estimate for the standard deviation of the solution error can be computed using 

Equation 7.  The performance of the algorithm is dramatically increased when Equation 8 is 

used because unnecessary and vain perturbations are not computed; instead the algorithm 

uses this precious CPU time on doing actual work. 

7. Implementing simulated annealing 

For now, the reader should have a sense of how simulated annealing works. However, the 

reader may have some doubts on how to implement it. As it was established before, 

common sense is required for proper implementation of the algorithm as there are not hard 

rules. This section describes how to use a programming language to correctly implement 

simulated annealing. Figure 4 shows the UML diagram for a class to implement simulated 

annealing. At the top of the diagram the class name (SimulatedAnnealing) is shown, the 

second block contains the member variables and the third block the member functions. The 

member variables' names are self explanatory. However, note that k and finalTemp are 

declared as private as the class itself will compute these values from the other setup 

parameters. The only public function is Start, it should be called once we are ready to start 

the annealing process.  
 

+SimulatedAnnealing()
+~SimulatedAnnealing()
+Start(Solution& solution, Solution& wk1, Solution& wk2, double goal) : double
-GetTemperature(int index) : double
-IsAcceptedByMetropolis(double temperature, double deltaError) : bool
-Anneal(Solution& solution, Solution& wk1, Solution& wk2, double goal) : double

-EstimateK(Solution& solution, int N) : double

SimulatedAnnealing

+numTemps : int

+numIterations : int
+initialTemp : double

-finalTemp : double
+isCoolingScheduleLinear : bool
+cycles : int

-k : double

 
Fig. 4. UML diagram for a class to implement simulated annealing. 
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The class of Figure 4 makes reference to the abstract class Solution depicted in Figure 5.  The 

class Solution contains the actual implementation of the problem that maps the real problem 

to the solution coding.  Figure 5 describes two classes:  Solution at the top and NumEq at the 

bottom. The class NumEq will be discussed on the next section, for now, just note that 

NumEq implements the pure abstract functions of the class Solution: operator=, 

OnInitialize, OnPerturb and OnComputeError.  These are the four functions that need to be 

implemented to solve a global optimization problem by simulated annealing. Note that 

these functions corresponds to the basic operations required by annealing (perturb and 

evaluate) plus two extra more: OnInitialize to initialize the solution, and the operator= that 

is useful whenever a solution needs to be copied from one variable to another one. It is 

important to mention that for some optimization problems, it may be inefficient to 

implement the operator= as this operator consumes a considerable amount of CPU time; for 

this cases other techniques to store and manipulate the solution may be used. 
 

Solution

+Solution()

+~Solution()
+Initialize() : double

+Perturb(temperature : double, initialTemperature double) : double
+GetError() : double

+operator=(init : const Solution&) : Solution&

-OnInitialize()
-OnPertub(temperature : double, initialTemperature : double)

-OnComputeError() double

#error : double

NumEq

+NumEq()
+~NumEq()

+operator=(init : const Solution&) : Solution&
-OnInitialize()

-OnPertub(temperature : double, initialTemperature : double)
-OnComputeError() double

+ x : double
+ y : double

 

Fig. 5. UML diagram of a class to implement the solution of an optimization problem. 

Figure 6 and 7 show a typical implementation using the C++ language for the Simulated 

Annealing class. The class may be implemented in others programming languages such as 

Java or C# with minor changes. Let now discuss briefly the implementation of this class. 
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There are several private functions on this class and are used only by the class itself. The 

function GetTemperature() is called every time the temperatures changes, its 

implementation is straightforward once the cooling scheduled has been defined; on the 

shown code there are two cooling schedules: exponential and linear. The function 

IsAcceptedByMetropolis() implements the metropolis algorithm of Equation 5, returns true 

when the perturbed solution must be accepted, and returns false otherwise. The function 

EstimateK() implements Equation 8. All the magic of the process is implemented in the 

function Anneal(), which is called several times if temperature cycling is used (i.e., the 

variable 'cycles' has a value bigger than one). 

To use the SimulatedAnnealing class described, the function Start() must be called, this 

function requires three variables of the class Solution, namely 'solution', 'wk1' and 'wk2' 

('solution' is the variable where the actual solution is stored; 'wk1' and 'wk2' are working 

solutions to perform the annealing process.) In the next section, it will be discussed how to 

use the SimulatedAnnealing class to solve a simple optimization problem. 
 

SimulatedAnnealing.h 

#pragma once 

#include "Solution.h" 

class SimulatedAnnealing 

{ 

public: 

 SimulatedAnnealing(void); 

 ~SimulatedAnnealing(void); 

 int numTemps; 

 int numIterations; 

 double initialTemp; 

 bool isCoolingScheduleLinear; 

 int cycles; 

 double Start(Solution& solution, Solution& wk1, Solution& wk2, double goal); 

private: 

 double GetTemperature(int index); 

 bool IsAcceptedByMetropolis(double temperature, double deltaError); 

 double Anneal(Solution& solution, Solution& wk1, Solution& wk2, double goal); 

 double EstimateK(Solution& solution, int N); 

 double finalTemp; 

 double k; 

}; 

Fig. 6. Header file using C++ to implement the SimulatedAnnealing class of Figure 4. 

 

SimulatedAnnealing.cpp 

 

#include "SimulatedAnnealing.h" 

SimulatedAnnealing::SimulatedAnnealing(void) 

{ 

 numTemps=100; 

 numIterations=100; 

 initialTemp=100.0; 

 finalTemp=0.0001; 

 isCoolingScheduleLinear=false; 
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 k = 10; 

 cycles = 4; 

} 

 

SimulatedAnnealing::~SimulatedAnnealing(void) 

{ 

} 

 

double SimulatedAnnealing::Start(Solution& solution, Solution& wk1, Solution& wk2, double 

goal) 

{ 

 for(int i=0; i<cycles; i++) 

 { 

  if (Anneal(solution, wk1, wk2, goal)<=goal) break; 

 } 

 return solution.GetError(); 

} 

 

double SimulatedAnnealing::EstimateK(Solution& solution, int N) 

{ 

 double E = 1.0; 

 double sum = 0.0; 

 double sums = 0.0; 

 

 for(int i = 0; i<N; i++) 

 { 

  E = solution.Perturb(initialTemp, initialTemp); 

  sum+=E; 

  sums+=(E*E); 

 } 

 double variance  = sums/(N-1) - (sum*sum)/(N*(N-1)); 

 return -log(0.8)*initialTemp/sqrt(variance); 

} 

 

double SimulatedAnnealing::Anneal(Solution& solution, Solution& wk1, Solution& wk2, double 

goal) 

{ 

 double error = solution.Initialize(); 

 if (error<=goal) return error; //We are alredy done. Unlikely! 

 k = EstimateK(solution, 1000); 

 wk1 = solution; 

 wk2 = solution; 

  

 finalTemp = goal; 

 // 

 bool hasImproved = false; 

 double temperature, deltaError; 

 int i; 

 

 for (int n=0; n<numTemps; n++)  
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 {   

  temperature = GetTemperature(n); 

  hasImproved = false;  

  //_________________________________________ Iterate at this temperature 

  for (i=0; i<numIterations; i++) 

  {  

   deltaError = wk1.Perturb(temperature, initialTemp) - error; 

   if (IsAcceptedByMetropolis(temperature, deltaError)) 

   {        

    wk2 = wk1; 

    hasImproved = true;    

    if (work1.GetError()<=goal) break; 

   }                                

  } 

  if (hasImproved==true) // If saw improvement at this temperature  

  {   

   wk1 = wk2; 

   solution = wk2; 

   error = solution.GetError(); 

   if (error<=goal) break; 

  } 

 }  

 return solution.GetError(); 

} 

 

bool SimulatedAnnealing::IsAcceptedByMetropolis(double temperature, double deltaError) 

{ 

 if (deltaError=<0) return true; 

 return Random(0.0, 1.0) < exp(-k*deltaError/temperature); 

} 

 

double SimulatedAnnealing::GetTemperature(int index) 

{ 

 if (isCoolingScheduleLinear) 

 { 

  return initialTemp+index*(finalTemp-initialTemp) / (numTemps-1); 

 } 

 else 

 { 

  return initialTemp*exp(index * log(finalTemp/initialTemp) / (numTemps-1)); 

 } 

} 

 

Fig. 7. Source file using C++ to implement the SimulatedAnnealing class of Figure 4. 

Figure 8 shows the header file for the Solution class using C++, Figure 9 shows the 

respective source file. As it can be seen from these figures, the Solution class is abstract as it 

has four abstract functions. Consequently, to create an object from the Solution class, a new 

derived class must be created and must implement: the operator=, OnInitialize(), 

OnPerturb() and OnComputeError(). Observe carefully the implementation of this class; 
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note that some functions are designed by pairs.  For example, Perturb() calls internally the 

functions OnPeturb() and OnComputeError().  Similarly, Initialize() calls the functions 

OnInitialize() and OnComputeError().  As it will be seen in the next section using the 

Solution class to solve an optimization problem is pretty simple. 
 

Solution.h 

 

#pragma once 

 

class Solution 

{ 

public: 

 Solution(void); 

 ~Solution(void); 

 double Initialize(void); 

 double Perturb(double temperature, double initialTemperature); 

 double GetError(void); 

 virtual Solution& operator =(const Solution& init) = 0; 

protected: 

 double error; 

private: 

 virtual void OnInitialize(void)=0; 

 virtual void OnPerturb(double temperature, double initialTemperature)=0; 

 virtual double OnComputeError(void)=0; 

}; 

Fig. 8. UML diagram for a class to implement the solution. 

Solution.cpp 

 

#include "Solution.h" 

 

Solution::Solution(void) 

{ 

 error = 1.0; 

} 

 

Solution::~Solution(void) 

{ 

} 

 

double Solution::GetError(void) 

{ 

 return error; 

} 

 

double Solution::Initialize(void) 

{ 

 OnInitialize(); 

 error = fabs(OnComputeError()); 

 return error; 
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} 

 

double Solution::Perturb(double temperature, double initialTemperature) 

{ 

 OnPerturb(temperature, initialTemperature); 

 error = fabs(OnComputeError()); 

 return error; 

} 

Fig. 9. UML diagram for a class to implement the solution. 

8. Numerical example 

Simulated annealing can be used to solve a broad range of optimization problems in 

artificial intelligence and other areas. However, it would be inappropriate to solve a 

complex problem to illustrate how to use simulated annealing. Thus, the two variable 

function of Equation 9 will be use for instructive purposes. Note that other optimization 

methods are more appropriate to solve this second order equation, and this section is only 

trying to set the basics for proper use of simulated annealing. 

 f(x, y) = x2 + y2 + 5xy – 4 (9) 

To get a better sense of the behavior of Equation 9, Figure 10 shows a plot of this equation.  

Let suppose that the goal is to find the values of x and y that minimize f(x, y).  Clearly the 

solution is any point (x, y) that lies on the circle that intersects f(x, y) with the plane z = 0.   

Observe that simulated annealing is generally used when the solution has many variables, 

and finding or visualizing the solutions in these cases is much more difficult than 

interpreting the 3-D plot of Figure 10.   
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Fig. 10. A plot of Equation 9 as a function of x and y. 
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Consider Figure 11 that shows how simulated annealing works. At the beginning of the 

process the temperature is high (approximately 40 degrees in the figure) and the solution is 

perturbed so that it may lie on any of the points inside the dark circle. As the temperature 

decreases, the perturbation amount is reduced and the circle radius also decreases.  At this 

temperature, the algorithm refines the quality of the solution previously found; note that 

solutions with high errors are not longer accepted (only solutions that reduce the error are 

accepted.) In other words, at low temperatures the algorithm moves the error down when 

the error is plot against x and y.  Observe that the same number of iterations is used at each 

temperature while the exploring area is reduced; this increases the likelihood of finding the 

minimum.   

Monitoring the progress of the process is important. For example, if the algorithm is not 

close to the minimum by the time the temperature has decreased considerably; simulated 

annealing will likely fail as the exploring area will be relatively too small.  If this happens, it 

is better to restart the algorithm instead of performing useless iterations. One quick solution 

would be to increase the number of temperatures. Some will argue that the number of 

iterations should also be increased; however, it is important to note that it is not good idea 

to spend a lot of time at each temperature as the probability of acceptance will not change, if 

the temperature does not change either. Alternatively, if the temperature decreases slowly, 

the probability of the acceptance will gradually reduce, and the likelihood to accept a bad 

solution will be reduced as well. 
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Fig. 11. Exploring area (represented as a gray circle) at each temperature. 

Once a global view about how to minimize Equation 9, through the use of simulated 

annealing, has been presented, let actually show how to solve this particular problem.  First, 

a new class derived from Solution must de created. Figure 12 and 13 show the header and 

source file for the class NumEq that is used to solve Equation 9; the respective UML 

diagram is shown at the bottom of Figure 5. Note that for this specific optimization problem, 

there are two variables of type double to store the solution 'NumEq.x' and 'NumEq.y'. The 

realization of the function OnComputeError() is straightforward as it directly implements 

Equation 9. The implementation of the function OnInitialize() is simple; it only assigns 
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random values between -10 and 10 to 'x' and 'y'. For other optimization problems, it is 

important to use common sense to implement the function OnInitialize(); if the problem 

does not provide enough information to do this, at least a valid initial value must be used.   

Let know discuss the function Pertub() which is used to perturb the solution.  

Unfortunately, there are several ways to perturb a solution. It is recommended to try first 

the simplest way to perturb the solution; if this does not work, more sophisticate 

perturbation techniques may be used. Additionally, some practitioners prefer to perturb the 

solution a lot a high temperatures and reduce the degree the perturbation as the 

temperature decreases, this is what it is used on the example shown. However, it is 

important to mention that in some cases it is not possible to control the amount of 

perturbation, and for these cases the function Perturb() always applies the same amount of 

perturbation for each temperature.   

By observing the function Perturb() in Figure 13, it can be observed that to perturb the 

solution, the value of 'x' is added to a random value which maximum amplitude is 

proportional to the current temperature. This method works really well, however, this 

approach may shift the solution too much, and 'x' may end in a region of invalid values. To 

alleviate this problem, an easy practice is to clip the solution values after perturbing.  

Alternatively, Figure 14 shows another way to perturb the solution; first a perturbation ratio 

is computed, then the new value of the variable is obtained by adding a proportional part of 

the old value plus a random variable; this method does not require clipping as the 

perturbation applied is blended naturally with the previous solution value. The authors 

have seen no evidence that one method is better than the other. However, it is important to 

note that when using the second method, the initial temperature is used only to compute the 

perturbation ratio and its value is not critical. Before leaving the discussion about how to 

implement the function Perturb(), please note that this function was specifically 

implemented using the knowledge that the values of 'x' and 'y' were in range from -10 to 10; 

other optimization problems may require a different implementation for this function. 

The last function to discus is the operator=() which is used to copy a solution to another 

variable. This function must simply copy the solution variables from the source to the 

destination, specifically the variables: 'x', 'y' and 'error' in Figure 13. 
 

NumEq.h 

 

#pragma once 

#include "Solution.h" 

 

class NumEq : public Solution 

{ 

public: 

 NumEq(void); 

 ~NumEq(void); 

 double x, y; 

 Solution& operator =(const Solution& init); 

private: 

 void OnInitialize(void); 

 void OnPerturb(double temperature, double initialTemperature); 

 double OnComputeError(void); 

}; 

Fig. 12. Header file of the class NumEq to solve Equation 9. 

www.intechopen.com



Practical Considerations for Simulated Annealing Implementation 

 

417 

NumEq.cpp 

#include "NumEq.h" 

 

NumEq::NumEq(void) 

{ 

} 

 

NumEq::~NumEq(void) 

{ 

} 

 

Solution& NumEq::operator =(const Solution& init) 

{ 

 NumEq& eqInit = (NumEq&)init; 

 x = eqInit.x; 

 y = eqInit.y; 

 error = eqInit.error; 

 return *this; 

} 

 

void NumEq::OnInitialize(void) 

{ 

 x = Random(-10.0, 10.0); 

 y = Random(-10.0, 10.0); 

} 

 

void NumEq::OnPerturb(double temperature, double initialTemperature) 

{ 

 x = x + Random(-temperature, temperature); 

 y = y + Random(-temperature, temperature); 

 //______________ Clip values to avoid wandering too far 

 if (x>10.0) x = 10.0; 

 if (x<-10.0) x = -10.0; 

 if (y>10.0) y = 10.0; 

 if (y<-10.0) y = -10.0; 

} 

 

double NumEq::OnComputeError(void) 

{ 

 return x*x+y*y+5.0*x*y-4.0; 

} 

Fig. 13. Source file of the class NumEq to solve Equation 9. 

void NumEq::OnPerturb(double temperature, double initialTemperature) 

{ 

 const double ratio = temperature/initialTemperature; 

 x = (1.0 - ratio)*x + ratio*Random(-10.0, 10.0); 

 y = (1.0 - ratio)*y + ratio*Random(-10.0, 10.0); 

} 

Fig. 14. Alternative method to perturb the solution. 
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Once a new class has been derived from Solution, it is possible to use the new class to solve 

the optimization problem of Equation 9. Figure 15 shows the actual code for the main 

function to do this.  First, three variables of type NumEq are created; the variable 'solution' 

is where the final solution will be stored; 'wk1' and 'wk2' are working solutions. Next, a 

variable of type SimulatedAnnealing is created and configured, here, other configuration 

parameters may be set.  The shown code sets only the initial temperature and the number of 

temperatures. Finally, the annealing process starts by calling the function Start(), and at the 

end, the values of 'x' and 'y' (which are the solution) are displayed.  
 

Example.cpp 

 

#include "SimulatedAnnealing.h" 

#include "NumEq.h" 

 

int _tmain(int argc, _TCHAR* argv[]) 

{ 

 NumEq solution, wk1, wk2; 

 SimulatedAnnealing sa; 

 sa.initialTemp = 10; 

 sa.numTemps = 2500; 

 cout<<"\r\nError = "<<sa.Start(solution, wk1, wk2, 0.00001); 

 cout<<"\r\nx = "<<solution.x; 

 cout<<"\r\ny = "<<solution.y; 

 return 0; 

} 

 

Fig. 15. Main function to solve the problem of Equation 9. 

Before moving into the next section, note that the classes SimulatedAnnealing and Solution 

are generics and can be used to solve any global optimization problem by simulated 

annealing. 

9. Solving problems using simulated annealing 

9.1 The traveling salesman problem 
The traveling salesman problem is a classical problem in artificial intelligence, where a seller 

has to visit N cities that are located at given positions, and finally he has to return to his city 

of origin (Press et al., 2002).  For this problem, each city has to be visited only once and the 

resulting path should be as short as possible.  Press et al. shows actual code using the C++ 

language to solve this problem and provides several tips worth trying to set the parameters 

of the algorithm. There, the problem is solved using the two basic operations described in 

this chapter: perturb and evaluate. The operation of perturb is performed by using two 

different type of perturbations. To evaluate the quality of the solution the path length is 

used.  Press et al. ends the subject of simulated annealing by introducing a hybrid algorithm 

using the downhill simplex method.   

9.2 The N-Queens problem 
The N-Queens problem is a famous problem that has been attacked by a wide variety of 

search algorithms (Jones, 2005). It is defined as the placement of N queens on an N-by-N 
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board such that no queen threatens any other queen using the standard rules of chess. This 

problem may be planned and solved by simulated annealing (Jones, 2005). The method used 

by Jones is similar to the method proposed here; however, our method is object-oriented 

and promotes code reuse.   

9.3 Artificial neural network training 
In (Masters, 1993), it is suggested to use simulated annealing for neural network training.  

Masters suggest a hybrid algorithm that combines simulated annealing with typical 

gradient based algorithms.  Simulated is used only for initialization, and gradient based 

algorithms are used to refine the quality of the solution. Additionally, Masters suggest using 

simulated annealing in combination with other deterministic methods, for example 

regression to estimate the output weights of a neural network and perturb only the hidden 

weights.  For artificial neural network training the implementation of simulated annealing 

requires a good random number generator, see (Press et al., 2002) to see code to implement 

such type of generators. The authors have suggested simulated annealing using temperature 

cycling for neural network training (Ledesma et al., 2007).   

The free software Neural Lab is a powerful tool to simulate artificial neural networks, and it 

can be downloaded from http:/ / www.fimee.ugto.mx/ profesores/ sledesma/ . Neural Lab 

implements simulated annealing for neural network training using temperature cycling and 

several hybrid algorithms. 

10. Conclusions 

Simulated annealing is a powerful algorithm to solve global optimization problems. It has 

been successfully used in artificial intelligence (Russel & Norvig, 2002), and real life 

problems that do no have an appropriate model. There are still many aspects of simulated 

annealing open for research, including how to reduce the running time of the algorithm, 

how to optimize the cooling schedule and how to adapt the algorithm as the temperature 

and error change. The authors have presented several practical considerations that will help 

the reader to use simulated annealing to solve real life problems. 
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