We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,800 Open access books available
116,000 International authors and editors
120M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

In recent years, the development of crystalline porous materials based on metal chalcogenides attracts scientific attention for their adjustable porous structures and potential applications in technology. In contrast to oxygen, for which only the di- and tri-nuclear homopolyatomic anions, i.e. O_2^2-, O_3^- and O_3^{2-}, are known in zeolite frameworks, the characteristic strong tendency of sulfur and the other elements of Group 16 is reflected in the wide range of polychalcogenide ions X_n^{2-} ($\text{X} = \text{S, Se, Te}$). The polychalcogenide X_n^{2-} are easily isolated as salts from polar solvents in the presence of suitable counter cations. [1] The choice of sulfides has many obvious advantages in the crystallization chemistry:[2] (a) In comparison with oxide and fluoride ions, the S^{2-} ion has a much larger ionic radius, which favors the tetrahedral coordination with cations and allows the discovery of sulfide homologues of zeolites. (b) The higher polar ability of the S^{2-} ion shows more flexibility for the structure of tetrahedra angles. For example, the tetrahedra T-S-T angle ranges from 109°–161°. But the range of angle for tetrahedra T-O-T is 140°–145°. ($\text{T} =$ tetrahedra metal atom, such as In). Obviously, the frameworks with higher flexibility will have better ability to accommodate various shapes of the templates, and the arrangement of tetrahedral units in the dense matter can remain their original architectures.

Nowadays, chemists use inorganic clusters as molecular building blocks to create open framework with cavities and channels, including porous semiconductor, fast ion exchanger, shape- and size-selective catalysis, and optoelectronic applications. Among these clusters, only the metal chalcogenides tetrahedral molecular clusters can serve as artificial tetrahedral atoms, and assemble the tetrahedral clusters into porous open-framework through inorganic chalcogenides ligands.

© 2013 Ou and Yang; licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The study of metal chalcogenides tetrahedral molecular clusters provides a valuable opportunity to explore the synthetic and structural chemistry at the interface of chalcogenide molecular chemistry and solid-state chemistry. A general introduction and overview of metal chalcogenides tetrahedral molecular clusters is intended in this chapter. In the following sections, a description of four basic types of metal chalcogenides tetrahedral molecular clusters will be provided. Design, synthesis strategy, and crystal engineering of building open-framework chalcogenides materials will be discussed. In addition, the interrelated properties of metal chalcogenides tetrahedral molecular clusters will be emphasized as the highlight of this paper.

2. Classification of structure and mathematical extrapolation

2.1. Supertetrahedral clusters

The simplest tetrahedral clusters of metal chalcogenides tetrahedral molecular clusters is supertetrahedral clusters, i.e. Tn clusters, with tetrahedral shaped fragments similar to the cubic ZnS-type lattice. The supertetrahedral clusters were first denoted as Tn by Dance et al. Recently, these compounds are denoted as Tn by Yaghi’s group. In the formula, n is the number of metal layers. The mathematical of supertetrahedral clusters can be regarded as the analog of the ideal artificial tetrahedral atoms. The number of tetrahedra (T atoms) in a Tn supertetrahedron is the nth tetrahedral number:

\[t_n = \frac{n(n+1)(n+2)}{6} \]

The number of distinct vertexes (X atoms) in one supertetrahedron is \(t_{n+1} \).

The formulas for discrete Tn clusters are given as follows: T1 (MX4), T2 (M4X10), T3 (M10X20), T4 (M20X35), and T5 (M35X56), where M is a metal cation and X is a chalcogen anion. The illustration figures for Tn clusters are shown in Figure 1.

In an open-continuous framework, each of the four outermost vertexes of a supertetrahedron is shared with another supertetrahedron. Therefore, the overall composition is TnXy with \(x = t_n \) and \(y = t_{n+1} - 2 \). In Tn clusters, all the T atoms are 4-coordinated. Nevertheless, the X atoms possess 2-coordination sites (on the supertetrahedron edges and the outermost vertexes), 3-coordination sites (in the supertetrahedron faces), and 4-coordination sites (inside the cluster). In each corner linked Tn cluster \((T_nX_y) \), the number of 2-coordinated X atoms is \(6n-4 \), and the number of 3-coordinated X atoms is \(2(n - 1)(n - 2) \). The 4-coordinated sites will not appear, until the n value reaches 4 or higher. When n = 4 or higher, the number of 4-coordinated X atoms is \(t_{n-3} \). For example, a T2 cluster consists of only 2-coordinated anions (e.g., S2-), and a T3 cluster has both 2- and 3-coordinated anions. Starting from the T4 cluster, tetrahedral coordination begins to adopt anions inside the cluster to create 4-coordinated anions, beside the existed 2- and 3-coordinated anions. [5]

In Table 1, the known T2 clusters, \([Ga_S_{10}]^{8-},[In_{10}Q_{20}]^{8-},[Ge_{4}Q_{10}]^{4-}(Q=S, Se),[Sn_{4}Q_{10}]^{4-}(Q=S, Te)]\) [10] and examples of T3 clusters, \([In_{10}S_{20}]^{10-},[Ga_{4}S_{20}(NC\text{H}_{2})_{4}]^{2-},[In_{10}S_{20}(HPP)\left(H_{2}O\right)]^{8-}(HPP=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine)\) are provided. On the other hand, the reported T4 clusters, \([M_{4}In_{10}S_{30}]^{10-}(M=Mn^{2+},Co^{2+},Zn^{2+},Cd^{2+})\) [13] and \([Cd_{4}In_{10}S_{30}]^{14-}\) are provided in Table 1, simultaneously. Up to date, the largest Tn clusters that has been prepared is T5 cluster. The examples are \([Cu_{5}In_{10}S_{30}]^{14-}([In_{34}S_{54}]^{6-}\) [15] and \([In_{30}Cd_{6}S_{56}]^{13-}\) [16].
Figure 1. Illustration for Tn series clusters, from T2 to T5. [3]

Table 1. Supertetrahedral clusters base on metal chalcogenides tetrahedral molecular clusters

<table>
<thead>
<tr>
<th>Stoichiometry of Tn</th>
<th>examples</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2 (MX₄)</td>
<td>[Ga₂S₁₀]³⁻</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td>[In₃Q₁₀]³⁻ (Q=S, Se)</td>
<td>[8]</td>
</tr>
<tr>
<td></td>
<td>[Ge₃Q₁₀]³⁻ (Q=S, Se)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>[Sn₃Q₁₀]³⁺ (Q=S, Te)</td>
<td>[10]</td>
</tr>
<tr>
<td>T3 (MₓX₁₀)</td>
<td>[In₁₀S₂₀]⁻</td>
<td>[11]</td>
</tr>
<tr>
<td></td>
<td>[Ga₁₀S₈(NC₇H₉)]²⁻</td>
<td>[12]</td>
</tr>
<tr>
<td></td>
<td>In₁₅S₁₄(HPP)(H₂O)₁₅</td>
<td>[4]</td>
</tr>
<tr>
<td>T4 (MₓX₂₀)</td>
<td>[MₓIn₁₀S₃₀]³⁻ (M=Mn²⁺, Co²⁺, Zn²⁺, Cd²⁺)</td>
<td>[13]</td>
</tr>
<tr>
<td></td>
<td>[CdₓIn₁₀S₃₀]⁴⁻</td>
<td>[5]</td>
</tr>
<tr>
<td>T5 (MₓX₅₀)</td>
<td>CuₓInₓS₅₀</td>
<td>[14]</td>
</tr>
<tr>
<td></td>
<td>[In₂ₓS₅ₓ]²⁻</td>
<td>[15]</td>
</tr>
<tr>
<td></td>
<td>[InₓCdₓS₅₀]¹²⁻</td>
<td>[16]</td>
</tr>
</tbody>
</table>
2.2. Pentasupertetrahedral clusters (Pn)

The second series of tetrahedral clusters is known as pentasupertetrahedral clusters, shown in Figure 2. This series cluster was denoted as 5^n by Dance et al. [6] and was named as P_n by Feng’s group. [17] The P_n cluster is composed of four same order T_n clusters at the corner and one anti-T_n cluster at the core. In comparison, a pentasupertetrahedral cluster is considerably larger than a supertetrahedral cluster of the same order. For example: the P_1 cluster consists four T_1 clusters (MX_4) and one anti-T_1 (XM_4) cluster at the center, resulting in the composition $((MX_4)_{4}(XM_4))$ (i.e., M_8X_{17}). The supertetrahedral clusters as large as T_5 are known, but the largest known cluster of the P_n series is the P_2 cluster. [17]

![Figure 2. Illustration for P_n series clusters, from P_1 to P_2. A polyhedral representation is used for the central antisupertetrahedral cluster. [30]](image)

Some examples of P_1 clusters, $[SCd_8(SBu)_{12}](CN)_{12}$ [18], $[M_{4}Sn_4S_7]^{10-}$ (M=Mn$^{2+}$, Fe$^{2+}$, Co$^{2+}$, Zn$^{2+}$), [19] and $[M_{4}Sn_4Se_7]^{10-}$ (M=Mn$^{2+}$, Co$^{2+}$, Zn$^{2+}$) [20,21], and P_2 clusters, $[Li_{4}In_{2}S_{4}]^{18-}$ in ICF-26 [22] (ICF= Inorganic Chalcogenide Framework) and $[Cu_{11}In_{15}Se_{16}(SePh)_{24}(PPh_{3})_{4}]$. [23] (Ph= phenyl group, PPh$_3$=triphenylphosphine group) are given in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>examples</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1 (M_8X_{17})</td>
<td>$SCd_8(SBu)_{12}_{12}$</td>
<td>[18]</td>
</tr>
<tr>
<td></td>
<td>$[M_{4}Sn_4S_7]^{10-}$ (M=Mn$^{2+}$, Fe$^{2+}$, Co$^{2+}$, Zn$^{2+}$)</td>
<td>[19]</td>
</tr>
<tr>
<td></td>
<td>$[M_{4}Sn_4Se_7]^{10-}$ (M=Mn$^{2+}$, Co$^{2+}$, Zn$^{2+}$)</td>
<td>[20, 21]</td>
</tr>
<tr>
<td>P_2 ($M_{26}X_{44}$)</td>
<td>$[Li_{4}In_{2}S_{4}]^{18-}$</td>
<td>[22]</td>
</tr>
<tr>
<td></td>
<td>$[Cu_{11}In_{15}Se_{16}(SePh){24}(PPh{3})_{4}]$</td>
<td>[23]</td>
</tr>
</tbody>
</table>

Table 2. Pentasupertetrahedral clusters base on metal chalcogenides tetrahedral molecular clusters
2.3. Capped supertetrahedral clusters (Cn)

The third series of tetrahedral clusters is capped-supertetrahedral clusters, as shown in Figure 3. This series cluster was denoted as \(7_n \) by Dance et al. [6] Recently, the series cluster was named as \(C_n \) by Feng’s group. [3] The capped supertetrahedral clusters are defined as a regular supertetrahedral cluster (\(T_n \)) at the core covered with a shell of atoms, which is also related to the \(T_n \) cluster. Accurately, each face of the \(T_n \) core unit is covered with a single sheet of atoms called the \(T(n+1) \) sheet and each corner of this cluster is covered with a MX group. The \(T(n+1) \) sheet is defined as the bottom atomic sheet of a \(T(n+1) \) cluster. [3]

![Figure 3](https://example.com/fig3.png)

Figure 3. Illustration for \(C_n \) series clusters, from \(C_1 \) to \(C_2 \). (adopted from Ref. 30)[30]

As shown in Table 3, the first metal chalcogenides tetrahedral molecular clusters of \(C_1 \) clusters is \([S_4Cd(\text{SPh})_{28}]^{2-} \) [18], (SPh=benzenethiol ligand), by Dance group in 1988. In later days, two new \(C_1 \) clusters were reported. They are \(\text{Cd}_{17}S_4(\text{SCH}_2\text{CH}_2\text{OH})_{26} \) [24] and \([S_4Cd(\text{SPh})_{24}(\text{CH}_3\text{OCS})_2]_{12} \) \(n\text{CH}_3\text{OH} \) [25]. As for the \(C_2 \) clusters, three clusters, \(\text{Cd}_{32}S_{14}(\text{SCH}_2\text{CH(OH)CH}_3)_4 \cdot 4\text{H}_2\text{O} [26], \text{Cd}_{32}S_{14}(\text{SC}_6\text{H}_5)_{36} \cdot (\text{DMF})_4 [27] \) and \(\text{Cd}_{32}Se_{14}(\text{SePh})_{36}(\text{PPh}_3)_4 [28] \) have been successfully synthesized, so far.

<table>
<thead>
<tr>
<th>Stoichiometry of Cn</th>
<th>examples</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1 (M_{17}X_{28}))</td>
<td>([S_4Cd(\text{SPh})_{28}]^{2-})</td>
<td>[18]</td>
</tr>
<tr>
<td></td>
<td>(\text{Cd}_{17}S_4(\text{SCH}_2\text{CH}2\text{OH}){26})</td>
<td>[24]</td>
</tr>
<tr>
<td></td>
<td>([S_4Cd(\text{SPh})_{24}(\text{CH}_3\text{OCS})2]{12}) (n\text{CH}_3\text{OH})</td>
<td>[25]</td>
</tr>
<tr>
<td>(C_2 (M_{32}X_{54}))</td>
<td>(\text{Cd}{32}S{14}(\text{SCH}_2\text{CH(OH)CH}_3)_4 \cdot 4\text{H}_2\text{O})</td>
<td>[26]</td>
</tr>
<tr>
<td></td>
<td>(\text{Cd}{32}S{14}(\text{SePh})_{36}(\text{PPh}_3)_4)</td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>(\text{Cd}{32}Se{14}(\text{SC}_6\text{H}5){36} \cdot (\text{DMF})_4)</td>
<td>[28]</td>
</tr>
</tbody>
</table>

Table 3. Capped-supertetrahedral clusters base on metal chalcogenides tetrahedral molecular clusters
2.4. Super-supertetrahedral clusters ($T_{p,q}$)

Besides the series of tetrahedral molecular clusters, a special multi-series metal chalcogenides hollow cluster has been reported, simultaneously. These metal chalcogenides hollow clusters are known as super-supertetrahedral clusters, denoted as $T_{p,q}$. [29] This series of cluster is built in a T_q supertetrahedron of T_p super-tetrahedra. The number of tetrahedra (T atoms) in a T_p supertetrahedron is the pth tetrahedral number, $t_p = p(p+1)(p+2)/6$, and the number of X atoms is t_p+1. In a $T_{p,q}$ super-supertetrahedron the number of T atoms is $t_q t_p$, and the number of X atoms is $t_q(t_p+2)+2$. The first metal chalcogenides tetrahedral molecular clusters of $T_{p,q}$ clusters is CdInS-420, i.e. $T_{4,2}$ (given in Figure 4), prepared by Yaghi group. [29]

![Figure 4.](image)

3. Design and synthesis: Crystal engineering

The explosive growth in the number of microporous and open framework materials is mainly contributed by the numerous variable synthetic and structural parameters. It is known that each T_n cluster behaves as an artificial tetrahedral atom (T atom). These T atoms link with others by four vertex chalcogenides (ex: sulfur) atoms into the nanoclusters to produce extended open frameworks. Among these clusters, the use of structure-directing agents with different charge, size, and shape is particularly effective to assist the formation of oxide frameworks. [3-5] Furthermore, the conventional synthetic methods to prepare the metal
Chalcogenides tetrahedral molecular clusters include the crystallization from solution[6, 30-31] and the hydrothermal synthetic route. [2-5, 13]

Prior to the development of open framework chalcogenides, tetrahedral clusters were not commonly encountered among open framework solids. In 1982, Dance group reported the extension reaction of T2 cluster, $\left[\text{M}_{4}(\text{SPh})_{10}\right]^{2-}$ ($\text{M}=\text{Zn}^{2+}, \text{Cd}^{2+}$) with sulphur, including the metals zinc and cadmium in acetonitrile, to yield a different and unprecedented product ($\text{Me}_{4}\text{N})_{4}\left[\text{S}_{4}\text{M}_{10}(\text{SPh})_{16}\right]^{4-}$, $\text{M}=\text{Zn}, \text{Cd}$) [31]. A similar crystallization from

Figure 5. $\left[\text{M}_{4}(\text{SPh})_{10}\right]^{2-}$, $\text{M}=\text{Fe}, \text{Co}, \text{Zn}$ (1) and probably Cd react with sulphur and different metal cation (i.e., Fe, Zn, Cd) in acetonitrile to yield the $\left[\text{Fe}_{4}(\text{SPh})_{4}\right]^{2-}$ (2) and $\left[\text{S}_{4}\text{M}_{10}(\text{SPh})_{16}\right]^{4-}$, $\text{M}=\text{Zn}, \text{Cd}$ (3) [31].
solution reactions with elemental selenium yields analogous complexes \((\text{Me}_4\text{N})_4[\text{Se}_4\text{M}_{10}(\text{SPh})_{16}]\) \((M = \text{Zn}^{2+}, \text{Cd}^{2+})\). Therefore, a set of four homologous complexes, \((\text{Me}_4\text{N})_4[X\text{M}_{10}(\text{SPh})_{16}]\) \((M = \text{Zn}^{2+}, \text{Cd}^{2+}; X = \text{S}^{2-}, \text{Se}^{2-})\) have been prepared by this method. The four anions have the same molecular aggregation structure, i.e. a supertetrahedral 10-metal section of the cubic (sphalerite) metal chalcogenide structure. Nowadays, the unprecedented product \((\text{Me}_4\text{N})_4[\text{S}_4\text{M}_{10}(\text{SPh})_{16}]\) \((M = \text{Zn}^{2+}, \text{Cd}^{2+})\) is known as the T3 series clusters. The hydrothermal synthesis of open framework chalcogenides started with simple elemental forms (e.g., sulfur) and inorganic salts. The initial process usually involves redox chemistry in the formation of clusters. Clusters of various types and sizes could coexist in a solution. Equilibria between various clusters in solution would shift to the direction that favors the creation of one or more clusters, when crystallization involving these clusters occurs. [3]

3.1. Chalcogenides with different valence state of metal cations

Metal chalcogenides tetrahedral molecular clusters in the self-assembly process is critical for the synthesis of microporous and mesoporous oxides. [32] The known example is aluminophosphates open-frameworks with divalent metal cations \((\text{M}^2+)\). The existence of \(\text{M}^2+\) can provide a rather flexible adjustment of the framework charge density and therefore makes it easier to achieve the charge matching of whole compound. In metal chalcogenides tetrahedral molecular clusters, the ratio between metal cations of different valences subjects to the limitation of the local charge balance within each cluster and may not be as flexible as that in the oxides analogue. [3, 29]

The classes of open framework materials are dominated by typical zeolites, such as ZSM-5, (named after Zeolite Socony Mobil by mobiloil company). The sodalite structure can be made in the neutral \(\text{SiO}_2\) form. Neutral porous frameworks are also found in \(\text{AlPO}_4\) and \(\text{GeO}_2\) forms. Therefore, it is reasonable to expect the existence of open framework sulfides with framework composition of \(\text{GeS}_2\) or \(\text{SnS}_2\). The early development of metal chalcogenides tetrahedral molecular clusters is the preparation of open framework sulfides by using the mono- or divalent cations (e.g., \(\text{Cu}^+, \text{Mn}^{2+}\)) to join the metal chalcogenides tetrahedral molecular clusters together (i.e. \(\text{GeS}_{10}^{4-}\)). [17] These low-valent cations can generate negative charges on the framework. Subsequently, the charge is balanced by structure-directing amine molecules. For example, the compounds prepared with the formula of \([\text{(CH}_3)_4\text{N}]_2[\text{MGeS}_{10}]\) \((\text{M}= \text{Mn}^{2+}, \text{Fe}^{2+}, \text{Cd}^{2+})\), by Yaghigroup. [7] In this case, the \(\text{MnGeS}_{10}^{2-}\) \(2(\text{CH}_3)_4\text{N}\), has a non-interpenetrating diamond type lattice (the single diamond type) with alternating T2 and T1 clusters to occupy the tetrahedral nodes. In the Ge-S or Ge-Se system of metal chalcogenides tetrahedral molecular clusters, the largest metal chalcogenide super-tetrahedral molecular cluster is T2. As a result, a perspective charge-balance problem of metal chalcogenides tetrahedral molecular clusters system is proposed. [17] In the Ge-S or Ge-Se system of metal chalcogenides tetrahedral molecular clusters, Feng’s group found that clusters larger than T2 cannot be prepared in this system. The reason is that the charge at cation sites is too high to satisfy the coordination environment of 3-coordinated anion sites in clusters larger than T2. For the same reason, it is not surprise to find that no regular T3 cluster can be successfully prepared in the pure Sn-S (or Sn-Se) system.

In In-S system of metal chalcogenides tetrahedral molecular clusters, Yaghi’s group used the In-S composition to build a unique porous sulfide-based framework materials. [4-5] Its uniqueness comes from 50% or more framework cation sites in zeolite-like oxides with a valence ≥4. The linkage in In-O-In or Al-O-Al is not similar to that in zeolite-like oxides because of the Loewenstein rule. The Loewenstein rule states that the ratio of M^{4+}/M^{3+} should be larger or equal to one. [17] The most common in the In-S system is the occurrence of the T3 cluster, $[\text{In}_{10}\text{S}_{20}]^{10-}$. The lower charge on In$^{3+}$, compared with Ge$^{4+}$ and Sn$^{4+}$, makes it possible to form the required 3-coordinated sulfur site for the formation of T3 clusters. Moreover, the In$^{3+}$ composition is extended to Ga-S, Ga-Se, and In-Se compositions by Feng’s group. [11,17,33] The use of the nonaqueous synthesis method is responsible for the success in the syntheses of Ga-S composition. On the other hand, the synthesis of the $[\text{Cd}_{4}\text{In}_{16}\text{S}_{35}]^{14-}$ in T4 cluster shows that the access of regular clusters larger than T3 is possible by the help of divalent cations, in addition to the In-S composition. [5] Moreover, the combination of monovalent (e.g., Cu$^+$) and trivalent cations (e.g., In$^{3+}$) could provide the required local charge matching around the tetrahedral S$^{2-}$ site. [14, 17]

In terms of chemical compositions, metal chalcogenides tetrahedral molecular clusters with tetravalent (M^{4+}) and trivalent (M^{3+}) metal cations closely resembles the structure of aluminosilicate zeolites. The M^{4+}/M^{3+} was not expected to be simple because either M^{4+} or M^{3+} could independently form amine-directed crystals with sulfur and thus the probability of phase separation was high. [7, 17] Nevertheless, the use of the nonaqueous synthesis method could lead to the integration of M^{4+} and M^{3+} ions into the same framework. [11, 17, 33] A series of open framework sulfides and selenides were made by the combination of tetravalent (i.e., Ge$^{4+}$, Sn$^{4+}$) and trivalent metal (i.e., Ga$^{3+}$, In$^{3+}$) ions. [34] The M^{4+}/M^{3+} ratio in these chalcogenides can be much smaller than that in zeolites. So far, the M^{4+}/M^{3+} ratio falls within the range from 1.3 to 0.21. Besides the low M^{4+}/M^{3+} ratio in this series, some sulfides possess adequate stability toward ion exchange and thermal treatment. [17,34]

As mentioned in the above paragraph, the type of metal cations existed in the metal chalcogenides tetrahedral molecular clusters growth system shows a limitation on the formation of individual clusters. It is worth nothing to mention that cluster larger than T3 can be formed, if only trivalent cation is used in solvothermal system. However, if the synthesis is employed with trivalent and divalent cations, the system has the flexibility to create a variety of clusters, such as T3, T4, and T5. [17]

3.2. Structure-directing agent: Organic amines

In oxides compounds, the oxygen sites of the anionic framework can form strong hydrogen bonding with N-H groups of protonated amine molecules. [3] Such O...H-N bonding is an important factor in the directed assembly of oxide frameworks. The hydrogen bonding between chalcogenides frameworks and guest molecules (e.g., S...H-N) is very weak. [3] Based on the host–guest charge-density matching principle, proposed by Stucky et al., the content and distribution of heteroatoms in the framework can be adjusted by the guest species. [35] Thus, the co-assembly of metal chalcogenides tetrahedral molecular clusters with structure-directing agent (guest), such as amine molecules, depends to a large extent on the host-guest
electrostatic interaction. This principle can explain that open framework metal chalcogenides tetrahedral molecular generally have a rather negative framework and few neutral or nearly neutral open framework metal chalcogenides tetrahedral molecular are known today.

Interestingly, Yang et al. employ 4,4-trimethylene dipiperidine (TMDP), and histidine as the structure-directing agents for the synthesis of compound with mixed supertetrahedral chalcogenide clusters T2, and pentasupertetrahedral chalcogenide clusters P1, denoted as NCYU-5, (NCYUis named after National Chia Yi University), shown in Figure 6. [36] The TMDP is widely used as a structure construction template in the synthesis of Tn series chalcogenide clusters. [37] However, the use of amino acid in the hydrothermal synthesis for an inorganic tetrahedral cluster has not been reported. In this case, the porosity of the mixed chalcogenide clusters with a TMDP only template is about 55%, smaller than the one with TMDP and histidine as templates. On the basis of experimental data, the role of histidine in the formation of mixed chalcogenide clusters is to improve the pore size of the 2-D framework, and the porosity of the crystal. The potential cavity occupied 67.1% of crystal cell volume can be calculated by the PLATON program. (a collection tool for single crystal structure analysis). The high percentage of cavity derived from NCYU-5 suggests that large amount of guest molecules, i.e. TMDP, and histidine, present in the structure of open framework to make this material with high porosity. In each layer of the two dimensional open frame work of NCYU-5, alternating P1 and T2 clusters are linked together by bridging selenium atoms, Fig. 7(a). A triangle-shaped pore window is created by three T2 clusters, three P1 clusters, and six bridging Se atoms. The distance between the two corner Se atoms of the triangle-shaped window is 18.467(3) Å, and the theoretical area of a triangle-shaped pore window is 147.6 Ǻ², Fig. 7(b). The T2 clusters in one layer are located above or below the center of the 15-ring-window of its adjacent layers. The orientation of these T2 clusters is consistent. Although, these two-dimensional layers are stacked along the c-axis, the P1 clusters are located above or below P1 clusters of the adjacent layers with skewed orientation, Fig. 7(c). [36]

Figure 6. An illustrated unit cell structure for NCYU-5. The calculated occupancy possibility of the Se(1) site for Se to S is ~90%. The occupancy possibility of the S3 site in the T2 cluster for Se to S is ~10%. [36]
3.3. Selected properties of metal chalcogenides tetrahedral molecular clusters

3.3.1. Thermal characteristics

In the past decades, numerous metal chalcogenides tetrahedral molecular clusters have been successfully prepared. Although, these metal chalcogenides solids posses a wide range of compositions and topological features, the application potential is limited by the low thermal stability of these compounds. Up to present, not many metal chalcogenides tetrahedral molecular clusters can maintain the thermal stability in 500 °C or higher, which is a required temperature to completely remove organic guest molecules through calcinations. [3] One example that can achieve the requirement is NCYU-5 that can maintain the crystal structure from room temperature (RT) to 505 °C. The thermogravimetric analysis (TGA) data of NCYU-5 is given in Figure 8. [36] The total weight loss is 26.72% from RT to 505 °C. The initial weight loss of 3.09% from RT to 110 °C is because of the water desorption of surface. A sharp weight loss of 10.46% starting from 305 °C to 405 °C is attributed by the decomposition of two histidine molecules (calcd. 11.5%). The second sharp weight loss of 13.17% observed from 405 °C to 505 °C is possibly contributed by the decomposition of two TMDP molecules and the removal of H2S (calcd. 15.6%). No further weight loss is observed after 505 °C. The total recorded weight loss of 26.72% from 105 °C to 505 °C is in good agreement with the calculated weight loss (27.1%) for the guest molecules, i.e. one TMDP and one histidine in each unit cell of NCYU-5. As for the direct calcination of as-synthesized samples by suitable temperature to remove a sizable fraction of extra-frame work organic components is shown in another example. In Feng et al.’s reported, ~77% of nitrogen and ~81% of hydrogen were removed from UCR-20GaGeS-TAEA, (TAEA = tris(2-aminoethyl)amine, UCR = initials of University of California Riverside), by direct calcination at 350 °C with nitrogen gas. [34] However, the coke formation made the removal of carbon difficult, only ~39% of carbon was removed from UCR-20GaGeS-TAEA in the same experiment. [34]
3.3.2. Ion exchange

Ion exchange is the most common properties of open framework solids. [38] This property has been shown for a number of metal chalcogenides tetrahedral molecular clusters, in which the protonated guests can be exchanged in solution by inorganic monocations (i.e., Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺) and dications (i.e., Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺). After ion-exchange, microporosity of compound can be created by the removal of large organic cations. [34,39] For example, the ion-exchange with Cs⁺ ions led to an almost complete removal of amine molecules from UCR-20GaGeS-TAEA. The Cs⁺-exchanged UCR-20GaGeS-TAEA exhibits the type I isotherm characteristic of a microporous solid (Figure 9). This sample has a high BET surface area (807 m²/g) and a micropore volume (0.23 cm³/g) despite the presence of much heavier elements (i.e., Cs, Ga, Ge, and S), compared with the analogues of aluminosilicate zeolites. [34]

3.3.3. Conductivity

An open-framework material has an inherent advantage for the applications in low-temperature fast-ion conductors. The existed open channels in these compounds provide the necessary paths for ions migration. Unfortunately, the sizeable open channels and cages contained in zeolites are not good fast-ion conductors because of the strong interaction between the oxygen framework and extra-framework charge carriers, such as Li⁺ and Na⁺. [38]
Open-framework metal chalcogenides tetrahedral molecular clusters are anticipated as better ion conductors than zeolites. The chalcogenides have higher anionic framework polarizability created by the large size of S^{2-} or Se^{2-}, as compared with O^{2-}. [1] The high polarizable anionic framework will facilitate the migration of mobile cations quick. Since the concentration of mobile cations is high in the open-framework metal chalcogenides tetrahedral molecular clusters. The chalcogenides clusters will have more negative frameworks for charge-balane than that of zeolites. The experimental data show that the framework M^{4+}/M^{3+} (where M is a tetrahedral atom) ratio in chalcogenides is smaller than one, whereas the ratio value is always larger or equal to one in zeolites or related oxides. [3] For example, the synthesis of hydrated sulphides and selenides with highly mobile alkali or alkaline earth metal cations as extra framework cations, such as ICF-26. [3,22] The ionic conductivity of ICF-26 (Figure 10) is comparable to or exceeds previously known crystalline sodium or lithium conductors at RT and under relative humidity of 30% or higher. The highest specific conductivity achieved among open framework chalcogenides is $0.15 \Omega^{-1} \text{cm}^{-1}$ at $27 \degree C$ and under 100% relative humidity. [3,40]
3.3.4. Optical properties

Most open framework chalcogenides without the incorporation with organic dyes or metal activators still can display photoluminescence with tunable emission wavelengths ranging almost continuously from 450 to 600nm. [41] The luminescence of open framework chalcogenides is known to be related with the highly negatively charged inorganic framework and the presence of protonated guest amine molecules. [41, 42] On the top of this review point, Se exhibits a better induced optoelectronic property than S because the ionization energy barrier of Se is much lower than that of S. [36, 43, 44] Based on this understanding, Yang et al. prepared the Se doped metal chalcogenides tetrahedral molecular clusters, i.e. NCYU family, to study the optoelectronic luminescent phenomena induced by the quantum confinement of Se in these clusters. The clusters prepared by Yang’s group include NCYU-1 (T4/Se), NCYU-3 (T3/Se), and NCYU-5 (mixed P1+T2/Se). [36, 43, 44] Two PL emission peaks, centered at about 457 nm and 538 nm, were revealed from the NCYU-3(T3/Se). But only the 457 nm peak is observed in the spectra of NCYU-InS-AEAE (T3)(AEAE= 2-(2-aminoethylamino)ethanol) and NCYU-4 (T3). The peak at 457 nm has been reported for the luminescence of open framework chalcogenides. Thus, the trace Se atoms confined in the NCYU-3 (T3/Se) supertetrahedral clusters is responsible for the newly discovered 538 nm emission peak (Figure 11). [44]
On the other hand, a family of discrete chalcogenide T4 clusters $[\text{M}_{x}\text{Ga}_{18-x}\text{Sn}_{2}\text{Q}_{35}]^{12-}$ \cite{45} (x = 2 or 4; M = Mn, Cu, Zn; Q = S, Se), prepared by Feng’s group, show an unusual phase transformation from a T4 covalent framework (3-D) into T4 molecular clusters (0-D), denoted as OCF-5s or OCF-40s (OCF stands for organically directed chalcogenide frameworks). In the case of OCF-40s, these iso-structural compounds show a remarkable effect of different d^{10} metal ions (Cu^{+} and Zn^{2+}) and chalcogen anions(Se^{2-} and S^{2-}) on the sample colors and band gap of semiconductor materials. The UV–vis diffuse reflectance spectrum reveals that the dark red selenide sample of OCF-40-CuGaSnSe-PR (formula:$[\text{Cu}_{2}\text{Ga}_{16}\text{Sn}_{2}\text{Se}_{35}]^{12}(\text{C}_{5}\text{NH}_{12})$, PR = piperidine) has a wider UV-vis adsorption peak than the yellow sample of OCF-40-ZnGaSnSe-PR. (formula:$[\text{Zn}_{4}\text{Ga}_{14}\text{Sn}_{2}\text{Se}_{35}]^{12}(\text{C}_{5}\text{NH}_{12})$). A similar difference is also found in sulfides analogues between OCF-40-CuGaSnS-PR (formula:$[\text{Cu}_{2}\text{Ga}_{16}\text{Sn}_{2}\text{S}_{35}]^{12}(\text{C}_{5}\text{NH}_{12})$) and OCF-40-ZnGaSnS-PR. (formula:$[\text{Zn}_{4}\text{Ga}_{14}\text{Sn}_{2}\text{S}_{35}]^{12}(\text{C}_{5}\text{NH}_{12})$). The solid-state diffuse reflectance spectra, shown in Figure 12, show that OCF-40s are semiconductors with different band gaps(bg): OCF-40-CuGaSnSe-PR, bg = 1. 91 eV; OCF-40-ZnGaSnSe-PR, bg = 2. 71 eV; OCF-40-CuGaSnS-PR, bg = 2. 11 eV; and OCF-40-ZnGaSnS-PR, bg = 3. 59 eV. The experimental data show that metal chalcogenides tetrahedral molecular clusters with Cu^{+} and Se^{2-} in the framework will have much lower band gaps. \cite{45}
3.3.5. Photocatalytic applications

Over the past few decades, a large family of crystalline porous materials based on metal chalcogenides were developed. [3-7,36,43,44] These materials integrate tunable band gaps with an open-framework architecture and are potential candidates for efficient photocatalysts due to their optical properties. By controlling framework architecture, it is possible to tune the band structure (both band positions and gap) of an open-framework solid within a given compositional domain. The open-framework construction can increase the number of active reaction sites by the high surface area. [46] In order to evaluate catalytic efficiency for hydrogen generation by metal chalcogenides tetrahedral molecular clusters, a series of porous crystalline open-framework sulfides, such as ICF-17MnInS-Na (formula: Na$_{16}$Mn$_{13}$In$_{22}$S$_{54}$xH$_2$O) or ICF-5CdInS-Na (formula: Na$_{10}$Cd$_4$In$_{16}$S$_{33}$xH$_2$O), are prepared by Feng’s group. [46] Under the irradiation of visible light, ICF-5CdInS-Na is photocatalytically active without the use of a co-catalyst, such as Pt. As shown in Figure 13, about 18 mmol h$^{-1}$ g$^{-1}$ of H$_2$ gas was produced over the ICF-5CuInS-Na catalyst under irradiation with the visible light. This activity was maintained for over 96 h and more than 890 mmol of H$_2$ gas evolved during this period. The quantum efficiency for ICF-5CuInS-Na was about 3.7% at 420 nm. Even though the number is lower than the quantum yield (~35%) of the well-known Pt/CdS photocatalyst, the efficiency is a considerable improvement on two anhydrous dense phases with similar compositions: CuInS$_2$ with the cubic ZnS structure, and CuIn$_5$S$_8$ with the spinel structure.
Figure 13. Photocatalytic H₂ evolution from an aqueous solution of Na₂S (0.5 M) over ICF-5 CuInS-Na (0.5 g); t: irradiation time, n: amount of H₂. [46]

Author details

Chun-Chang Ou and Chung-Sung Yang*

*Address all correspondence to: csyang@mail.nchu.edu.tw

Department of Applied Chemistry, National Chia Yi University, Taiwan, ROC

References

