We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists

4,300 Open access books available
116,000 International authors and editors
130M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
the inflammatory response, could imply increased risk of cardiovascular pathology in hyperuricemic subjects by promoting development of endothelial dysfunction.

In conclusion, the neutrophil and platelet activation, known predisposing factors to thrombosis, together with increased CRP production and reduced NO production, might share in causing the hyperuricemia-associated endothelial dysfunction and atherosclerotic plaque formation. Therefore, it could be recommended that physicians should be aware of the role of elevated uric acid in inducing cardiovascular insult, and that individuals suffering from hyperuricemia should be advised to have a strict follow-up for their platelet function, which could participate in the cardiovascular pathology.

Figure 2.

Changes in plasma nitrate in the normouricemic and the different hyperuricemic groups.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>5-days hyperuricemia</th>
<th>2-weeks hyperuricemia</th>
<th>4-weeks hyperuricemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control rats</td>
<td>3.2±0.38 (7)</td>
<td>3.0±0.56 (9)</td>
<td>NS</td>
</tr>
<tr>
<td>Hyperuricemic rats</td>
<td>3.0±0.59 (9)</td>
<td>2.8±0.39 (7)</td>
<td>NS</td>
</tr>
<tr>
<td>Neutrophil (%)</td>
<td>31.6±2.93 (7)</td>
<td>53.1±3.87 (9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Lymphocyte %</td>
<td>67.6±3.37 (7)</td>
<td>46.2±4.00 (9)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Table 1. Results of the changes in leucocyte parameters in the different studied groups.

P: Significance of difference from matched control rats calculated by Student's ″t″test for unpaired data. NS: Not significant.
the inflammatory response, could imply increased risk of cardiovascular pathology in hyperuricemic subjects by promoting development of endothelial dysfunction.

In conclusion, the neutrophil and platelet activation, known predisposing factors to thrombosis, together with increased CRP production and reduced NO production, might share in causing the hyperuricemia-associated endothelial dysfunction and atherosclerotic plaque formation. Therefore, it could be recommended that physicians should be aware of the role of elevated uric acid in inducing cardiovascular insult, and that individuals suffering from hyperuricemia should be advised to have a strict follow-up for their platelet function, which could participate in the cardiovascular pathology.

<table>
<thead>
<tr>
<th>TLC (x10^3/µl)</th>
<th>3.2±0.38 (7)</th>
<th>3.0±0.56 (9)</th>
<th>NS</th>
<th>2.8±0.39 (7)</th>
<th>3.2±0.59 (9)</th>
<th>NS</th>
<th>3.7±0.52 (9)</th>
<th>3.9±0.76 (10)</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophil (%)</td>
<td>31.6±2.93 (7)</td>
<td>53.1±3.87 (9)</td>
<td><0.001</td>
<td>34.4±4.25 (7)</td>
<td>56.9±6.92 (9)</td>
<td><0.0</td>
<td>35.0±7.25 (9)</td>
<td>58±6.42 (10)</td>
<td><0.0</td>
</tr>
<tr>
<td>Lymphocyte %</td>
<td>67.6±3.37 (7)</td>
<td>46.2±4.00 (9)</td>
<td><0.01</td>
<td>64.3±4.12 (7)</td>
<td>41.0±7.17 (9)</td>
<td><0.0</td>
<td>64.6±7.23 (9)</td>
<td>41.5±6.33 (10)</td>
<td><0.0</td>
</tr>
</tbody>
</table>

Results of the changes in leucocyte parameters in the different studied groups:

*: Significance of difference from matched control rats calculated by Student’s "t"test for unpaired data.

**: Not significant.
the inflammatory response, could imply increased risk of cardiovascular pathology in hyperuricemic subjects by promoting development of endothelial dysfunction.

In conclusion, the neutrophil and platelet activation, known predisposing factors to thrombosis, together with increased CRP production and reduced NO production, might share in causing the hyperuricemia-associated endothelial dysfunction and atherosclerotic plaque formation. Therefore, it could be recommended that physicians should be aware of the role of elevated uric acid in inducing cardiovascular insult, and that individuals suffering from hyperuricemia should be advised to have a strict follow-up for their platelet function, which could participate in the cardiovascular pathology.

<table>
<thead>
<tr>
<th>TLC (x10^3/µl)</th>
<th>Normouricemic</th>
<th>3.2±0.38 (7)</th>
<th>3.0±0.56 (9)</th>
<th>NS</th>
<th>2.8±0.39 (7)</th>
<th>3.2±0.59 (9)</th>
<th>NS</th>
<th>3.7±0.52 (9)</th>
<th>3.9±0.76 (10)</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophil (%)</td>
<td>31.6±2.93 (7)</td>
<td>53.1±3.87 (9)</td>
<td><0.001</td>
<td></td>
<td>34.4±4.25 (7)</td>
<td>56.9±6.92 (9)</td>
<td><0.001</td>
<td>35.0±7.25 (9)</td>
<td>58±6.42 (10)</td>
<td><0.001</td>
</tr>
<tr>
<td>Lymphocyte %</td>
<td>67.6±3.37 (7)</td>
<td>46.2±4.00 (9)</td>
<td><0.01</td>
<td></td>
<td>64.3±4.12 (7)</td>
<td>41.0±7.17 (9)</td>
<td><0.001</td>
<td>64.6±7.23 (9)</td>
<td>41.5±6.33 (10)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Results of the changes in leucocyte parameters in the different studied groups:

: Significance of difference from matched control rats calculated by Student's ″t″test for unpaired data.

: Not significant.

Is Hyperuricemia A Risk Factor to Cardiovascular Disease?

http://dx.doi.org/10.5772/54871
the inflammatory response, could imply increased risk of cardiovascular pathology in hyperuricemic subjects by promoting development of endothelial dysfunction. The neutrophil and platelet activation, known predisposing factors to thrombosis, together with increased CRP production and reduced NO production, might share in causing the hyperuricemia-associated endothelial dysfunction and atherosclerotic plaque formation. Therefore, it could be recommended that physicians should be aware of the role of elevated uric acid in inducing cardiovascular insult, and that individuals suffering from hyperuricemia should be advised to have a strict follow-up for their platelet function, which could participate in the cardiovascular pathology.

Figure 2. Changes in plasma nitrate in the normouricemic and the different hyperuricemic groups.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>5-days hyperuricemia</th>
<th>2-weeks hyperuricemia</th>
<th>4-weeks hyperuricemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.2±0.38 (7)</td>
<td>3.0±0.56 (9)</td>
<td>NS 2.8±0.39 (7)</td>
</tr>
<tr>
<td>Hyper-uricemic rats</td>
<td>3.2±0.59 (9)</td>
<td>3.2±0.59 (9)</td>
<td>NS 3.7±0.52 (9)</td>
</tr>
</tbody>
</table>

P: Significance of difference from matched control rats calculated by Student's "t" test for unpaired data. NS: Not significant.
the inflammatory response, could imply increased risk of cardiovascular pathology in hyperuricemic subjects by promoting development of endothelial dysfunction.

In conclusion, the neutrophil and platelet activation, known predisposing factors to thrombosis, together with increased CRP production and reduced NO production, might share in causing the hyperuricemia-associated endothelial dysfunction and atherosclerotic plaque formation. Therefore, it could be recommended that physicians should be aware of the role of elevated uric acid in inducing cardiovascular insult, and that individuals suffering from hyperuricemia should be advised to have a strict follow-up for their platelet function, which could participate in the cardiovascular pathology.

Figure 2. Changes in plasma nitrate in the normouricemic and the different hyperuricemic groups.

Table 1. Results of the changes in leucocyte parameters in the different studied groups. *P*: Significance of difference from matched control rats calculated by Student’s “t” test for unpaired data. NS: Not significant.
Figure 3. Tracing of ADP-induced platelet aggregation in the different studied groups; 5 days normouricemic rats (A), hyperuricemic rats for 5 days (B), normouricemic rats for 2 weeks (C), hyperuricemic rats for 2 weeks (D), normouricemic rats for 4 weeks (E) and hyperuricemic rats for 4 weeks (F).
Figure 4. Graphs showing correlations of plasma uric acid versus neutrophil %, lymphocyte %, and platelet aggregation in all the studied groups of rats.
Author details
Magda H M Youssef
Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt

References

