
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1

Simulated Annealing as an Intensification
Component in Hybrid Population-Based

Metaheuristics

Davide Anghinolfi and Massimo Paolucci
Department of Communication, Computer and Systems Sciences

University of Genova
Italy

1. Introduction

The use of hybrid metaheuristics applied to combinatorial optimization problems received a
continuously increasing attention in the literature. Metaheuristic algorithms differ from
most of the classical optimization techniques since they aim at defining effective general
purpose methods to explore the solution space, avoiding to tailor them on the specific
problem at hand. Often metaheuristics are referred to as “black-box” algorithms as they use
limited knowledge about the specific problem to be tackled, instead usually taking
inspiration from concepts and behaviours far from the optimization field. This is exactly the
case of metaheuristics like simulated annealing (SA), genetic algorithm (GA), ant colony
optimization (ACO) or particle swarm optimization (PSO). Metaheuristics are based on a
subset of features (e.g., the use of exploration history as short or long term memory, that of
learning mechanisms or of candidate solution generation techniques) that represent a
general algorithm fingerprint which usually can be easily adapted to face different complex
real world problems. The effectiveness of any metaheuristic applied to a specific
combinatorial problem may depend on a number of factors: most of the time no single
dominating algorithm can be identified but several distinct mechanisms exploited by
different metaheuristics appear to be profitable for searching high quality solutions. For this
reason a growing number of metaheuristic approaches to combinatorial problems try to put
together several techniques and concepts from different methods in order to design new and
highly effective algorithms. Hybrid approaches in fact usually seem both to combine
complementary strengths and to overcome the drawbacks of single methods by embedding
in them one or more steps based on different techniques. As an example, in (Anghinolfi &
Paolucci, 2007a) the SA probabilistic candidate solution acceptance rule is coupled with the
tabu list and neighbourhood change mechanisms respectively characterizing tabu search
(TS) and variable neighbourhood search (VNS) approaches to face parallel machine total
tardiness scheduling problems. Several surveys exist proposing both classifications of
metaheuristics and unified views of hybrid metaheuristics (e.g., (Blum & Roli, 2003),
(Doerner et al., 2007), (Raidl, 2006) and (Talbi, 2002)). We would avoid to replicate here the
various definitions and classifications through which the different approaches can be
analysed and organized (the interested reader can for example refer to (Blum & Roli, 2003)

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Source: Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and
Publishing, Vienna, Austria

www.intechopen.com

 Simulated Annealing

2

for a valuable review). However, we should underline few basic concepts that allow us to
focus on the different characteristics of the kinds of methods used in the hybrid algorithms
presented in this chapter. SA, ACO and PSO are all stochastic algorithms, but SA is
commonly classified as a trajectory-based method since it determines at each iteration a new
single current solution, whereas ACO and PSO are population-based methods since they
explore at each iteration a set of distinct solutions which they make evolve iteration after
iteration. The concept behind these two population-based methods is that the overall
exploration process can be improved by learning from the single exploring experiences of a
population of very simple agents (the ants or the particles). As will be cleared in the
following of the chapter, ACO explicitly exploits a learning mechanism in order to identify,
iteration after iteration, which features should characterize good, i.e., the most promising,
solutions. If in ACO the communication among the exploring agents (the ants) is indirect,
PSO, on the other hand, drives the search of the population of agents (the swarm of
particles) on the basis of simple pieces of information (e.g., where the current best is
located), making the agents moving towards promising solutions. Therefore, both ACO and
PSO use memory structures, more complex in ACO, simpler in PSO, to elaborate their
exploration strategies; agents in ACO and PSO perform a learning or information driven
sampling of the solution space that could in general be considered wide but also quite
coarse, and that can be trapped in local optima (the so-called stagnation (Dorigo & Stutzle,
2004)). SA, on the other hand, is a memoryless method which combines the local search
aptitude of exploring in depth regions in the solution space with the ability, ruled by the
cooling schedule mechanism, of escaping from local optima. From this brief overview the
possible advantage of coupling the different complementary abilities of the two types of
metaheuristics should begin to emerge. Therefore in this chapter our purpose is to focus the
attention on hybrid population-based metaheuristic algorithms with a specific reference to
the use of SA as a hybridizing component. Then, according to the classification proposed in
(Raidl, 2006), the kind of hybrid algorithms here considered result from the combination of
two distinct metaheuristics (the “what is hybridized” aspect) among which a low-level
strong coupling is established (the “level of hybridization” aspect), in particular the
execution of SA is interleaved with the iterations of the population-based metaheuristics
(the “order of execution” aspect) so that SA can be viewed as an integrated component of
these latter (the “control strategy” aspect).
Several works recently appeared in the literature show the interest of embedding SA into
population-based approaches as ACO, PSO and GA. Examples of PSO hybridized by
incorporating SA intensification can be found in (Liu et al., 2008), where the proposed
hybrid PSO (HPSO), which includes a probabilistically applied local search (LS) and a
learning-guided multi-neighbourhood SA, is applied to makespan minimization in a
permutation flow shop scheduling problem with the limited buffers between consecutive
machines; in (He & Wang, 2007), where constrained optimization problems are faced by a
HPSO which applies the SA search from the best solution found by the swarm in order to
avoid the premature convergence; in (Li et al., 2006), where the hybrid algorithm, named
PSOSA, is used for non-linear systems parameter estimation; in (Ge et al., 2007) where the
HPSO is used to face the job shop scheduling. Differently, in (Xia & Wu, 2005) multi-
objective flexible job shop scheduling problems are confronted by a hierarchical approach
exploiting PSO to assign operations to machines and then SA to schedule operations on each
machine. Hybrid ACO approaches, which combine pheromone trail based learning

www.intechopen.com

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics

3

mechanism with the SA search ability of escaping from local optima, are proposed for
example in (Demirel & Toksarı, 2006) for the quadratic assignment problem and in
(Yuanjing & Zuren, 2004) for flow-shop scheduling problems. Finally, in (Yogeswaran et al.,
2007) a hybrid metaheuristic named GASA, which combines GA and SA, is used to solve a
bi-criterion machine loading problem in flexible manufacturing system.
In this chapter we would highlight the effectiveness of embedding a trajectory method, i.e.,
SA, as intensification method of population-based algorithms, i.e., ACO and PSO. Many
works in the literature witnessed the fundamental role for population-based approaches, as
ACO, PSO or GA, of an intensification phase which usually corresponds to a local search
(LS) exploration (Blum & Roli, 2003). However, a well-known and common characteristic of
trajectory methods, as SA, VNS or TS, is their ability of overcoming the LS limitation of
being trapped in local optima. For this reason the role of this class of powerful methods goes
beyond that of a local intensification procedure, since they allow the calling population-
based method to be “re-directed” towards portions of the solution space which may not be
confined to the basin of attraction of a local optimizer. Then, we can view the hybrid
algorithms discussed in this chapter as composed by a main population-based component
which exploits a second level subordinate SA procedure in order to deeply explore
(intensify) the neighbourhood of one (or more) promising solution, as well as escaping from
such a neighbourhood when it includes a local optima attractor (diversify). On a symmetric
standpoint, we could also consider these hybrid metaheuristics as an iterated trajectory
method, i.e., an iterated SA, whose (promising) starting solutions are determined at the
beginning of each iteration by a population-based algorithm. This latter algorithm in fact,
exploiting memory and/or learning mechanisms, performs a sort of solution perturbation or
shaking, possibly driving the SA search to focus on alternative promising regions of the
solution space. In this case we can consider the population-based algorithm as an effective
memory and learning based diversification device for SA. Whatever standpoint one would
prefer, we believe that the effectiveness of the overall resulting algorithm emerges from the
interaction of the complementary capabilities of the methods of the two different classes,
that is, according to (He & Wang, 2007), from the balance of the intensification and
diversification components included in them. An important aspect to be taken into account
when designing the interaction mechanism between the population-based and the trajectory
(i.e., SA) components of the hybrid algorithm regards how to identify the solutions which
are worth to intensify; therefore in this chapter, we will also discuss several alternative
strategies available to this end, pointing out their possible different effectiveness and
computational burden.
The rest of this chapter is organized as follows. First in the Section 2 we briefly present the
two scheduling problems used as reference to analyse the behaviour of the hybrid
metaheuristics. Note that, even if different, the solutions of these two problems share the
common property of being represented by sequences of jobs, i.e., by permutations of a given
number of integers. Then in the Section 3 we illustrate the two hybrid metaheuristics
considered, first introducing the main features of the pure population-based metaheuristics,
respectively ACO and PSO, then showing how these are combined with SA, as well as
discussing alternative triggering rules that can be used to determine the SA starting
solutions. In the Section 4 we report the experimental test performed, comparing the
obtained results with the ones of other algorithms from the literature. Finally, in the Section
5 we draw the chapter conclusions.

www.intechopen.com

 Simulated Annealing

4

2. The referenced scheduling problems

In this section we briefly introduce the characteristics of the two scheduling problems faced
by the two hybrid metaheuristics presented in the following, reporting also some literature
review for them. These problems are the Single Machine Total Weighted Tardiness with
Sequence-Dependent Setups (STWTSDS) problem and the Permutation Flowshop
Scheduling (PFS) problem. Even if apparently different, the solutions to such problems have
a common structure since they can both represented by permutation. For this reason, we
introduced here some common notation. In general a solution x to one of the two scheduling
problems involving a set of n jobs can be represented by a permutation or sequence

σ(x)=([1],..., [n]), where [j] indicates the index of the job sequenced in the j-th place. In

addition we denote with ϕσ:{1,..., n}→{1,..., n}, the mapping between the places in a sequence

σ and the indexes of the sequenced jobs; for example, if job j is sequenced in the h-th place of

σ we have j=ϕσ (h).

2.1 The single machine total weighted tardiness problem with sequence-dependent
setups
The STWTSDS problem consists in scheduling n independent jobs on a single machine. All
the jobs are released simultaneously, i.e., they are ready at time zero, the machine is
continuously available and it can process only one job at a time. For each job j=1,..., n, the
following quantities are given: a processing time pj, a due date dj and a weight wj. A
sequence-dependent setup time sij must be waited before starting the processing of job j if it
is immediately sequenced after job i. Setup operations are necessary to prepare production
resources (e.g., machines) for the job to be executed next, and whenever they depend, as in
this case, on the (type of) preceding job just completed they are called sequence-dependent
setups. The tardiness of a job j is defined as Tj=max(0, Cj-dj), being Cj the job j completion
time. The scheduling objective is the minimization of the total weighted tardiness expressed

as
1

n

j jj
w T

=∑ . This problem, denoted as 1/sij/ΣwjTj, is strongly NP-hard since it is a special

case of the 1//ΣwjTj that has been proven to be strongly NP-hard in (Lawler, 1997) (note

that also the 1//ΣTj special case is still NP-hard (Du & Leung, 1990)). Apart from its
complexity, the choice of the STWTSDS as reference problem is also motivated by its
relevance for manufacturing industries; in particular, the importance of performance criteria
involving due dates, such as (weighted) total tardiness or total earliness and tardiness (E-T),
as well as the explicit consideration of sequence-dependent setups, has been widely
recognized in many real industrial contexts. In the literature both exact algorithms and
heuristic algorithms have been proposed for the STWTSDS problem or for a slightly
different version disregarding the job weights. However, since only instances of small
dimensions can be solved by exact approaches, recent research efforts have been focused on
the design of heuristics. The apparent tardiness cost with setups (ATCS) heuristic (Lee et al.,
1997) is currently the best constructive approach for the STWTSDS problem. However,
constructive heuristics, even if requiring smaller computational efforts, are generally
outperformed by improvement, i.e., local search, and metaheuristics approaches. The
effectiveness of stochastic search procedures for the STWTSDS is shown in (Cicirello &
Smith, 2005), where the authors compare a value-biased stochastic sampling (VBSS), a VBSS
with hill-climbing (VBSS-HC) and a simulated annealing (SA), to limited discrepancy search
(LDS) and heuristic-biased stochastic sampling (HBSS) on a 120 benchmark problem

www.intechopen.com

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics

5

instances for the STWTSDS problem defined by Cicirello in (Cicirello, 2003). The literature
about applications of metaheuristics to scheduling is quite extended. In (Liao & Juan, 2007)
an ACO algorithm for the STWTSDS is proposed, which is able to improve about 86% of the
best known results for the Cicirello’s benchmark previously found by stochastic search
procedures in (Cicirello & Smith, 2005) Recently the Cicirello’s best known solutions have
been further independently improved in (Cicirello, 2006) by means of a GA approach, in
(Lin & Ying, 2006) with three SA, GA and TS algorithms, in (Anghinolfi & Paolucci, 2008)
using an ACO approach and in (Anghinolfi & Paolucci, 2007b) with PSO.

2.2 The permutation flowshop scheduling problem
The PFS problem requires to schedule a set of n jobs on a set of m machines so that each job
is processed by each machine and the sequence of jobs is the same for all the machines.
Then, a permutation of the n jobs identifies a solution to the PFS problem which consists in
finding an optimal permutation for the jobs. For each job j and machine h the processing
time pjh is given; then, the completion times of the jobs on the machines can be computed for

any given permutation σ=([1],..., [n]) of n jobs as follows

 1

[1] [1],1
C p= (1)

 1 1

[] [1] [],1
2,...,

j j j
C C p j n−= + ∀ = (2)

 1

[1] [1] [1],
2,...,

h h

h
C C p h m

−= + ∀ = (3)

 1

[] [1] [] [],
max{ , } 2,..., ; 2,...,

h h h

j j j j h
C C C p h m j n

−
−= + ∀ = = (4)

where
[]

h

j
C represents the completion time of the j-th job in the permutation on machine h.

The scheduling problem is to find the job permutation σ* that minimizes the makespan Cmax,

corresponding to the completion time of the last job on the m-th machine, i.e.,
max []

m

n
C C= .

The makespan minimization for the PFS problem, denoted as n/m/P/Cmax, was originally
proposed in (Johnson, 1954) and afterwards it has been widely investigated in the literature.
This problem is NP-hard in the strong sense (Garey et al., 1976) for m≥3 and only instances
of limited size can be solved by exact solution methods in an acceptable computation time.
Therefore numerous heuristics approaches have been proposed in the literature, among
which constructive heuristics (e.g., (Palmer, 1965), (Campbell et al., 1970), (Taillard, 1990))
improvement heuristics (e.g, (Ho & Chang, 1991), (Woo & Yim, 1998), (Suliman, 2000)) and
metaheuristics as SA ((Osman & Potts, 1989), (Ishibuchi et al., 1995)), TS ((Nowicki &
Smutnicki, 1996), (Grabowski and Wodecki, 2004)), GA ((Reeves, 1995), (Ruiz et al., 2006)),
ACO ((Rajendran & Ziegler, 2004)) and PSO algorithms ((Liao et al., 2007), (Lian et al.,
2006a), (Tasgetiren et al., 2007), (Jarboui et al., 2007)), some of which are taken as reference
for the performance evaluation of the PSO-SA proposed in the following.

3. Two hybrid population-based metaheuristics

In this section we introduce the main concepts of ACO and PSO and we show how two
hybrid algorithms, respectively ACO-SA and PSO-SA, can be derived through the

www.intechopen.com

 Simulated Annealing

6

interaction with SA. Note that in order to illustrate the specific characteristics of the
algorithms we refer to the STWTSDS problem for ACO-SA and to the PFS one for PSO-SA.

3.1 The hybrid ant colony optimization algorithm
The ACO metaheuristic aims at exploiting the successful behaviour of real ants in
cooperating to find shortest paths to food for solving combinatorial problems (Dorigo &
Stützle, 2002), (Dorigo & Blum, 2005). Most of the real ants use stigmergy during food search,
i.e., they have an effective indirect way to communicate each other which is the most
promising trail, and finally the optimal one, towards food. Ants produce a natural essence,
called pheromone, which is left on the followed path to food in order to mark it. The
pheromone trail evaporates over time, finally disappearing on the abandoned paths. On the
other hand, the pheromone trail can be reinforced by the passage of further ants; due to this
fact effective (i.e., shortest) paths leading to food are finally characterized by a strong
pheromone trail, and they are followed by most of ants. The ACO metaheuristic was first
introduced in (Dorigo et al., 1991), (Dorigo et al., 1996) and (Dorigo, 1992), and since then it
has been the subject of both theoretical studies and applications. ACO combines both
Reinforcement Learning (RL) (Sutton & Barto, 1998) and Swarm Intelligence (SI) (Kennedy &
Eberhart, 2001) concepts:

• each single agent (an ant) takes decisions and receives a reward from the environment,
so that the agent’s policy aims at maximizing the cumulative reward received (RL);

• the agents exchange information to share experiences and the performance of the
overall system (the ant colony) emerges from the collection of the simple agents’
interactions and actions (SI).

ACO has been successfully applied to several combinatorial optimization problems, from
the first travelling salesman problem applications (Dorigo et al., 1991), (Dorigo et al., 1996),
to vehicle routing problems (Bullnheimer et al., 1999), (Reinmann et al., 2004), and to single
machine and flow shop scheduling problems (den Besten et al., 2000), (Gagné et al., 2002)
and (Ying & Liao, 2004).
In this section we present a new hybrid ACO-SA approach to face the STWTSDS problem.
In (Anghinolfi & Paolucci, 2008) we recently introduced the main characteristics of the pure
ACO component of ACO-SA, which mainly differ from previous approaches in the
literature for the following aspects: (a) we use a new pheromone trail model whose
pheromone values are independent of the problem cost (or quality) function and they are
bounded within an arbitrarily chosen and fixed interval; (b) we adopt a new global
pheromone update (GPU) rule which makes the pheromone values asymptotically increase
(decrease) towards the upper (lower) bound, without requiring any explicit cut-off as in the
Max-Min Ant System (MMAS) (Stützle & Hoos, 2000); (c) we use a diversification strategy
based on a temporary perturbation of the pheromone values performed by a local
pheromone update (LPU) rule within any single iteration. The ACO that we proposed in
(Anghinolfi & Paolucci, 2008) is mainly based on the Ant Colony System (ACS) (Dorigo &
Gambardella, 1997), and it includes concepts inspired to the MMAS (Stützle & Hoos, 2000)
and to the approaches in (Merkle & Middendorf, 2000), (Merkle & Middendorf, 2003), even
if such concepts are encapsulated in a new pheromone model and exploited in a real
different manner. We report in Figure 1 the very high level structure of the ACO-SA

algorithm. In the following we will detail all the involved steps apart from SA intensification
that we will describe in a separate subsection as this step is in common with the PSO-SA
algorithm.

www.intechopen.com

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics

7

 Initialization;
k=1;
While <termination condition not met>
{
 For each ant a∈A
 {
 Construction of solution xa

k;
 Local pheromone update;
 }
 SA intensification;
 Global pheromone update;
 k=k+1;
}

Figure 1. The overall ACO-SA algorithm

We consider a set A of na artificial ants. At each iteration k, every ant a identifies a solution
k
ax building a sequence ()k

a
xσ of the n jobs, whose objective value ()k

a
Z x is then simply

computed by executing each job at its feasible earliest start time for that sequence. Every ant

a builds the sequence ()k

a
xσ by iterating n selection stages: first, the set of not sequenced

jobs for ant a, 0

a
U , is initialized as 0 {1,..., }

a
U n= ; then, at stage h=1,..., n, the ant a selects one

job j from the set 1h

a
U

− to be inserted in the position h of the partial sequence, and updates

1 \{ }h h

a a
U U j

−= ; at stage h=n all the jobs are sequenced and
n

a
U = ∅ . The job selection at

each stage h of the construction procedure at iteration k is based on a rule that is influenced

by the pheromone trail (,)
k
h jτ associated with the possible solution components, i.e.,

position-job pairs, (h, j), where j∈ 1h

a
U

− . Differently from other approaches in the literature,

the pheromone values assigned to (,)
k
h jτ are independent of the objective or quality

function values associated with previously explored solutions including the component

(h, j). In particular, we adopt an arbitrary range [,]
Min Max

τ τ for the pheromone values, which

is independent of the specific problem or instance considered; therefore any pair of values,

such that
Min Max
τ τ< , can be chosen so that

Max
τ and

Min
τ are not included in the set of

parameters that must be specified for the algorithm. In addition, the GPU rule controlling

the ant colony learning mechanism imposes a smooth variation of (,) [,]
k Min Max
h jτ τ τ∈ such

that both the bounds are only asymptotically reached. Note that also in MMAS lower and

upper bounds are imposed for (,)
k
h jτ , but they must be appropriately selected,

dynamically updated each time a new best solution is found, taking into account the
objective function values, and they are used as cut-off thresholds. In the following we

consider relative pheromone values ' (,) (,)
k k Min
h j h jτ τ τ= − such that ' (,) [0, ']

k Max
h jτ τ∈ ,

where '
Max Max Min

τ τ τ= − , whenever this makes simpler and more readable the expressions

introduced.
Initialization. For each solution component (h, j), h, j=1,..., n, we assign an initial value of the

pheromone trail by fixing
0
(,) () / 2

Max Min
h jτ τ τ= + ; in addition, we initialize the best

www.intechopen.com

 Simulated Annealing

8

current solution x* as an empty solution, fixing the associated objective value Z(x*) to
infinity.

Job selection rule. At a selection stage h of iteration k, an ant a determines which job j∈ 1h

a
U

− is

inserted in the h-th position of the sequence as follows. First, similarly to the ACS, the ant

chooses which job selection rule to use between exploitation and exploration: a random

number q is extracted from the uniform distribution U[0, 1] and if q≤q0 the ant uses the

exploitation rule, otherwise the exploration one. The parameter q0 (fixed such that 0≤q0≤1)

directs the ants’ behaviour towards either the exploration of new paths or the exploitation of

the best paths previously emerged. The exploitation rule selects the job j in a deterministic

way as

 []
1

arg max{ ' (,) (,) }
h
a

k
u U

j h j h j
βτ η

−∈
= ⋅ (5)

whereas the exploration rule according to a selection probability),(jhp computed as

[]
[]

1

' (,) (,)
(,)

' (,) (,)
h
a

k

k

u U

h j h j
p h j

h j h j

β

β

τ η

τ η
−∈

⋅
=

⋅∑
 (6)

The quantity),(jhη , associated with the solution component (h, j), is an heuristic value

computed equal to the priority),(jhI t of assigning job j in position h at time t according to

the ATCS rule (Lee et al., 1997)

(1)

1 2

max(,0)
(,) (,) exp exp

h jj j j

t

j

sw d p t
h j I h j

p k p k s

σϕη −− − ⎡ ⎤⎡ ⎤
= = −⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (7)

where

 jh

h

i
iii spst)1(

1

1
)()()1()(−

−

=
− +∑ += σϕσϕσϕσϕ (8)

p and s are respectively the average processing time and the average setup time, and k1

and k2 are the lookahead parameters fixed as originally suggested in (Lee et al., 1997).

Therefore, in the ACO-SA algorithm the influence of the sequence-dependent setups is

encapsulated in the heuristic values used in the job selection rule. The parameter β in (5) and

(6) is the relative importance of the heuristic value with respect to the pheromone trail one.

Local pheromone update (intra-iteration diversification). As often done in ACO approaches to
avoid premature convergence of the algorithm, a LPU is performed after any single ant a
completed the construction of a solution xa in order to make more unlike the selection of the
same sequence by the following ants. In the ACO-SA we adopt the following the local
pheromone update rule

 ' (,) (1) ' (,) 1,..., ; ()
k k
h j h j h n j hστ ρ τ φ= − ⋅ ∀ = = (9)

www.intechopen.com

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics

9

where ρ is a parameter fixed in [0, 1]. We must remark that such kind of update strictly local,
i.e., we use it to favour the diversification of the sequences produced by the ants within the
same iteration and (9) temporarily modifies the pheromone values only in the single
iteration scope, since such changes are deleted before executing the global pheromone update
phase and starting the next iteration. We denoted in (Anghinolfi & Paolucci, 2008) this
feature is as reset of the local pheromone update (RLPU).

Global pheromone update. The (relative) pheromone values),(' jhkτ are varied within the

range]',0[Maxτ during the GPU phase with a rule, called Unbiased Pheromone Update

(UPU), that we introduced in (Anghinolfi & Paolucci, 2008). The UPU rule does not uses cost
or quality function values, but smoothly updates of pheromone trails associated with a set

of quality solution components. We denote with
*
kΩ the best component set determined after

the completion of iteration k; then, the UPU rule consists of the three following steps:

1. pheromone evaporation for the solution components not included in
*
kΩ

 *

1
' (,) (1) ' (,) (,)
k k k

h j h j h jτ α τ+ = − ⋅ ∀ ∉Ω (10)

 where 0 ≤α ≤1 is a parameter establishing the evaporation rate;

2. computation of the maximum pheromone reinforcement ' (,)
k
h jτΔ for the solution

components in *

k
Ω

 *
' (,) ' ' (,) (,)
k Max k k
h j h j h jτ τ τΔ = − ∀ ∈Ω (11)

3. update of the pheromone trails to be used in the next iteration for the solution

components in *

k
Ω

*

1
' (,) ' (,) ' (,) (,)
k k k k

h j h j h j h jτ τ α τ+ = + ⋅Δ ∀ ∈Ω (12)

The UPU rule guarantees that ' (,) [0, ']
k Max
h jτ τ∈ and that ' (,)

k
h jτ converges towards the

bounds asymptotically (' (,)
k
h jτΔ is progressively reduced as much as ' (,)

k
h jτ

approaches to '
Max

τ , as well as the decrease of ' (,)
k
h jτ towards 0 in (10)) with a law similar

to the most frequently used cooling schedule for SA. The set *

k
Ω adopted in the ACO-SA is

the one defined in (Anghinolfi & Paolucci, 2008) as the Best-so-far (BS) solution component
set, that is, it includes only the solution components associated with the best sequence σ *
find so far

 { }*

*
(,) : 1,..., ; ()

k
h j h n j hσφΩ = = = (13)

Termination conditions. The algorithm is stopped when a maximum number of iterations, or a
maximum number of iterations without improvements, is reached.

3.2 The hybrid particle swarm optimization algorithm
PSO is a recent metaheuristic approach motivated by the observation of the social behaviour
of composed organisms, such as bird flocking and fish schooling, and it tries to exploit the

www.intechopen.com

 Simulated Annealing

10

concept that the knowledge to drive the search for optimum is amplified by social
interaction. PSO executes a population-based search in which the exploring agents, the
particles, modify their positions during time according not only to their own experience, but
also to the experience of other particles. In particular, a particle p may change its position
with a velocity that in general includes a component moving p towards the best position so
far achieved by p to take into account the particle experience, and a component moving p
towards the best solution so far achieved by any among a set of neighbouring particles (local
neighbourhood) or by any of the exploring particles (global neighbourhood). Note that,
differently from GA, the PSO population is maintained and not filtered. PSO is based on the
Swarm Intelligence (SI) concept (Kennedy & Eberhart, 2001): the agents are able to exchange
information in order to share experiences, and the performance of the overall multi-agent
system (the swarm) emerges from the collection of the simple agents’ interactions and
actions. PSO has been originally developed for continuous nonlinear optimization (Kennedy
& Eberhart, 1995), (Abraham et al., 2006). The basic algorithm for a global optimization
problem, corresponding to the minimization of a real objective function f(x) of a variable
vector x defined on a n-dimensional space, uses a population (swarm) of np particles; each
particle i of the swarm is associated with a position in the continuous n-dimensional search
space, xi=(xi1,…, xin) and with the correspondent objective value f(xi) (fitness). For each
particle i, the best previous position, i.e. the one where the particle found the lowest
objective value (personal best), and the last particle position change (velocity) are recorded
and represented respectively as pi=(pi1,…, pin) and vi=(vi1,…, vin). The position associated
with the current smallest function value is denoted as g=(g1,…, gn) (global best). Denoting

with
k

i
x and

k

i
v respectively the position and velocity of particle i at iteration k of the PSO

algorithm, the following equations are usually used to iteratively modify the particles’
velocities and positions:

 1

1 1 2 2
() ()k k k k

i i i i i
v w v c r p x c r g x

+ = ⋅ + ⋅ − + ⋅ − (14)

 1 1k k k

i i i
x x v

+ += + (15)

where w is the inertia parameter that weights the previous particle’s velocity; c1 and c2,
respectively called cognitive and social parameter, multiplied by two random numbers r1 and
r2 uniformly distributed in [0, 1], weight the velocity towards the particle’s personal best,

()k

i i
p x− , and the velocity towards the global best solution, ()k

i
g x− , found so far by the

whole swarm. The new particle position is determined in (15) by adding to the particle’s
current position the new velocity computed in (14). The PSO velocity model given by (14)
and (15) is called gbest, but also a lbest model is introduced in (Kennedy & Eberhart, 2001): in
this latter model the information about the global best position found so far by the whole
group of particles is replaced by the local best position for each particle i, li=(li1,…,lin), i.e.,
the position of the best particle found so far among a subset of particles nearest to i. The PSO
parameters that we need to fix are the inertia w, the cognitive and social parameters c1 and
c2, and finally the dimension of the swarm np; taking into account that in the standard PSO
for continuous optimization c1+c2=4.1 (Clerc & Kennedy, 2002), the number of parameters
needed by this metaheuristic is quite reduced.
In recent years many there is an increasing attention in the literature for application of the
PSO approach to discrete combinatorial optimization problems. For example, PSO has been
applied to the traveling salesman problem (TSP) (Pang et al., 2004), the vehicle routing
problem (Chen et al., 2006), and scheduling problems (Tasgetiren et al., 2004), (Liao et al.,

www.intechopen.com

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics

11

2007), (Lian et al., 2006a), (Lian et al., 2006b), (Allahverdi & Al-Anzi, 2006) and (Parsopoulos
& Vrahatis, 2006). Discrete PSO (DPSO) approaches differ both for the way they associate a
particle position with a discrete solution and for the velocity model used; in particular, since
here we consider a combinatorial problem whose solutions are represented by
permutations, we could classify the DPSO approaches in the literature according to three
kinds of solution-particle mapping, i.e., binary, real-valued and permutation-based, and
three kinds of velocity model used, i.e., real-valued, stochastic or based on a list of moves.
The first DPSO algorithm proposed in (Kennedy & Eberhart, 1997) used a binary solution
representation and a stochastic velocity model since it associates the particles with n-
dimensional binary variables and the velocity with the probability for each binary
dimension to take value one. In (Tasgetiren et al., 2007), (Tasgetiren et al., 2004),
(Parsopoulos & Vrahatis, 2006) real values are associated with the particle dimensions to
represent the job place in the scheduling sequence according to a random key representation
(Bean, 1994), and a smallest position value (SPV) rule is exploited to transform the particle
positions into job permutations. Permutation-based solution-particle mappings are used in
(Hu et al., 2003) for the n-queens problem together with a stochastic velocity model,
representing the probability of swapping items between two permutation places, and a
mutation operator, consisting of a random swap executed whenever a particle coincides
with the local (global) best one. In (Lian et al., 2006a) particles are associated with job
sequences and velocities are implemented as crossover and mutation operators borrowed
from the genetic algorithm approach. Generally the velocity models adopted in DPSO
approaches are either stochastic or real-valued. To our best knowledge the unique examples
of velocity models based on a list of moves can be found in the DPSO approach for the TSP
in (Clerc, 2004), together with the new DPSO approach that we very recently presented in
(Anghinolfi & Paolucci, 2007b) to face the STWTSDS problem. This velocity model is quite
difficult to be used as it needs the definition of an appropriate set of operators to extend the
PSO computations in a discrete solution space.
In the following we illustrate the main features of the hybrid PSO-SA which extends the
DPSO approach introduced in (Anghinolfi & Paolucci, 2007b) to face the PFS problem. As
for the algorithm in (Anghinolfi & Paolucci, 2007b), PSO-SA is based on both a permutation
solution-particle representation and on a list-of-moves velocity model, but differently we
here introduce a new restart mechanism to avoid the stagnation of particles. In Figure 2 we
report the overall structure of the PSO-SA algorithm. Then, similarly to what done for ACO-
SA, we will detail the main PSO steps, finally dealing with the SA intensification in the last
subsection.

Initialization;
While <termination condition not met>
{
 For each particle
 {
 Velocity update;
 Position update;
 Fitness computation;
 }
 SA intensification;
 Group restart;
 Best references update;
}

Figure 2. The PSO-SA algorithm.

www.intechopen.com

 Simulated Annealing

12

We use a set of np particles, each one associated with a permutation σ, that is, with a

schedule x whose fitness is given by the cost value Z(x). To define the particle behaviour

we need to introduce a metric for the permutation space and a set of operators to compute

velocities and to update particles’ positions consistently. As illustrated in (Anghinolfi &

Paolucci, 2007b) we define a velocity as a set of moves, called pseudo-insertion (PI) moves,

that, if applied to a given particle or permutation, change the position of the particle,

generating a different permutation. Velocities are produced as difference between particle

positions. For example, given a pair of particles p and q, the velocity v moving particle p

from its current position to the one of particle q is a list of PI moves computed as the

difference v=σq-σp. A PI move is a pair (j, d), where d is an integer displacement that is

applied to job j within the permutation. Assuming for example that j=ϕ(h), a PI move (j,

d), which delays a job j in the permutation σ, extracts j from its current place h in σ and

reinserts it generating a new permutation such that j=ϕ(min(h+d, n)); analogously, a PI

move (j, -d), which instead anticipates a job j, produces a new sequence such that

j=ϕ(max(h-d, 0)). If for example we consider two particles associated with two

permutations of n=4 jobs, σp=(1,2,3,4) and σq=(2,3,1,4), then, we compute the velocity

v=σq-σp={(1,2),(2, 1),(3,-1)}. The list of PI moves representing a velocity can include at most

a single PI move for a given job.

We define a position-velocity sum operator to change the particle positions in the

permutation space, which applies the PI moves included in a velocity list one at a time by

extracting the involved job from the permutation and reinserting it in the new place. We

call these moves as pseudo-insertion since in general they do not produce feasible

permutations but what we called pseudo-permutations. We illustrate this point with an

example: if we apply to the permutation σp=(1,2,3,4) the first move in the velocity

v={(1,2),(2, -1),(3,-1)}, then we extract job 1 from the first place and reinsert it in the third

place obtaining the pseudo-permutation (-,2,[3,1],4), where symbol “-“ denotes that no job

is now assigned to the first place, whereas [3,1] represents the ordered list of the two jobs

3 and 1 both assigned to the third place. Hence, PI moves produce in general not feasible

permutations but pseudo-permutations characterized by one or more empty places and

by others places containing a list of jobs. Then, we introduce the permutation completion

procedure reported in Figure 3 to transform a pseudo-permutation into a feasible

permutation. In Figure 3 π(h) denotes the ordered set of items in the h-th place of the

pseudo-permutation π, pull(s) the function that extracts the first element from an ordered

set s, and push(i, s) the function that inserts the element i at the bottom of the set s. Hence,

the permutation completion procedure manages π(h) as a first-in-first-out (FIFO) list. As

an example, starting from the pseudo-permutation π=([1,3],-,-,[4,2]) the permutation

completion procedure produces the feasible permutation (3,1,4,2).

We define a velocity sum operator ⊕ which generates the list of PI moves for a velocity

w=v⊕v’ from the union of the PI moves in v and v’; in addition, since any job can appear

only once in the PI list associated with a velocity, if v and v’ include respectively the PI

moves (j, d) and (j, d’), then w must include (j, d+d’) only if d+d’≠0. Finally, we define the

constant-velocity multiplication so that the velocity computed as w=c⋅v, where c is a real

positive constant, includes the same PI moves of v whose displacement values have been

multiplied by c.

www.intechopen.com

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics

13

Input: π a pseudo-sequence
Output: σ a feasible sequence
for each h=1,...,n
 {
 if |π(h)|=1 skip;
 else if |π(h)|=0
 {
 repeat
 k=h+1;
 while k<n and |π(k)|=0
 π(h)=pull(π(k));
 }
 else if |π(h)|>1
 {
 while |π(h)|>1
 push(pull(π(h), π(h+1));
 }
 }
σ=π;

Figure 3. The sequence completion procedure.

We can now consider the main steps of PSO-SA.
Initialization. A set of initial solutions, i=1,..., np, is assigned to the np particles by randomly
generating a set of np permutations. This initialization procedure is similar to the one
adopted for the discrete PSO approach in (Tasgetiren et al., 2007). Analogously, a set of np
initial velocities is randomly produced and associated with the particles. In particular these
velocities are generated first randomly extracting the number of PI moves composing a
velocity from the discrete uniform distribution U[[⎣n/4⎦, ⎣n/2⎦], then, for each move,
randomly generating the involved job and the integer displacement are respectively from
U[1, n] and from U[⎣−n/3⎦, ⎣n/3⎦]. The set of particles is partitioned into nc clusters Gcl,
cl=1,..., nc, randomly associating each particle to one of them, and the local best position li

(i.e., the related solution xli), computed as 0arg min ()
cl

i j
j G

l Z x
∈

= , is associated with each particle

i∈Gcl. The quantity nc is an input parameter of the algorithm. Finally, the global best
position, that is the position associated with the best permutation found by any of the
particles, is denoted with g (whose related solution is xg).
Velocity and position update. At iteration k, we define for each particle i three velocity
components, inertial (iv), directed to local best velocity (lv), and directed to global best
velocity (gv), as follows:

1k k

i i
iv w v

−= ⋅ (16)

 1

1 1
()k k

i i i
lv c r l σ −= ⋅ − (17)

 1

2 2
()k k

i i
gv c r g σ −= ⋅ − (18)

Parameters w, c1 and c2 respectively represent the inertia parameter that weights the
previous particle’s velocity, and two kinds of social parameters, multiplied by two random

www.intechopen.com

 Simulated Annealing

14

numbers r1 and r2 extracted from U[0,1], weighting the velocities towards the best position
in the clusters (local best) and the global best position of the whole set of particles. Then, we
update the particles’ velocities by summing the three components (16), (17) and (18). The
velocity model adopted for the PFS problem is the one called glbest in (Anghinolfi &
Paolucci, 2007b) that does not include any velocity component directed towards the
particle’s personal best solution. In addition, differently from the standard PSO procedure,
we compute the new position separately summing to the current particle position the three
velocity components (16), (17) and (18) one at a time, so moving the particle through a set of
intermediate feasible permutations obtained by the permutation completion procedure.
Restart of a group of particles. Differently from the DPSO in (Anghinolfi & Paolucci, 2007b), we
restart all the particles in a group to avoid a premature convergence of the algorithm due to
the stagnation of all the particles in one single position of the permutation space and to
differentiate exploration. In particular, the positions of the particles belonging to the group
whose local best solution is coincident with the global best solution of the swarm are
reinitialized with a random solution and the local best is reset. Moreover, after such a reset,
for the same group of particles we substitute for r iterations the weight of the global best

velocity component c2 with the value
2

k
c computed according to the following rule

2 2

'
() ',... 'k k k

c c k k k r
r

−
= = + (19)

Since k’ is the iteration at which the reset of the positions takes place and r is a parameter to
be fixed, (19) corresponds to set for all the involved particles the value of the weight c2 to 0
and then to make it linearly increase to its original value in r iterations. In this way the
diversification effect of this group restart is reinforced since the particles in this group are
not driven to immediately follow the direction towards the global best position but they can
search for other good solutions independently.

3.3 The SA intensification
The SA intensification step included in the overall structures of both the ACO-SA and PSO-

SA algorithms respectively in Figure 1 and 2 is performed using a SA procedure similar to

the one adopted for the H-CPSO algorithm presented in (Jarboui et al., 2007). The SA

algorithm, which originally took its inspiration from the simulation of the physical

annealing of melted metals (Kirkpatric et al., 1983), iterates exploring the neighbourhood

N(x) of the current solution x accepting a stochastically generated candidate x’∈N(x) with

the following probabilistic rule: if ΔZ=Z(x)-Z(x’)≤0 then x’ becomes the new current solution,

otherwise x’ is randomly accepted according to the probability distribution P(ΔZ, T)=
()

Z

Te
−Δ

,

where T is a control parameter playing the role of the temperature in the physical annealing

process. This algorithm is usually initialized with a high value T0 of the control parameter

and it iterates progressively decreasing it until a termination condition is met according to a

rule, called cooling schedule, which is critical for the algorithm convergence (Kirkpatric et al.,

1983). In both the proposed hybrid algorithms to update T we adopt the exponential rule

Tk=T0⋅θ k, where θ is a constant positive parameter. Similarly to (Jarboui et al., 2007) we use a

stochastic definition of the neighbourhood N(x) of the current solution x based on the

random selection of insert and swap moves. In particular, we apply either an insert or a

www.intechopen.com

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics

15

swap move on the permutation associated with x to generate the solution candidates at each

SA iteration: first the algorithm randomly chooses with probability 0.5 between the two

kinds of move, then it randomly selects the job to be moved and its insertion point or the

pair of jobs to be swapped. The SA terminates when it reaches a maximum number of non

improving iterations.

An important aspect to be considered whenever we embed an intensification procedure into
a main metaheuristic is when such procedure is fired and which triggering rule is used.
Designing a (hybrid) metaheuristic we should find an acceptable balance between
exploration thoroughness and computational burden. Apparently, intensification steps
greatly improve the accuracy of the search but also increase the time of computation. A
quite straightforward choice for the two algorithms considered in this chapter is to perform
intensification after all the exploring agents complete an iteration. Then, in ACO-SA the SA
intensification takes place after all the ants generate a solution and in PSO-SA after all the

particles have updated their position. Triggering rules specify which set
SA

X of solutions in

the current population have to be intensified, i.e., which solutions are chosen as starting
point of SA. Even in this case a balance between accuracy and computation workload must
be usually found. We can adopt rules selecting one or more starting points for
intensification as detailed in the following.
a) The best in iteration (BI) rule: the SA is started from the (single) best solution found by

the ants (particles) in the current iteration, i.e.,
*

*
1,...,

{ : arg min ()}k k

SA i i
i na

X x i Z x
=

= = .

b) The random (RND) rule: the SA is started from a single solution that is randomly
extracted from the solutions determined by the ants or particles in the current iteration
k.

c) The improved solution without intensification (ISWI) rule: to implement this rule we need

to define *

WI
x as the best solution found by any ant (particle) in the previous iterations

without using the SA intensification. Then, the set
SA

X may include one or more

solutions found in the current iteration k improving *

WI
x , i.e.

*{ : () (), 1,..., }k k

SA i i WLS
X x Z x Z x i na= < = . Apparently, the number of solutions that can be

subject to intensification at the end of an iteration with this rule can vary from zero to
the number of ants na (or to the number of particles, np), even if the upper bound
appear very unlikely.

d) The all (ALL) rule: the intensification is started from all the solutions found by the ants
or particles in the current iteration k.

Independently of the used rule, if the solution produced by SA improves the starting
*

k

i
x ,

then in ACO-SA the new solution may become the new current best and their relevant
pheromone trails are updated accordingly, whereas in PSO-SA the new solution is
associated with the particle i*, so updating its relevant position, and the lbest solution for the
cluster including particle i* , as well as the gbest solution are possibly updated.
The BI and RND rules clearly outperform the ALL rule, and they are very likely to
outperform also the ISWI one, under the computational time aspect as they both intensify a
single solution. The ALL rule apparently should allow to produce solutions with the same
quality of the other rules (we must keep in mind that intensification is executed with a
stochastic algorithm) if we grant it a sufficiently long computation time, since it is a superset

www.intechopen.com

 Simulated Annealing

16

of them; on the other hand the ALL computational requirement is so high to make such rule
hard to be accepted. Our experience also pointed out that the quality of the solutions yielded
using RND are on the average dominated by the ones form the BI one. Therefore, we believe
that in general the BI and ISWI may represent good compromise choices for triggering rules:
the decision between these two rules can finally depend on the different time and quality
requirements of the case under concern.

4. Experimental results

In this section we present some experimental results with the purpose of providing evidence
on the possible benefit of combining SA with the two population-based metaheuristics
considered. To this end we compared the behaviour of ACO-SA and PSO-SA with the one of
the two same algorithms when LS is used instead of SA as intensification component. In
particular, we adopted the deterministic LS procedure, reported in Figure 4, that, similarly
to the SA algorithm described in the previous section, explores a mixed type of solution
neighbourhood obtained by insert and swap moves.

xb=xc=x0;
non_impr=0;
neigh_type=1;

repeat
 {
 xc=xb;

 xc=best_in_neigh(xb,neigh_type);

 if Z(xc)<Z(xb)
 {
 xb=xc;
 neigh_type=1;
 }
 else
 {
 non_impr++;
 neigh_type++;
 }
 } until (non_impr > max_non_impr) and
neigh_type<=2;

Figure 4. The LS algorithm

We must observe that the LS in Figure 4 implements a kind of variable neighbourhood
descent procedure (VND) (Hansen & Mladenovic, 1999), which for each current solution
completely explores the neighbourhood generated by insert moves and, if no improvement
is found, the one produced the swap moves. Then, in the following we report first the
experimental tests performed for ACO-SA, giving greater emphasis to the analysis of the
behaviour and relative effectiveness of the alternative triggering rules introduced in Section
3.3, whereas we limit the successive discussion on PSO-SA only on the comparison with the
LS intensified version of algorithm. All the versions of the two algorithms analysed were

www.intechopen.com

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics

17

coded in C++ and the experimental tests were executed on an Intel Core 2 6600, 2.4 GHz, 2
Gb PC (note however that our implementations do not exploit the dual processor
architecture). During all the experimental campaign we adopted as termination criterion the
maximum number of fitness (objective) function evaluations, that we fixed = 20,000,000.
This choice follows the recommendation in (Taillard, 2005) suggesting the use of absolute
computational burden measures (i.e., independent of the kind of computer) in order to
obtain results easier to be compared in the scientific community. As regards the values of
the parameters characterizing the SA procedure included in both the hybrid algorithms here

considered, we fixed θ=0.95, the initial temperature T0 = -(0.2⋅Z0)/log(0.5) (such value is
chosen to impose that at the initial iteration the probability of accepting a solution with a

20% deviation from objective value of the starting solution is 0.5), and imposing 10⋅n2 non
improving iterations, where n is the number of jobs of the considered scheduling problem,
as SA stopping criterion (note that similar settings are used in (Jarboui et al., 2007)).

4.1 The tests on ACO-SA
The benchmark that we adopted to analyse ACO-SA is the set of 120 problem instances for
the STWTSDS with 60 jobs provided in (Cicirello, 2003) and available online at
http://www.cs.drexel.edu/~cicirello/benchmarks.html. Note that this benchmark was
used for testing various metaheuristic approaches recently appeared in the literature as
(Cicirello & Smith, 2005), (Liao & Juan, 2007), (Cicirello, 2006), (Lin & Ying, 2006),
(Anghinolfi & Paolucci, 2008) and (Anghinolfi & Paolucci, 2007b). The benchmark was
produced by generating 10 instances for each combination of three different factors usually
referenced in the literature (for a definition and discussion see, e.g., (Pinedo, 1995)): the due

date tightness δ, the due date range R, and the setup time severity ξ, selected as follows:

δ∈{0.3, 0.6, 0.9}, R∈{0.25, 0.75}, ξ∈{0.25, 0.75}. For this set of tests we fixed the parameters

characterizing the ACO as follows: na=30, α=0.09, β=0.5, ρ=0.05, q0=0.7.
We conducted first a test in order to compare the possible triggering rules, i.e., BI, RND,
ISWI and ALL, for ACO-SA. For each configuration of the algorithm c and for each instance

i in the benchmark we executed 5 runs then computing the average result
ci

Z ; after that, we

obtained the best average result for each instance i as
*

min
i ci

c
Z Z= , and we computed for

each configuration c and instance i the average percentage deviation Δci from the best

average *

i
Z as

*

*

ci i

ci

i

Z Z

Z

−
Δ = (20)

finally obtaining the overall average percentage deviation Δc for each configuration c as

 ∑Δ=Δ
=

I

i
cic

I 1

1
 (21)

where I is the total number of instances considered. In Table 1 we summarise the obtained

results. The columns of Table 1 report the overall average percentage deviations (Δc) and the

www.intechopen.com

 Simulated Annealing

18

relevant standard deviations (Std) for the four tested triggering rules, with and without the
elimination of possible outliers; in fact, since in the objective values in the benchmark we
observed differences of several orders of magnitude, the elimination of the outliers would
reduce the possible influence of very slight absolute differences in the objectives for
instances with small reference values. In particular, excluding the outliers we eliminated
from the computation of the averages the instances with a percentage deviation not in the
interval (-40%, 40%). In the last column of Table 1 we also show the average computational
time (CPU) in seconds needed to terminate the runs.

 Without outliers (5 over 120)

 Δc Std Δc Std CPU (sec.)

BI 0.14% 0.44% 0.10% 0.20% 23.8

RND 2.18% 6.10% 1.49% 4.89% 22.5

ISWI 7.51% 20.53% 4.21% 13.22% 20.8

ALL 7.99% 23.89% 4.41% 15.15% 20.6

Table 1. The comparison of intensification triggering rules for ACO-SA.

As we can observe, there are relevant differences both in the average percentage deviations

and in the standard deviations for the tested rules. Then we executed the well-known non-

parametric Friedman’s test with 5% significance level obtaining that the differences between

two groups of rules, one consisting of BI and RND, and the other ISWI and ALL, are

significant from a statistical standpoint, both including and excluding the outliers.

Therefore, at least for the kind of termination condition here considered, the two rules that

execute a single SA intensification for iteration of the algorithm dominates the others. This

may be due to the fact that the fixed maximum number of fitness function evaluations is

better exploited by allowing fewer, here specifically one, SA search for iteration, so letting

the whole algorithm execute a greater number of iterations. This behaviour is also suggested

by the slightly larger computation time spent using the BI and RND configurations. Since

we noted that the overall results for BI and RND in the first two rows of Table 1 were rather

distant, we repeated the statistical test for a lower significance level, finding that the

hypothesis that samples are not significantly different can be rejected when fixing a 4%

level. In the second test performed we compared the ACO-SA results produced with the BI

rule, with the one generated substituting SA with the LS described in Figure 4. In particular,

we compared this latter configuration, denoted as ACO-LS, with ACO-SA in Table 2 (whose

structure is analogous to Table 1).

 Without outliers (5 over 120)

 Δc Std Δc Std CPU (sec.)

ACO-SA 0.15% 0.45% 0.11% 0.22% 23.8

ACO-LS 8.25% 22.33% 4.23% 10.05% 16.6

Table 2. The comparison of ACO-SA and ACO-LS.

www.intechopen.com

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics

19

The differences between the performance (both with and without outliers) of the two

algorithms are apparent and also in this case their significance was confirmed by the

statistical test with 5% significance level. Observing the computational times in the CPU

column, we again could explain the worst behaviour of ACO-LS with the attitude of LS of

being trapped in local optima: LS spent more fitness function evaluations than SA at each

iteration as it deeply explores the basin of attraction of the intensified solution; then, the

whole algorithm performed a smaller number of iterations. On the other hand, the ability of

SA of escaping from local optima, i.e., its ability of diversifying the search, clearly turns out

to be more effective.

Even if the evaluation of the performance of stochastic algorithms should always be based

on average results, to complete the tests with the Cicirello’s benchmark for the STWTSDS

we report also the comparison of the best results over 5 runs obtained with ACO-SA and

ACO-LS with a set of best known results. In particular, we consider an aggregate set of best

known solutions combining the best solutions yielded by the following approaches: the

ACO algorithm in (Liao & Juan, 2007), the GA in (Cicirello, 2006) and the SA, GA and TS

algorithms in (Lin & Ying, 2006). Table 3 basically reproduces the same picture of Table 2,

but here the possible presence of good solutions produced by chance for some instances

should appear from the higher standard deviation values.

 Without outliers (8 over 120)

 Δc Std Δc Std

ACO-SA 1.18% 11.50% 0.99% 3.43%

ACO-LS 8.20% 21.74% 3.41% 6.04%

Table 3. The comparison of ACO-SA and ACO-LS with the best known solution.

4.2 The tests on PSO-SA
In order to evaluate the performance of PSO-SA compared to the one of the PSO algorithm

with the LS presented in Figure 4 (denoted in the following as PSO-LS), we considered the

well-known set of benchmark instances for the PFS problem with makespan criterion

provided by Taillard (Taillard, 1993). In particular, we considered the benchmark set that

includes 10 instances for n=20, 50, 100, 200, 500 jobs and m=5, 10, 20 machines (such classes

of instances are denoted in the following with the n x m notation). For this test we used a set

of np=2⋅n particles and a number of particle clusters nc=np/10, fixing the values of the

parameters needed by PSO as w=0.5, c1=1 and c2=2, setting r=40 for the instances with 20

and 50 jobs and r=20 for the ones with 100, 200 and 500 jobs. Similarly to the campaign for

ACO-SA, we executed 5 runs for each benchmark instance, computing the average results,

the best average results as previously described, finally the overall average percentage

deviations as (21). In this case we directly compared PSO-SA and PSO-LS adopting BI as

intensification firing rule. Table 4 summarizes the results produced by the two algorithms

highlighting the outcomes for the different classes of instances as specified in the first

column (Problem).

www.intechopen.com

 Simulated Annealing

20

 Avg vs Avg (Δc) Avg vs BK (ΔBKc) Total CPU CPU for finding best

Problem PSO-SA PSO-LS PSO-SA PSO-LS PSO-SA PSO-LS PSO-SA PSO-LS

20x5 0.00% 0.00% 0.04% 0.04% 23.5 26.5 0.1 0.2

20x10 0.00% 0.03% 0.00% 0.03% 41.2 42.0 3.7 4.4

20x20 0.01% 0.01% 0.02% 0.02% 76.5 79.0 16.7 18.3

50x5 0.00% 0.02% 0.00% 0.02% 39.8 39.5 3.2 4.0

50x10 0.00% 0.37% 0.54% 0.91% 79.3 71.7 29.7 29.8

50x20 0.00% 0.36% 1.04% 1.41% 149.3 154.9 78.4 77.9

100x5 0.02% 0.02% 0.11% 0.11% 76.9 65.8 17.2 17.7

100x10 0.03% 0.11% 0.70% 0.78% 146.7 126.3 55.9 42.9

100x20 0.03% 0.16% 2.41% 2.54% 242.3 275.0 138.7 185.1

200x10 0.00% 0.49% 0.16% 0.65% 253.6 212.7 105.8 106.2

200x20 0.00% 1.42% 1.34% 2.78% 377.2 462.8 270.3 416.8

500x20 0.00% 4.06% 0.75% 4.85% 900.0 1112.2 737.4 1104.2

Table 4. The comparison of PSO-SA with PSO-L1 for benchmark instance classes.

The first pair of columns in Table 4 reports the comparison between the overall average

percentage deviations (Δc) from the best average; as it appears, PSO-SA outcomes are on the

average never worse than the PSO-LS ones for each class of instances and also the

Friedman’s test with 5% significance level confirmed the statistical significance of this result.

We must remark that we report here also the runs for the greatest instances with 500 jobs

even if for such cases the value of maximum fitness function evaluations adopted as

termination criterion turned out to be too restrictive: such value in fact allowed a too small

number of iterations to really appreciate the behaviour of the whole hybrid approach

(actually, we could consider the test for the 500x20 only a comparison between SA and LS).

Nevertheless, we verified the statistical significance of the results even excluding the 500x20

instances. The second pair of columns in Table 4 shows the overall average percentage

deviations (ΔBKc) of the average PSO-SA and PSO-LS results from the best know solutions

(BK) for the Taillard’s PSP benchmark (we suggest the readers interested to BK to refer to

Taillard’s web site where this set is maintained and updated). The third pair of columns

reports the total average CPU time needed by the compared algorithms to terminate,

whereas the last pair of columns the average CPU needed to find the best solution produced

in the runs (both values are in seconds). As we can observe, the differences among

computational times are not really significant for this benchmark.

We show in Table 5 the overall comparison between PSO-SA and PSO-LS for the

benchmark, including also the standard deviations.

www.intechopen.com

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics

21

 Avg vs Avg Avg vs BK CPU

 Δc Std ΔBKc Std Total For best

PSO-SA 0.01% 0.03% 0.59% 0.73% 200.5 121.4

PSO-LS 0.59% 1.14% 1.18% 1.47% 222.4 167.3

Table 5. The overall comparison of PSO-SA and PSO-LS algorithms.

Finally, we can comment that also in the case of a hybrid PSO based algorithm, the presence
of the SA search resulted apparently more effective than a LS one (we must recall that the LS
used here has also a VND flavour), due to its powerful intensification ability but specifically
to its attitude to smoothly diversify the exploration according to the reduction of the value
of the parameter T ruled by the cooling schedule.

5. Conclusions

In this chapter we illustrated how SA can be exploited to embed in two alternative
population-based metaheuristics a trajectory search component. Population-based
metaheuristics need intensification procedures as LS to reach peak performances for discrete
combinatorial problems. The effectiveness of using SA instead of LS to this end emerged
from the experimental tests reported in this chapter. We considered ACO and PSO and we
analysed the performance of the resulting hybrid algorithms on two scheduling problems
quite extensively faced in the literature, the STWTSDS and the PSP problems. However,
even different, the combinatorial structure of such problems is the same, as their relevant
solutions can be represented by permutations. Actually, we compared two “structurally”
similar trajectory methods, LS and SA: in particular we adopted a deterministic LS which
explores a combination of two neighbourhoods generated respectively by insert and swap
moves, with a VND fashion; similarly, the stochastic SA procedure at each iteration derives
the next candidate solution first randomly selecting between an insert and a swap move. In
other words we tried to use the same kind of ingredients in the two trajectory methods in
order to measure their relative strength. Hence the results that we showed allow to conclude
that the principles in SA can lead to superior solution improvement procedures than LS
when the same level of sophistication is used in both of them, without implying the
obviously wrong claim that “any” SA procedure is better than “any” LS.
Hybridization by combining a population-based algorithm, provided with memory,
learning and/or swarm intelligence mechanisms, with SA is a viable strategy to produce in
a simple way high quality metaheuristics. Therefore, we would recommend to consider also
this possibility when tackling complex combinatorial problems: the intensification (the
attitude of operating as a LS) and diversification (the attitude of not limit the search to a
confined region) features that are blended in SA in a dynamic fashion (ruled by the cooling
schedule) are certainly good ingredients for powerful hybrid methods.

6. References

Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys 35(3) (2003) 268–308

www.intechopen.com

 Simulated Annealing

22

Doerner, K.F.; Gendreau, M.; Greistorfer, P.; Gutjahr, W.; Hartl, R.F.; Reimann, M. (Eds.).
Metaheuristics - Progress in Complex Systems Optimization. Springer. Series:
Operations Research/Computer Science Interfaces Series , Vol. 39. 2007.

Raidl G.R. A unified view on hybrid metaheuristics. In Francisco Almeida et al., editors,
Proceedings of the Hybrid Metaheuristics Workshop, volume 4030 of LNCS, pages
1-12. Springer, 2006.

Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5) (2002) 541–565.
Dorigo M., Stutzle T. Ant Colony Optimization. MIT Press. 2004.
Anghinolfi D., Paolucci M. Parallel machine total tardiness scheduling with a new hybrid

metaheuristic approach. Computers & Operations Research, Volume 34, Issue 11,
November 2007, Pages 3471-3490

Liu B, Wang L, Jin Y-H. An effective hybrid PSO-based algorithm for flow shop scheduling
with limited buffers. Computers & Operations Research. 2008; 35: 2791-2806.

Qie He and Ling Wang. A hybrid particle swarm optimization with a feasibility-based rule
for constrained optimization. Applied Mathematics and Computation, Volume 186,
Issue 2, 15 March 2007, Pages 1407-1422.

Ling-lai Li, Ling Wang and Li-heng Liu. An effective hybrid PSOSA strategy for
optimization and its application to parameter estimation. Applied Mathematics and
Computation, Volume 179, Issue 1, 1 August 2006, Pages 135-146.

Ge, Hongwei Du, Wenli Qian, Feng A Hybrid Algorithm Based on Particle Swarm
Optimization and Simulated Annealing for Job Shop Scheduling. Proceedings of
ICNC 2007. Third International Conference on Natural Computation 2007. Volume:
3

Weijun Xia and Zhiming Wu. An effective hybrid optimization approach for multi-objective
flexible job-shop scheduling problems. Computers & Industrial Engineering,
Volume 48, Issue 2, March 2005, Pages 409-425

Nihan Çetin Demirel and M. Duran Toksarı. Optimization of the quadratic assignment
problem using an ant colony algorithm. Applied Mathematics and Computation,
Volume 183, Issue 1, 1 December 2006, Pages 427-435

Feng, Yuanjing; Feng, Zuren. Ant colony system hybridized with simulated annealing for
flow-shop scheduling problems. WSEAS Transactions on Business and
Econonomics. Vol. 1, no. 1, pp. 133-138. Jan. 2004.

Yogeswaran, M. Ponnambalam, S. G. Tiwari, M. K. An hybrid heuristic using genetic
algorithm and simulated annealing algorithm to solve machine loading problem in
FMS. Proc. of International Conference on Automation Science and Engineering,
2007. CASE 2007. IEEE On page(s): 182-187.

Lawler, E.L. (1997). A ‘pseudopolynomial’ algorithm for sequencing jobs to minimize total
tardiness. Annals of Discrete Mathematics, 1: 331–342.

Du, J. and Leung, J.Y-T. (1990). Minimizing total tardiness on one machine is NP-hard.
Mathematics of Operations Research, 15: 483–495.

Lee, Y.H., Bhaskaran, K. and Pinedo, M. (1997). A heuristic to minimize the total weighted
tardiness with sequence-dependent setups. IIE Transaction, 29: 45-52.

Cicirello, V.A. and Smith S.F. (2005). Enhancing stochastic search performance by value-
based randomization of heuristics. Journal of Heuristics, 11: 5–34.

www.intechopen.com

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics

23

Cicirello, V.A. (2003). Weighted tardiness scheduling with sequence-dependent setups: a
benchmark library. Technical Report, Intelligent Coordination and Logistics
Laboratory, Robotics Institute, Carnegie Mellon University, USA.

Liao C-J, Juan HC. An ant colony optimization for single-machine tardiness scheduling with
sequence-dependent setups. Computers & Operations Research 2007; 34; 1899-1909.

Cicirello VA. Non-Wrapping Order Crossover: An Order Preserving Crossover Operator
that Respects Absolute Position. In: Proceeding of GECCO’06 Conference, Seattle,
Washington, USA; 2006. p. 1125-1131.

Lin S-W, Ying K-C. Solving single-machine total weighted tardiness problems with
sequence-dependent setup times by meta-heuristics. The International Journal of
Advanced Manufacturing Technology 2006; Available online
(www.springerlink.com).

Anghinolfi D., Paolucci M., A new ant colony optimization approach for the single machine
total weighted tardiness scheduling problem, International Journal of Operations
Research, Vol. 5, No. 1, 44-60. 2008.

Anghinolfi D., Paolucci M., A new discrete particle swarm optimization approach for the
single-machine total weighted tardiness scheduling problem with sequence-
dependent setup times. European Journal of Operational Research (avaliable
online) 2007.

Johnson SM. Optimal two-and three-stage production schedules. Naval Research Logistics
Quarterly. 1954; 1: 61-68.

Garey MR, Johnson DS, Sethi R. The complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research. 1976; 1: 117-129.

Palmer DS. Sequencing jobs through a multistage process in the minimum total time: A
quick method of obtaining a near-optimum. Operational Research Quarterly. 1965;
16: 101-107.

Campbell HG, Dudek RA, Smith ML. A heuristic algorithm for the n job, m machine
sequencing problem. Management Science. 1970; 16(10): B630-B637.

Taillard E. Some efficient heuristic methods for the flowshop sequencing problems.
European Journal of Operational Research. 1990; 47: 65-74.

Ho JC, Chang Y-L. A new heuristic for the n-job, m-machine flow-shop problem. European
Journal of Operational Research. 1991; 52: 194-202.

Woo HS, Yim DS. A heuristic algorithm for mean flowtime objective in flowshop
scheduling. Computers and Operations Research. 1998; 25: 175-182.

Suliman SMA. A two-phase heuristic approach to the permutation flow-shop scheduling
problem. International Journal of Production Economics. 2000; 64: 143-152.

Osman I, Potts C. Simulated annealing for permutation flow shop scheduling. OMEGA.
1989; 17(6): 551-557.

Ishibuchi H, Misaki S, Tanaka H. Modified simulated annealing algorithms for the flow
shop sequencing problem. European Journal of Operational Research. 1995; 81: 388-
398.

Nowicki E, Smutnicki C. A fast tabu search algorithm for the permutation flowshop
problem. European Journal of Operational Research. 1996; 91: 160-175.

Grabowski J, Wodecki M. A very fast tabu search algorithm for the permutation flowshop
problem with makespan criterion. Computers and Operations Research. 2004;
31(11): 1891-1909.

www.intechopen.com

 Simulated Annealing

24

Reeves C. A genetic algorithm for flowshop sequencing. Computers and Operations
Research. 1995; 22(1): 5-13.

Ruiz R, Maroto C, Alcaraz J. Two new robust genetic algorithms for the flowshop
scheduling problem. OMEGA. 2006; 34: 461-476.

Rajendran C, Ziegler H. Ant-colony algorithms for permutation flowshop scheduling to
minimize makespan/total flowtime of jobs. European Journal of Operational
Research. 2004; 155(2): 426-438.

Liao C-J, Tseng C-T, Luarn P. A discrete version of particle swarm optimization for
flowshop scheduling problems. Computers & Operations Research. 2007; 34: 3099-
3111.

Lian Z, Gu X, Jiao B: A similar particle swarm optimization algorithm for job-shop
scheduling to minimize makespan. Applied Mathematics and Computation. 2006;
183: 1008-1017.

Tasgetiren MF, Liang Y-C, Sevkli M, Gencyilmaz G. A particle swarm optimization
algorithm for makespan and total flowtime minimization in the permutation
flowshop sequencing problem. European Journal of Operational Research. 2007;
177: 1930-1947.

Jarboui B, Ibrahim S, Siarry P, Rebai A. A combinatorial Particle Swarm Optimisation for
solving permutation flowshop problems. Computers & Industrial Engineering.
2007; doi: 10.1016/j.cie. 2007.09.006.

Dorigo, M. and Stützle, T. (2002). The ant colony optimization metaheuristics: algorithms,
applications and advances. In Handbooks of metaheuristics (Ed.: Glover, F. and
Kochenberger, G). Int. Series in Operations Research & Management Science,
Kluver, Dordrech, 57: 252-285.

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical
Computer Science, 344: 243-278.

Dorigo, M., Maniezzo, V. and Colorni, A. (1991). Positive feedback as a search strategy. Tech
Report 91-016. Dipartimento di Elettronica, Politecnico di Milano, Italy.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996). Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Systems, Man, Cybernet.-Part B, 26: 29-41.

 Dorigo, M. (1992). Optimization, learning and natural algorithms (in Italian). PhD
Thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy.

Sutton, R.S. and Barto, A.G. (1998). Reinforcement Learning: An Introduction. MIT Press,
Cambridge.

Kennedy, J. and Eberhart, R.C. (2001). Swarm Intelligence. Morgan Kaufmann Publishers.
Bullnheimer, B., Hartl, R.F. and Strauss, C. (1999). An improved ant system algorithm for the

vehicle routing problem. Annals of Operations Research, 89: 319-328.
Reinmann, M., Doerner, K. and Hartl, R.F. (2004). D-ants: savings based ants divide and

conquer the vehicle routing problems. Computers & Operations Research, 31(4):
563-591.

den Besten, M., Stützle, T. and Dorigo, M. (2000). Ant colony optimization for the total
weighted tardiness problem. Proceeding PPSN VI, Sixth International Conference
Parallel Problem Solving from Nature, Lecture Notes in Computer Science, Berlin,
Springer, 1917: 611–20.

www.intechopen.com

Simulated Annealing as an Intensification Component in Hybrid Population-Based Metaheuristics

25

Gagné, C., Price, W.L. and Gravel, M. (2002). Comparing an ACO algorithm with other
heuristics for the single machine scheduling problem with sequence-dependent
setup times. Journal of the Operational Research Society, 53: 895–906.

Ying, G.C. and Liao, C.J. (2004). Ant colony system for permutation flow-shop sequencing.
Computers & Operations Research, 31: 791–801.

Stützle, T. and Hoos, H.H. (2000). Max-min ant system. Future Generation Computer
System, 16: 889–914.

Dorigo, M. and Gambardella, L.M. (1997). Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1: 53–66.

Merkle, D. and Middendorf, M. (2000). An ant algorithm with a new pheromone evaluation
rule for total tardiness problems. Proceedings of the EvoWorkshops 2000, Springer
Verlag LNCS 1803: 287–296.

Merkle, D. and Middendorf, M. (2003). Ant Colony Optimization with Global Pheromone
Evaluation for Scheduling a Single Machine. Applied Intelligence, 18: 105–111.

Kennedy J, Eberhart R. Particle Swarm Optimization. Proceeding of the 1995 IEEE
International Conference on Neural Network 1995; 1942-1948.

Abraham A, Guo H, Liu H. Swarm Intelligence: Foundations, Perspectives and
Applications. In: Abraham A, Grosan C, Ramos V (Eds), Swarm Intelligence in Data
Mining, Studies in Computational Intelligence (series). Springer-Verlag: Berlin;
2006.

Clerc M, Kennedy J. The particle swarm: Explosion, stability, and convergence in a multi-
dimensional complex space. IEEE Transactions on Evolutionary Computation 2002;
6; 58-73.

Pang W, Wang KP, Zhou CG, Dong L-J. Fuzzy discrete particle swarm optimization for
solving traveling salesman problem. In: Proceedings of the 4th International
Conference on Computer and Information Technology. IEEE CS Press; 2004. p. 796
– 800.

Chen A, Yang G, Wu Z. Hybrid discrete particle swarm optimization algorithm for
capacitated vehicle routing problem. Journal of Zhejiang Univ. SCIENCE A 2006; 7:
607-614.

Tasgetiren MF, Sevkli M, Liang YC, Gencyilmaz G. Particle swarm optimization algorithm
for single machine total weighted tardiness problem. In: Proceedings of the IEEE
congress on evolutionary computation, vol.2. Portland; 2004. p. 1412–1419.

Liao C-J, Tseng C-T, Luarn P. A discrete version of particle swarm optimization for
flowshop scheduling problems. Computers & Operations Research 2007; 34; 3099-
3111.

Lian Z, Gu X, Jiao B. A similar particle swarm optimization algorithm for permutation
flowshop scheduling to minimize makespan. Applied Mathematics and
Computation 2006a; 175; 773-785.

Lian Z, Gu X, Jiao B. A similar particle swarm optimization algorithm for job-shop
scheduling to minimize makespan. Applied Mathematics and Computation 2006b;
183; 1008-1017.

Allahverdi A, Al-Anzi FS. A PSO and a Tabu search heuristics for the assembly scheduling
problem of the two-stage distributed database application. Computers &
Operations Research 2006; 33; 1056–1080.

www.intechopen.com

 Simulated Annealing

26

Parsopoulos KE, Vrahatis MN. Studying the Performance of Unified Particle Swarm
Optimization on the Single Machine Total Weighted Tardiness Problem, Lecture
Notes in Artificial Intelligence (LNAI) 2006; 4304; 760-769.

Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm. In:
Proceedings of the International Conference on Systems, Man, and Cybernetics,
vol.5. IEEE Press; 1997. p. 4104–4108.

Bean JC. Genetic algorithm and random keys for sequencing and optimization. ORSA
Journal on Computing 1994; 6; 154-160.

Hu X, Eberhart R, Shi Y. Swarm intelligence for permutation optimization: a case study of n-
queens problem. In: Proceedings of the 2003 IEEE Conference on Swarm
Intelligence Symposium (SIS '03). IEEE Press; 2003. p. 243-246.

Clerc M. Discrete Particle Swarm Optimization. In: Onwubolu GC, Babu BV (Eds), New
Optimization Techniques in Engineering. Springer-Verlag: Berlin; 2004; 219-240.

Kirkpatric S, Gelatt Jr. CD, Vecci MP. Optimization by simulated annealing. Science 1983;
220: 671-80.

Hansen P., Mladenovic N. Variable neighborhood search: Methods and recent applications.
In Proceedings of MIC’99, pages 275–280, 1999.

Taillard E., Few guidelines for analyzing methods. in Tutorial, 6th Metaheuristics Int. Conf.,
2005.

 Pinedo M. Scheduling: Theory, Algorithms, and Systems. Prentice Hall: Englewood
Cliffs, NJ; 1995.

Taillard E. Benchmarks for basic scheduling problems. European Journal of Operational
Research. 1993; 64: 278-285.

www.intechopen.com

Simulated Annealing

Edited by Cher Ming Tan

ISBN 978-953-7619-07-7

Hard cover, 420 pages

Publisher InTech

Published online 01, September, 2008

Published in print edition September, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book provides the readers with the knowledge of Simulated Annealing and its vast applications in the

various branches of engineering. We encourage readers to explore the application of Simulated Annealing in

their work for the task of optimization.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Davide Anghinolfi and Massimo Paolucci (2008). Simulated Annealing as an Intensification Component in

Hybrid Population-based Metaheuristics, Simulated Annealing, Cher Ming Tan (Ed.), ISBN: 978-953-7619-07-

7, InTech, Available from:

http://www.intechopen.com/books/simulated_annealing/simulated_annealing_as_an_intensification_componen

t_in_hybrid_population-based_metaheuristics

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

