We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

Open access books available International authors and editors Downloads

Countries delivered to TOP 1% Contributors from top 500 universities

Our authors are among the most cited scientists

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

1.1. Classification of solutes, pollutants and subsurface pollution

Solute transport is of importance in view of the movement of nutrient elements, e.g., towards the plant root system, and because of a broad range of pollutants. Pollution of the subsurface is often considered to be either point source pollution or diffuse source pollution. Point source pollution covers a limited area, and is often caused by accidental (or illegal) spills (e.g., leaking pipes, tanks, mine tailings, etc.). Diffuse source pollution covers a large area and is in general caused by large-scale application of both beneficial and hazardous compounds at the soil surface (manure and fertilizer, pesticides, atmospheric deposition of acids and radio nuclides, etc.). Pollution is not necessarily man induced, but may be due to geological or geohydrological causes, e.g., in the cases of pollution with arsenic, and salt.

For the polluting species, a distinction can be made between dissolved and immiscible, and between conservative and reactive. Dissolved pollutants (aqueous phase pollutants) will spread with the groundwater due to groundwater flow, diffusion and dispersion. Immiscible pollutants will spread as a separate phase (non-aqueous phase liquids, NAPL). They will contain components with very low solubility in the water phase. They constitute a long-term source for pollution.

Conservative pollutants are those that do not react with the solid soil material, do not react with other pollutants and will not be degraded by biological activity. Reactive solutes may enter or leave the water phase through adsorption/desorption, chemical reactions, dissolution/precipitation and/or biodegradation.

1.2. Some basic definitions

Advection: the spreading of a pollutant by groundwater flow.
Diffusion: the spreading of a species dissolved in the water phase by the Brownian motion of the ions (molecules).

Dispersion: the spreading of a species dissolved in the water phase by local variations in the water velocity.

Adsorption/desorption: interaction of species dissolved in the water phase with the solid matrix. This process can be physically based or chemically based, reversible or irreversible.

Chemical reactions: reactions of species dissolved in the water phase with other species, resulting in the occurrence of different species altogether.

Biodegradation: the degradation of species dissolved in the water phase by bacteria.

Radioactive decay: the degradation of species by radioactivity.

Concentrations of species in the water phase \(C_i \) (including pure water itself) are defined as the mass of the species per unit volume: \(\text{kg/m}^3, \text{g/l}, \text{mg/l}, \text{etc.} \).

The density of a multi-component fluid, consisting of \(N \) components, is then given as:

\[
\rho = \sum_{i=1}^{N} C_i \tag{1}
\]

Mass fractions \(\omega \) of the components (mass per unit of mass: \(\text{kg/kg}, \text{g/g}, \text{etc.} \)) are defined as:

\[
\omega_i = \frac{C_i}{\rho} \quad \text{such that} \sum_{i=1}^{N} \omega_i = 1 \tag{2}
\]

For dilute solutions (tracer concentrations) all mass fractions \(\omega_i \ll 1 \), except for the pure water. This means that the density of the fluid is close to the density of pure water, and can be assumed to be constant.

Water density is a function of pressure, temperature and composition. This last dependence is only important at high concentrations. E.g. in case of seawater intrusion, or in deep saline aquifers which are sometimes used to store waste or to produce energy. In these deep aquifers salt concentrations can be as high as 300 g/l, resulting in a water density of 1200 g/l (giving a salt mass fraction of 0.25). Water density fluctuations will also play a role in the subsurface storage of heat.

Water viscosity is a function of pressure, temperature and composition. This influences the hydraulic conductivity (see next section). The dependence on the temperature is by far the most important. Hence, this dependence must be taken into account in the analysis of subsurface storage of heat.
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un-changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
C_{i+1}^n = C_{i}^{n} + \frac{D_i}{2} (C_{i+1}^{n} - C_{i-1}^{n}) - \frac{D_i}{2} \frac{C_{i+1}^{n} - C_{i-1}^{n}}{x_i} \Delta t
\]
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un-changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

\[\frac{C_{i+1}^n - C_{i-1}^n}{2D} = \frac{C_{i+1}^{n-1} - 2C_i^n + C_{i-1}^{n+1}}{D} \]

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[C_{i+1}^n - C_{i-1}^n \]

\[+ \frac{C_{i+1}^{n-1} - 2C_i^n + C_{i-1}^{n+1}}{D} \]

Solute Transport in Soil

http://dx.doi.org/10.5772/54557
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
\frac{C_i^{n+1} - C_i^n}{\Delta t} = D_n \frac{C_i^{n+1} - C_i^{n-1}}{2\Delta x} - D_s \frac{C_i^{n+1} - C_i^{n+1}}{2\Delta y} + \frac{Q_i}{k} \left(C_i^{n+1} - C_{i+1}^{n+1} \right)
\]

(125)

Solute Transport in Soil

http://dx.doi.org/10.5772/54557

79
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
C_{i+1} - C_{i} = \left[\frac{1}{2} \left(C_{i+1} - C_{i} \right) \right] \Delta x + \frac{D}{\Delta t} \nabla^2 C_i
\]

(125)

Solute Transport in Soil

http://dx.doi.org/10.5772/54557
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
C_{i+1} = C_{i} + D_{i} (C_{i} - C_{i-1}) + D_{i+1} (C_{i+1} - C_{i}) + \frac{D_{i} D_{i+1}}{D_{i+1} - D_{i}} (C_{i+1} - C_{i})
\]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
\frac{C_{i-1} - C_{i+1}}{2Dt} = \frac{C_{i+1} - C_{i-1}}{2Dt} - \frac{C_{i+1} - C_{i-1}}{2Dt} + \frac{C_{i+1} - C_{i-1}}{2Dt}
\]
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
C_{i}^{n+1} = C_{i}^{n} + \frac{D}{\Delta t} \left(C_{i+1}^{n} - C_{i-1}^{n} \right) - \frac{C_{i}^{n}}{\Delta x} \left(C_{i}^{n} - C_{i+1}^{n} \right)
\]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
\frac{C_i^{n+1} - C_i^n}{\Delta t} + \frac{(C_{i+1}^{n+1} - C_{i-1}^{n+1})}{2\Delta x} = D \frac{C_i^{n+1} - 2C_i^n + C_{i-1}^{n+1}}{\Delta x^2}
\]

(125)

Solute Transport in Soil
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$C_n + C_{n+1} + C_{n-1} - C_n = D_n C_{n+1} - D_{n-1} C_{n-1}$$

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and unchanged policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
\begin{align*}
C(i+1, n) &= C(i, n) + D(\frac{C(i, n) - C(i-1, n)}{x} - \frac{C(i, n) - C(i, n-1)}{Dt}) + D(\frac{C(i, n) - C(i, n)}{x} - \frac{C(i, n) - C(i, n-1)}{Dt})
\end{align*}
\]
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
\frac{C(x_i, t_{n+1}) - C(x_{i-1}, t_n)}{D_i} - \frac{C(x_i, t_{n+1}) - C(x_{i+1}, t_n)}{D_i} = D_i \frac{C(x_{i-1}, t_{n+1}) - C(x_{i-1}, t_n)}{D_i}
\]
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$\frac{C_{i+1}^n - C_i^n}{\Delta t} + \frac{C_{i+1}^{n+1} - C_{i-1}^{n+1}}{2\Delta x} + \frac{D_{i+1}^{n+1} - D_i^{n+1}}{\Delta t} = 0$$

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un-changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
\frac{C_{i}^{n+2} - 2C_{i}^{n+1} + C_{i}^{n}}{2Dt} + \frac{C_{i}^{n+1} - C_{i}^{n-1}}{2x} = D_{i}^{n+1} - D_{i}^{n-1}.
\]

(S125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
C_i^{n+1} = C_i^n + \frac{D}{2} \left(\frac{C_{i+1}^{n} - C_{i-1}^{n}}{2\Delta x} \right) \Delta t
\]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un-changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[\frac{C_i^{n+1} - C_i^n}{\Delta t} = \frac{C_{i+1}^n - C_{i-1}^n}{2\Delta x} \]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
\frac{C_{i+1} - C_i}{Dt} = D \frac{C_{i+1} - 2C_i + C_{i-1}}{x^2},
\]

where \(C \) is the solute concentration, \(Dt \) is the time step, and \(D \) is the dispersion coefficient.
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
C_{i+1} - C_i = -D_{i+1/2} - D_{i-1/2} \frac{\Delta t}{\Delta x} \left(C_{i+1} + C_{i-1} \right)
\]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and unchanged policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
C_i^{n+1} = C_i^n + D \left(C_i^{n+1} - C_{i-1}^{n+1} \right) + D \left(C_{i+1}^{n+1} - C_i^{n+1} \right) + D \left(C_{i+1}^{n} - C_i^{n} \right) + D \left(C_i^{n} - C_{i-1}^{n} \right)
\]

\[
= C_i^{n} + D \left(C_i^{n+1} - C_{i-1}^{n+1} \right) + D \left(C_{i+1}^{n} - C_i^{n} \right)
\]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$\frac{C_i^{n+1} - C_i^n}{\Delta t} = D \frac{C_{i+1}^n - 2C_i^n + C_{i-1}^n}{\Delta x^2}$$

Equation (125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling.

Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
\frac{C_{i+1}^n - C_{i-1}^n}{2D} + \frac{C_{i+1}^{n-1} - C_{i-1}^{n-1}}{2Dt} = \frac{C_{i+1}^{n-1} - 2C_i^n + C_{i-1}^{n-1}}{D}
\]

(1.25)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$C_i^{n+1} = C_i^n + D_i^{n+1} - D_i^n$$

Equation (125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un—changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$
\frac{C_{i+1}^{n+1} - C_{i}^{n}}{\Delta t} + \frac{C_{i+1}^{n} - C_{i}^{n}}{\Delta x} = D \left(\frac{C_{i+1}^{n} - 2C_{i}^{n} + C_{i-1}^{n}}{\Delta x^2} \right)
$$

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un-...
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un-changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
C_{i+1} - C_{i-1} = \frac{D}{Dt} (C_{i+1} + C_{i-1}) - 2C_i
\]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un-changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$C_{i+1} = C_i - \frac{D}{2} \left(\frac{C_{i+1} - C_{i-1}}{2 \Delta x} \right)$$

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un- changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$C_i^{n+1} = C_i^n - \frac{D}{2} \left(\frac{C_{i+1}^n - C_{i-1}^n}{2\Delta x} - \frac{C_{i+1}^n - C_{i-1}^n}{2\Delta t} \right)$$

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and unchanged policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$\frac{C_{i+1} - C_i}{Dt} + \frac{C_{i+2} - C_{i-1}}{2Dt} = D \left(\frac{C_{i+1} - 2C_i + C_{i-1}}{Dx^2} \right)$$

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[u_{i+1} = u_i + \frac{1}{2} \left(\frac{a_{i+1} - a_i}{\Delta x} \right) (u_{i+1} - u_i) \]

\[= u_i + \frac{1}{2} \left(\frac{a_{i+1} - a_i}{\Delta x} \right) u_{i+1} - \frac{1}{2} \left(\frac{a_{i+1} - a_i}{\Delta x} \right) u_i \]

\[= \frac{1}{2} \left(\frac{a_{i+1} + a_i}{\Delta x} \right) u_{i+1} + \frac{1}{2} \left(\frac{a_{i+1} + a_i}{\Delta x} \right) u_i \]

\[= \frac{1}{2} \left(\frac{a_{i+1} + a_i}{\Delta x} \right) (u_{i+1} + u_i) \]

\[\text{Equation 125} \]
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un- changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[\frac{C_i^{n+1} - C_i^n}{\Delta t} + \frac{C_{i+1}^{n+1} - C_{i-1}^{n+1}}{2 \Delta x} = D \frac{C_{i+1}^{n} - 2C_i^{n} + C_{i-1}^{n}}{\Delta x^2} \]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and unchanged policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[C_{i+1}^n - C_{i}^n = \frac{D}{Dt} \left(C_{i+1}^n - C_{i}^n \right) \]

where \(C \) is the concentration, \(D \) is the dispersion coefficient, \(Dt \) is the time step, and \(x \) is the spatial coordinate.

\[C_{i+1}^n = C_{i}^n + \frac{D}{Dt} \left(C_{i+1}^n - C_{i}^n \right) \]

This equation is the explicit finite difference approximation for the 1-dimensional solute transport equation.
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
C_{i+1} - C_{i-1} + D_{i+1} - D_{i-1} = \frac{C}{\Delta t} \left(x_{i+1} - x_{i-1} \right)
\]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
C_{i+1} - C_{i-1} = \frac{D}{2} \left(\frac{C_{i+1} - C_{i}}{x} \right) - \frac{C_{i+1} - C_{i-1}}{2D} \cdot \Delta t
\]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling.

Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐ changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
C_{i+1}^n - C_i^n + D_{i+1}^n - D_i^n = D_{i+1}^n - D_i^n - D_{i+1}^n - D_i^n + D_{i+1}^n - D_i^n + D_{i+1}^n - D_i^n
\]
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and unchanged policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$C_{i+1} + D_{i+1} - C_{i-1} - D_{i-1} = CV_{i} DT$$

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
\frac{C_i^{n+1} - C_i^n}{\Delta t} = \frac{1}{2} \left(\frac{C_{i+1}^n - C_{i-1}^n}{2 \Delta x} \right) + D \frac{C_i^{n+1} - 2C_i^n + C_i^{n-1}}{\Delta x^2}
\] \tag{125}

Solute Transport in Soil

http://dx.doi.org/10.5772/54557
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$C_i^{n+1} = C_i^n - \frac{D_t}{\Delta x} \left(C_{i+1}^n - C_{i-1}^n \right) + \frac{D_t}{\Delta x} \left(C_{i+1}^{n+1} - C_{i-1}^{n+1} \right)$$

(125)

Solute Transport in Soil

http://dx.doi.org/10.5772/54557
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[C_{i+1} = C_i - \frac{C_i - C_{i-1}}{x_i} \Delta t \]
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[\frac{C_i^n - C_i^{n-1}}{\Delta t} = \frac{C_{i+1}^n - C_{i-1}^n}{2\Delta x} \]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un-changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$\frac{C_{i+1}^n - C_i^n}{\Delta t} = \frac{C_i^n - C_{i-1}^n}{\Delta x}$$

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
\frac{S_{t+\Delta t} - S_{t}}{\Delta t} = \frac{D}{\Delta x^2} \left(S_{t}^{(1)} - 2S_{t} + S_{t}^{(2)} \right)
\]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$\frac{C_i^{n+1} - C_i^n}{\Delta t} = \frac{C_{i+1}^{n+1} - C_{i-1}^{n+1}}{2\Delta x}$$

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[C_{i+1} - C_{i-1} = \frac{D}{2} \frac{C_i}{\Delta t} \]

(125)

Solute Transport in Soil

http://dx.doi.org/10.5772/54557

79
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un-changed policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling. Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and un‐ altered policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

\[
\frac{C_{i}^{n+1} - C_{i}^{n}}{\Delta t} = \frac{1}{2} \left(\frac{C_{i+1}^{n} - C_{i}^{n}}{\Delta x} \right) - \frac{1}{2} \left(\frac{C_{i}^{n} - C_{i-1}^{n}}{\Delta x} \right)
\]

(125)
modelling. For instance, the stochastic theory for water flow and solute transport resulted in equations for the macro dispersivities. However, these dispersivities do not necessarily represent real mixing. Briefly, this issue is discussed by both Janssen et al. (2006) and Eeman et al. (2012).

Whereas conventional solute transport often considered only one scale of heterogeneity (the grain or soil sample scale), the stochastic approach addressed so far mainly two scales, the microscopic and one larger scale, the last characterized by statistics of macroscopic properties such as the hydraulic conductivity or the retardation factor. In reality, we have to deal with a whole hierarchy of scales, from grain, to sample, horizon/layer, geological strata, to watershed. Comprehensive theory cannot address all these scales in a simple theory, so it considers those that are deemed most important.

Scientifically, further advances are being made. Whereas the mentioned work in section 7 particularly addresses spatial variability, in the research on transport of tracers and reactive solutes in soil and groundwater, also the variability in time is getting more interest. A prominent example in this respect has been that since 2000, eco-hydrological theory has been added to the spectrum, that emphasizes variability as a function of time, particularly through atmospheric forcing: rainfall varies erratically as a function of time (Rodriguez-Iturbe and Porporato, 2004, Vervoort and Van der Zee, 2008). In near future, these developments of, on one side, spatial, and on the other side temporal variability, will be no doubt combined.

In soil and groundwater management, modelling as discussed in this chapter is essential to prioritize decision making. Recently, a paper considered policy making in the Netherlands (Witte et al., 2012), and was quite influential nationally and internationally. This paper emphasized local variations of several conditions that affect the fate of factors that influence ecological impacts. It is a clear example of the potential and limitations of transport modelling.

Meanwhile, throughout the world, this type of modelling is central in risk assessments of soil and groundwater contamination, in dimensioning soil and groundwater remediation, and in evaluations of how policy decisions work out in practice for the cases of changed and unchanged policies. For these reasons, awareness and in some cases experience, with models as described in this chapter, is important.

Appendix A: Stability analysis of explicit finite difference transport equation

Consider the explicit finite difference approximation of the 1-dimensional solute transport equation, where the advective term has been approximated by a central difference:

$$\frac{C_i^0 - C_i^0}{\Delta t} + \frac{\nu}{2\Delta x}(C_{i+1}^0 - C_{i-1}^0) - D\frac{2C_i^0 - C_{i+1}^0 - C_{i-1}^0}{(\Delta x)^2} = 0$$

(125)
Collecting terms, this can be rewritten as:

\[C_i^n = \left(1 - \frac{2D\Delta t}{(\Delta x)^2} \right) C_i^o + \left(\frac{\nu\Delta t}{2\Delta x} \right) C_{i-1}^o + \left(-\frac{\nu\Delta t}{2\Delta x} \right) C_{i+1}^o = \]

\[(1 - \beta_1)C_i^o + \left(\beta_1 + \frac{\beta_2}{2} \right) C_{i-1}^o + \left(-\beta_1 + \frac{\beta_2}{2} \right) C_{i+1}^o \]

where:

\[\beta_1 = \frac{\nu\Delta t}{2\Delta x}, \quad \beta_2 = \frac{2D\Delta t}{(\Delta x)^2} \]

Now assume that at a certain time a small error \(\epsilon \) (perturbation) is introduced in the solution to the equations. That can e.g. be caused by roundoff errors in a computer calculation. If we indicate the “correct” solution with \(C__ \), substitution of the perturbed solution \(C \) in the finite differenced equation (126) leads to:

\[C_i^n + \epsilon_i^n = (1 - \beta_2)C_i^o + \left(\beta_1 + \frac{\beta_2}{2} \right) C_{i-1}^o + \left(-\beta_1 + \frac{\beta_2}{2} \right) C_{i+1}^o \]

\[(1 - \beta_2)\epsilon_i^o + \left(\beta_1 + \frac{\beta_2}{2} \right) \epsilon_{i-1}^o + \left(-\beta_1 + \frac{\beta_2}{2} \right) \epsilon_{i+1}^o \]

Since the correct solution \(C \) obeys equation (126), we obtain the following equation for the perturbation \(\epsilon \):

\[\epsilon_i^n = (1 - \beta_2)\epsilon_i^o + \left(\beta_1 + \frac{\beta_2}{2} \right) \epsilon_{i-1}^o + \left(-\beta_1 + \frac{\beta_2}{2} \right) \epsilon_{i+1}^o \]

The fact that the perturbation \(\epsilon \) is given by the same equation as the correct value of \(C \) is caused by the fact that the equation in \(C \) is a linear one.

Now consider one Fourier component of the perturbation given by:

\[\epsilon_i = \lambda e^{i\omega x} \]
where ω is the wavenumber, and λ the time dependent amplification factor. In order to have a stable solution, we will require that any perturbation ϵ in the solution will decrease with time for any wave number. Basically this means that λ will decrease with time.

Substitution of (130) in (129) gives:

$$
\lambda^n e^{i\omega x} = (1 - \beta_2)\lambda^n e^{i\omega x} + \left(\beta_1 + \frac{\beta_2}{2}\right)\lambda^o e^{i\omega(x+\Delta x)} + \left(-\beta_1 + \frac{\beta_2}{2}\right)\lambda^o e^{i\omega(x+\Delta x)}
$$

(131)

Division by $\lambda^n e^{i\omega x}$ then gives:

$$
\frac{\lambda^n}{\lambda^o} = (1 - \beta_2) + \left(\beta_1 + \frac{\beta_2}{2}\right)e^{-i\omega\Delta x} + \left(-\beta_1 + \frac{\beta_2}{2}\right)e^{i\omega\Delta x} = 1 - \beta_2 - \beta_1 \left(e^{i\omega\Delta x} - e^{-i\omega\Delta x}\right) + \frac{\beta_2}{2} \left(e^{i\omega\Delta x} + e^{-i\omega\Delta x}\right)
$$

(132)

Now we will use the following relations:

$$
e^{i\omega\Delta x} - e^{-i\omega\Delta x} = 2i \sin(\omega\Delta x)
$$

$$
e^{i\omega\Delta x} + e^{-i\omega\Delta x} = 2 \cos(\omega\Delta x)
$$

(133)

Substitution in equation (132) then leads to:

$$
\frac{\lambda^n}{\lambda^o} = 1 - \beta_2 - 2\beta_1 i \sin(\omega\Delta x) + \beta_2 \cos(\omega\Delta x) = 1 - \beta_2 \left(1 - \cos(\omega\Delta x)\right) - 2\beta_1 i \sin(\omega\Delta x) = 1 - 2\beta_2 \sin^2\left(\frac{\omega\Delta x}{2}\right) - 2\beta_1 i \sin(\omega\Delta x)
$$

(134)

If we now take the absolute value, and substitute for shorthand $\theta=\omega\Delta x$, the following relation is obtained:

$$
\left|\frac{\lambda^n}{\lambda^o}\right| = \left(1 - 2\beta_2 \sin^2\frac{\theta}{2}\right)^2 + 4\beta_1^2 \sin^2\theta
$$

(135)

From well known goniometric relations:
Substitution in equation (135) gives, after rearranging terms:

\[
\frac{\lambda^n}{\lambda^o} = 1 - \left(4\beta_2 - 16\beta_1^2\right)\sin^2 \frac{\theta}{2} + \left(4\beta_2^2 - 16\beta_1^2\right)\sin^4 \frac{\theta}{2}
\]

(137)

In order to have a stable solution, the absolute value of the ratio of \(\lambda^n/\lambda^o\) should be <1. Bearing in mind that both \(\sin^2\) and \(\sin^4\) are always positive, it is sufficient to require that:

\[
4\beta_2 - 16\beta_1^2 > 0 \quad 4\beta_2^2 - 16\beta_1^2 > 0
\]

(138)

The second relation in (138) can be written as:

\[
\beta_2 < 1 \quad \text{or} \quad \Delta t < \frac{(\Delta x)^2}{2D}
\]

(139)

and the first relation as:

\[
\beta_2 > 4\beta_1^2 \quad \text{or} \quad \Delta t < \frac{2D}{v^2}
\]

(140)

Note, that in order to obtain a stable solution, both requirements (A-15) and (A-16) need to be fulfilled.

Acknowledgements

We are grateful for funding by the Dutch research program Knowledge for Climate (themes 2 and 3), Stichting Retourschip in Wassenaar (Netherlands) and the EU project SoilCAM (Topic ENV.2007.3.1.2.2, grant nr. 212663).
Author details

S.E.A.T.M. van der Zee and A. Leijnse

Wageningen University, Environmental Sciences, Wageningen, Netherlands

References

