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1. Introduction 

Evolutionary algorithms (EA) has often been proposed as a method for designing systems 
for real-world applications (Higuchi et al., 1999). Developing effective gaits for bipedal 
robots is a difficult task that requires optimization of many parameters in a highly irregular, 
multidimensional space. In recent years biologically inspired computation methods have 
been employed by several authors. For instance, Hornby et al. used genetic algorithms (GA) 
to generate robust gaits on the Aibo quadruped robot (Hornby et al., 2000). GA applied to 
bipedal locomotion was also proposed by Arakawa and Fukuda (Arakawa & Fukuda, 1996) 
who made a GA based on energy optimization in order to generate a natural, human-like 
bipedal gait. One of the main objections to applying EA’s in the search for gaits is the time 
consuming characteristic of these techniques due to the large fitness search space that is 
normally present. For this reason most approaches have been based on offline and simulator 
based searches. To reduce the time spent searching large search spaces with EA, various 
techniques for speeding up the algorithms have been presented. With the increased 
complexity evolution schema introduced by Torresen (Torresen, 1998), Torresen has shown 
how to increase the search speed by using a divide and conquer approach, by dividing the 
problem into subtasks in a character recognition system. Haddow and Tufte have also done 
experiments with reducing the genotype representation (Haddow & Tufte, 2000). Kalganova 
(Kalaganova, 2000) has shown how to increase the search speed by evolving incremental 
and bidirectional to achieve an overall complex behavior both for the complex system to the 
sub-system, and from the sub-system to the complex system. For an exhaustive description 
of other approaches readers may refer to Cantú-Paz (Cantú-Paz, 1998).  
The robot presented in this paper is a two-legged biped with binary operated pneumatic 
cylinders. The search space in our experiments was set up to describe the forward speed of 
the robot given the different gaits, and the goal was to find the most efficient gait with 
respect to speed. To enable efficient gaits the search space needed to be quite large as the 
accuracy of the pause lengths between the different leg positions is outmost critical, 
especially for gaits dominated by jumping movements. The focus has not been on evolving a 
balancing system as there have been no other sensory feedback than the forward position of 
the robot. The main goal for our work was to find a search algorithm fast enough to enable 
real-time gait generation/adaptation where the fitness is provided by the mechanical robot O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Bioinspiration and Robotics: Walking and Climbing Robots, Book edited by: Maki K. Habib
ISBN 978-3-902613-15-8, pp. 544, I-Tech, Vienna, Austria, EU, September 2007



Bioinspiration and Robotics: Walking and Climbing Robots 330

without the need for an offline simulator model. In real-time evolution, challenges like 
explosive pneumatic movements and vibrations, effects the feet-to-floor friction. This 
vibration makes the robot shoe soles occasionally slip during kick-off and make the system 
very unpredictable as the robot occasionally may stumble instead of jump even for 
seemingly optimal patterns. 

Figure 1. The two legged robot, “Henriette“ 

The search space in our experiments was set up to describe the forward speed of the robot 
given the different gaits, and the goal was to find the most efficient gait with respect to 
speed.

2. The Robot Hardware

The robot skeleton is made of aluminum and is provided with two identical legs. The height 
is 40 cm. Each leg is composed of an upper part (i.e. the thigh) connected through a 
cylindrical joint to the lower part (i.e. the calf). Pneumatic cylinders are attached to the thigh 
and the calf used for controlling the movements of the calf and the thigh separately. As 
shown in Fig. 1 and Fig. 3, the rear cylinder in each foot actuates the calf whereas the front 
cylinder actuates the thigh. The cylinders can either be fully compressed or fully extended 
(binary operation), and the pneumatic valves are located on top of the robot. The valves are 
electrically controlled by 4 power switches connected to a PC I/O card (National 
Instruments DAQ-pad) and the different searching algorithms are implemented in the 
programming language C++ on the PC. The pneumatic air pressure was set to 8 bar and 
provided by a stationary compressor. The robot was attached to a balancing rod at the top 
(Fig. 1 and Fig. 2) making the robot able to move in two dimensions. The other end of the 
rod was attached to a rotating clamp on a hub. The robot walks around the hub with a 
radius of 2 meter. In addition to being a balancing aid, the rod supplies the robot with air 
pressure and control signals from the DAQ-pad. The hub has a built in optical sensor 
representing the rod angle in 13 bit Gray code. 



Evolutionary Strategies Combined With Novel Binary Hill Climbing 
Used for Online Walking Pattern Generation in Two Legged Robot 331

3. Genetic Algorithm 

A genetic algorithm is based on representing a solution to the problem as a genome (or 
chromosome). The genetic algorithm then creates a population of solutions and applies 
genetic operators to evolve the solutions in order to find the best one(s). In the simple GA 
approach (Goldberg, 1989), (Torresen, 2004) the chromosomes are randomly initiated and 
the only genetic operators used are mutation and crossover. The selection process is done by 
roulette wheel selection. 

Figure 2. The entire system containing the robot, the balancing rod and the hub 

3.1 The Chromosome Coding 

In our experiments each gait is coded by a 30 bit chromosome. The chromosome represents 
three body positions each followed by a variable pause. A body position is composed of the 
positions of the 2 legs (4 cylinders) and represented by four bits (Fig. 3) each describing the 
status of the corresponding cylinder (compressed or extracted). A complete gait is then 
created by executing 3 body positions with 3 appropriate pauses in between. Each pause 
length is represented by 6 bits. The pause length is represented as a binary number 
corresponding to pauses from 50ms to 300ms. Various simulations have shown no GA 
search speed improvement by representing the pauses in Gray code. Two cylinders can 
move a single leg to 4 different positions. Two legs with four cylinders can hold 16 different 
positions, and three following positions with 6 bits pauses in between make a search space 

of 230 = 1 073 741 824 different gaits. Although the search space can be made slightly smaller 
by representing each gait by a cyclic coding (Parker, 2001) our experiments have shown no 
noticeable difference in search speed for cyclic/non cyclic coding for this robot. The size of 
this search space clearly requires a more efficient search algorithm than simple GA in order 
to enable real-time gait development in hardware.  

3.2 Pauses 

A gait is composed of leg positions and pauses. In our robot evolution we have found that 
the most efficient gaits with respect to forward speed are gaits dominated by jumping 



Bioinspiration and Robotics: Walking and Climbing Robots 332

movements. In a jumping movement the pause length between each leg kick is outmost 
critical as the robot may stumble if the timing of the leg kick is just slightly wrong. 
Measurements show that a pause length deviation in the magnitude of 20ms can make the 
difference between a relatively useless and a highly effective gait. It is however a trade-off 
between the desire to represent the pause lengths with a high number of bits and the 
exponential decrease in search speed for each extra bit used due to the increased size of the 
search space. 

Figure 3. The four leg positions 

Figure 4. Chromosome representation 1 

Figure 5. Chromosome representation 2 

4. Simulated Results 

To compare the efficiency of the different search algorithms against each other the robot was 
first simulated in software. 

4.1 The Simulator 

A simple mechanical chicken-robot simulator has been implemented in C++. This simulator 
models the robot with exact physical dimensions and a weight of 3 kg. The centre of gravity 
is located at the hip joint. It was found very difficult to model the feet-to-floor friction force 
exactly as this force is heavily modulated by large vibrations in the robot body and 
supporting rod during walking/jumping. The feet-to floor friction force is a very important 
factor for developing efficient jumping patterns and the lack of an exact model for this effect 
is assumed to be the main weakness of the simulator. The fitness of each chromosome (gait) 
is a function of the forward speed of the robot caused by the corresponding chromosome. 
Each gait is repeated 3 times in sequence to reduce the impact caused by the initial leg 
positions. A movement in the backward direction causes the fitness to be zero. 
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4.2 Search Space Topology 

The optimal search algorithm for a given problem depends heavily on the topology of the 
search space. For the chromosome coding described in chapter 3 and the chosen software 
robot model we have tried to get an overview of this topology by separating the search 
space in two parts, one part generated by the pause bits and one part generated by the leg 
position bits. Fig. 6 shows a plot of the fitness landscape for all possible leg positions in a 
single chromosome (gait) were all 3 pause lengths are fixed at 100ms. The size of this search 

space is 243 = 4096 leg positions. This plot indicates that the part of the overall search space 
generated by the leg positions is very chaotic although there may be some repetitive 
phenomena. A similar topology has been found for other choices of constant pause lengths. 
The different leg positions are sorted by the Gray value of their corresponding bits to keep 
the bit difference between neighboring chromosomes in the plot as low as possible, but even 
so the landscape is chaotic with many narrow peaks. In Fig. 7 the fitness landscape is plotted 
for different pause lengths where the leg positions are kept constant. To make the fitness 
landscape visually informative one of the 3 pause lengths are also kept constant at 70 ms 
resulting in a three dimensional plot. As this plot indicates the part of the overall fitness 
landscape generated by the pause lengths is smooth and will typically contain a few 
numbers of maxima. In this type of landscape a hill climbing search will normally be more 
efficient than a genetic algorithm. 

Figure 6. Plot of the fitness landscape generated by different body positions 

4.3 Simple GA/ES Simulations 

The focus for this real-time application has been to find a search algorithm capable of 
finding an optimal gait in less than 20 generations. The first search approach was to perform 

a search for an optimal chromosome (gait) in the global search space consisting of 230

different chromosome values. Simple and more advanced genetic algorithms were tested 
against different evolutionary strategies (ES) (Goldberg, 1989). ES’s showed to be favorable 
for this particular application. In all our simulations 5% noise is added to the fitness function 
to model practical effect such as variable foot friction, vibrations, variable air pressure and 
pause length deviations caused by non-ideal real-time behavior of the XP operating system. 
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Figure 7. Plot of the fitness landscape generated by different pause values 

An evolutionary strategy with roulette wheel selection, elitism, a population size of 10 
chromosomes, no crossover but with as high as 20% mutation probability for each bit was 
found to be the most effective. The high mutation probability indicates that the ES is 
struggling with the topology in this global search space. This result is not surprising as the 
global search space is assumed to be dominated by the chaotic and complex phenomena 
shown in the partial search space shown in Fig. 6. In Fig. 11 we see that ES produces slightly 
less than twice as effective gaits compared to a stochastic search after 15 generations. In all 
plots each graph shows the mean result from 1000 simulations with randomly initiated 
populations. 5 different graphs are shown to illustrate the consistency of the simulations. By
optimizing the simple GA with different types of selection models, parameter tuning and 
pause variation, the gaits still did not evolve fast enough for real time evolution.

4.4 The Incremental ES Approach 

The next approach was to evolve the partial search spaces shown in Fig. 6 and Fig. 7 
separately by an incremental evolutionary genetic algorithm. Incremental ES differs from 
regular ES and GA because the search space is divided into smaller parts and evolved 
separately (Torresen, 1998) ,(De Jong & Potter, 1995). By gradually evolving each task in 
series increased complexity can be achieved (Floreano & Mondada, 1998), (Arakawa & 
Fukuda, 1996). The first incremental approach was to first evaluate the leg position bits, 
with fixed pause lengths. After obtaining gaits with sufficient fitness the leg position bits are 
fixed and the pause bits are evolved separately. From Fig. 8 we see that this approach is not 
successful as the fitness is never found to be higher than the fitness provided by simple ES. 
Leg position bits are evolved up to generation 11 and pause bits are evolved from 
generation 12. The next incremental approach was to divide the search in to 7 increments. 
First the leg position bits were evolved, then the most significant pause bits were evolved, 
then the next most significant pause bits were evolved until the least significant pause bits 
were evolved in the last increment. Even this approach was not found to provide better 
results than simple ES. 
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4.5 The ESBH Algorithm 

The third and more successful incremental approach was to combine ES and binary hill 
climbing (BH) in the ESBH algorithm. From Fig. 7 we notice that the fitness landscape is 
smooth with few maxima. In a practical application disturbances will be added to this 
landscape due to variable foot friction, vibrations, variable air pressure and pause length 
deviations caused by non-ideal real time behavior of the operating system. However, the 
main characteristic of this landscape indicates that a hill climbing algorithm may be more 
efficient than a ES based search. In the ESBH algorithm the leg position bits are first evolved 
by evolutionary strategies up to generation 8. All pause length bits are fixed corresponding 
to pause lengths of 150 ms. 

Figure 8. Fitness development for simple ES and incremental ES 

In generation 8 ES have normally found a decent leg position pattern. From generation 9 all 

leg position bits (Cx
1C

x
2C

x
3C

x
4) are fixed. In generation 9 all possible combinations of the 

most significant pause length bits are tested (coarse search) where all other bits are kept 
fixed. With 3 pauses in a chromosome there are 8 possible combinations of the most 
significant pause bits to be tested. The chromosome with the highest fitness containing the 
most successful most significant pause bits is kept. 8 copies of this chromosome are then 
made forming generation 10. In generation 10 all combinations of the next most significant 
pause bits are tested keeping the other bits fixed. The chromosome with the highest fitness 
containing the most successful next most significant pause bits are then kept. 8 copies of this 
chromosome are then made forming generation 11 and so on until the least significant pause 
bits are found in generation 14. The search is then terminated. In this way the search space 
given by pause lengths is searched in a coarse to fine sequence. 
To fully understand the operation of the binary hill climbing algorithm one may look at a 
simplification where the pause in gene 3 is kept constant and the algorithm is applied only 

to the pauses in gene no.1 and gene no.2. When the pause bits P1
1and P1

2 are varied and the 

rest of the pause bits are fixed at 0, there are 4 different pause combinations. This is 
illustrated in Fig. 10 where the four corners of the largest square represent all four pause 
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combinations. Suppose that the algorithm evaluate the fitness of all 4 corners in the largest 

square and selects the combination P1
1 = 1 and P1

2 = 0. In the figure this is illustrated by 

point A. When P1
1 = 1 and P1

2 = 0 and the pause bits P2
1 and P2

2 are varied where the rest of 

the pause bits are fixed at 0, there are 4 new pause combinations illustrated by the four 
corners of the next largest square in the figure. Suppose that the algorithm evaluate the 

fitness of all these 4 corners and selects the combination P1
1= 1, P1

2 = 0 and P2
1 = 1, P2

2 = 1. In 

the figure this is illustrated by point B. By proceeding with less significant pause bits the 
algorithm continues to evaluate new squares where each side is half the size of the previous, 
hence the name "binary hill climbing". In Fig. 11 the ESBH algorithm is compared to simple 
ES and stochastic search.  

Figure 9. The ESBH algorithm 

Figure 10. An incremental approach 
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Figure 11. Fitness developments for the different approaches 

As each graph represents the average fitness development over 1000 simulations, we see 
that the ESBH algorithm is in average superior to the others in this application where the 
focus is fast learning in less than 20 generations. A possible objection to the proposed ESBH 
algorithm is that heavy noise in the fitness calculations may cause the algorithm to derail 
and search in a non optimal region of the search space. To make the algorithm more robust 
an improvement could therefore be to let the algorithm run each increment over more than 
1 generation and select the optimal chromosome based on fitness averaging.

4.6 Gaits Obtained 

The gaits obtained can be divided into three categories, two sub optimal gaits and one 
optimal gait. In Fig. 12-14 these gaits are illustrated. The optimal gaits were based on 
synchronous jumping where both legs are kicking at the same time. By kicking both feet at 
the same time the most power was available causing the longest jumps. Other suboptimal 
gaits were based on one-leg jumping or asymmetric jumping where one foot was slightly 
delayed with respect to the other. 

Figure 12.  Illustration of a suboptimal gait based on asymmetric jumping. It is similar to the 
fastest horse gait called gallop 

Figure 13. Illustration of a suboptimal gait based on every other one-leg jumping, similar to 
the movements made in the sport pole vault 
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Figure 14. Illustration of the optimal gaits based on jumping. This is the most efficient gait 
obtained, but in real life this gait has many drawbacks. E.g. the slippery effect in the floor to 
feet friction when the robot kicks hard 

5. Practical Challenges 

This section focuses on some of the practical challenges that arose while evolving directly on 
the robot. The first challenge was the foundation and floor in the laboratory. The floor was 
too hard for optimal robotic gait evolution and when the robot was expected to jump, it 
slipped. The robot became worn, due to the hard foundation and vibrations in the balance 
rod. As a solution, the robot was provided with rubber shoes, illustrated in Fig. 15.  

Figure 15. The rubber shoes 

The result was less tear and rod vibrations. Furthermore, the robot began  to walk more 
springier, and started to evolve more efficient gaits based on jumping. The jumping-based 
gaits turned out to be the most effective. Due to sound propagation, a carpet was needed as 
a base underneath the robot. The carpet resulted in less noise, but again the slippery effect 
became an issue. This problem was solved by pasting sand paper underneath the rubber 
shoes. Other contributing factors were variations in the air pressure that influenced the 
performance and the real time qualities. The floor in the laboratory has a slight incline, 
resulting in a small variety in the fitness measure when evolving on the robot. These 
descriptions are some of the problems faced when evolving gaits on a real robot. 

6. Measured Results 

The ESBH algorithm has been tested on the pneumatic robot in an attempt to verify the 
theory. It was found very difficult to verify the theory accurately due to various practical 
side effects. One major problem was time consumption and mechanical wear out, 
particularly of the sandpaper shoe sole which affected the system significantly. When the 
robot moved, the whole system was vibrating heavily due to the quick contraction/ 
expansion movement of the pneumatic pistons. In Fig. 16 two typical fitness developments 
are shown for the ESBH algorithm. In these examples the binary hill climbing starting point 
was set to the 7th generation. From the measurements we notice an improvement in fitness 
after this point. However, the algorithm was found to produce proper gaits in less than 10 
generations in almost all our experiments. From these few measurements it is difficult to 
conclude that the algorithm is working significantly better than simple GA in real life. The 



Evolutionary Strategies Combined With Novel Binary Hill Climbing 
Used for Online Walking Pattern Generation in Two Legged Robot 339

only conclusion one can make so far from these measurements is that the algorithm itself is 
working quite well in this very noisy environment. 

Figure 16. Measured fitness development for the ESBH algorithm 

7. Conclusion 

In this chapter an incremental search algorithm combining ES and binary hill climbing has 
been presented. The ESBH algorithm is compared to simple GA and ES, and stochastic 
search. We see that the ESBH algorithm is in average superior to the other approaches in 
this application where the focus is fast learning in less than 20 generations. A possible 
objection to the proposed ESBH algorithm is that heavy noise in the fitness calculations may 
cause the algorithm to derail and search in a non optimal region of the search space. 
Although various simulations has shown that the ESBH algorithm develop proper gaits 
significantly faster than standard GA/ES based algorithms, practical side effects in a 
physical environment, such as highly unpredictable shoe sole friction due to vibrations, 
varying pneumatic air pressure and wear out makes it difficult to prove that this algorithm 
is better than standard GA based algorithms. The algorithm itself, on the other hand was 
found to perform quite well in a very noisy environment. 

8. Further Work 

A possible improvement for future work could be to incorporate an “a priori knowledge 
library” of good patterns earlier evolved. One of the drawbacks in genetic algorithms and 
related programming methods are the possibility to end up in local optima without finding 
optima with higher fitness. A possible way to expand this work would have been to make a 
library of chromosomes that have been found favorable. If the ES gets stuck in local optima 
with low fitness, new chromosomes from the library could have replaced some of the 
chromosomes in the population. This routine can be a "control method" that runs in the 
background replacing individuals if the mean fitness does not exceed a certain level. There 
are great opportunities to further develop the ESBH algorithm as well. It could last for more 
generations by representing the pauses with more bits. This would of course make the 
search space larger as well.  
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