
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 4

A Comparative Study on Meta Heuristic Algorithms for
Solving Multilevel Lot-Sizing Problems

Ikou Kaku, Yiyong Xiao and Yi Han

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/55279

1. Introduction

Material requirements planning (MRP) is an old field but still now plays an important role in
coordinating replenishment decision for materials/components of complex product structure.
As the key part of MRP system, the multilevel lot-sizing (MLLS) problem concerns how to
determine the lot sizes for producing/procuring multiple items at different levels with quantita‐
tive interdependences, so as to minimize the total costs of production/procurement setup and
inventory holding in the planning horizon. The problem is of great practical importance for the
efficient operation of modern manufacturing and assembly processes and has been widely
studied both in practice and in academic research over past half century. Optimal solution
algorithms exist for the problem; however, only small instances can be solved in reasonable
computational time because the problem is NP-hard (Steinberg and Napier, 1980). Early dynamic
programming formulations used a network representation of the problem with a series structure
(Zhangwill, 1968,1969) or an assembly structure (Crowston and Wagner,1973). Other optimal
approaches involve the branch and bound algorithms (Afentakis et al., 1984, Afentakis and
Gavish, 1986) that used a converting approach to change the classical formulation of the general
structure into a simple but expanded assembly structure. As the MLLS problem is so common
in practice and plays a fundamental role in MRP system, many heuristic approaches have also
been developed, consisting first of the sequential application of the single-level lot-sizing models
to each component of the product structure (Yelle,1979, Veral and LaForge,1985), and later, of
the application of the multilevel lot-sizing models. The multilevel models quantify item
interdependencies and thus perform better than the single-level based models (Blackburn and
Millen, 1985, Coleman and McKnew, 1991).

Recently, meta-heuristic algorithms have been proposed to solve the MLLS problem with a
low computational load. Examples of hybrid genetic algorithms (Dellaert and Jeunet, 2000,
Dellaert et al., 2000), simulated annealing (Tang, 2004, Raza and Akgunduz, 2008), particle

© 2013 Kaku et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

swarm optimization (Han et al, 2009, 2012a, 2012b), and soft optimization approach based on
segmentation (Kaku and Xu, 2006, Kaku et al, 2010), ant colony optimization system (Pitakaso
et al., 2007, Almeda, 2010), variable neighborhood search based approaches (Xiao et al.,
2011a, 2011b, 2012), have been developed to solve the MLLS problem of large-scale. Those
meta-heuristic algorithms outperform relative simplicity in solving the MLLS problems,
together with their cost efficiency, make them appealing tool to industrials, however they are
unable to guarantee an optimal solution. Hence those meta-heuristic algorithms that offer a
reasonable trade-off between optimality and computational feasibility are highly advisable. It
is very reasonable to consider the appropriateness of the algorithm, especially is which
algorithm most appropriate for solving the MLLS problems?

In this chapter, We first review the meta-heuristic algorithms for solving the MLLS problems,
especially focus on the implemental techniques and their effectives in those meta-heuristic
algorithms. For simplicity the MLLS problems are limited with time-varying cost structures and
no restrictive assumption on the product structure. Even so the solutions of the MLLS problems
are not simply convex but becoming very complex with multi minimums when the cost struc‐
ture is time-varying and the product structure is becoming general. Comparing those imple‐
ment methods used in different algorithms we can find some essential properties of searching
better solution of the MLLS problems. Using the properties therefore, we can specify the character‐
istics of the algorithms and indicate a direction on which more efficient algorithm will be developed.

Second, by using these properties as an example, we present a succinct approach—iterated
variable neighborhood descent (IVND), a variant of variable neighborhood search (VNS), to
efficiently solve the MLLS problem. To examine the performance of the new algorithm, different
kinds of product structures were considered including the component commonality and
multiple end-products, and 176 benchmark problems under different scales(small, medium and
large) were used to test against in our computational experiments. The performance of the IVND
algorithm were compared with those of three well-known algorithms in literatures—the hybrid
genetic algorithm by Dellaert and Jeunet (2000a), the MMAS algorithm by Pitakaso et al.
(2007), and the parallel genetic algorithm by by Homberger (2008), since they all tackled the same
benchmark problems. The results show that the IVND algorithm is very competitive since it can
on average find better solutions in less computing time than other three.

The rest of this chapter is organized as follows. Section 2 describes the MLLS problem. Section
3 gives an overview of related meta-heuristic algorithms firstly, and several implemental
techniques used in the algorithms are discussed. Then section 4 explains the initial method
and six implemental techniques used in IVND algorithm, and the scheme of the proposed
IVND algorithm. In section 5, computational experiments are carried out on three 176 bench‐
mark problems to test the new algorithm of efficiency and effectiveness and compared with
existing algorithms. Finally, in section 7, we symmary the chapter.

2. The MLLS problems

The MLLS problem is considered to be a discrete-time, multilevel production/inventory system
with an assembly structure and one finished item. We assume that external demand for the

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios78

finished item is known up to the planning horizon, backlog is not allowed for any items, and
the lead time for all production items is zero. Suppose that there are M items and the planning
horizon is divided into N periods. Our purpose is to find the lot sizes of all items so as to
minimize the sum of setup and inventory-holding costs, while ensuring that external demands
for the end item are met over the N-period planning horizon.

To formulate this problem as an integer optimization problem, we use the same notation of
Dellaert and Jeunet (2000a), as follows:

i : Index of items, i = 1, 2, …, M

t : Index of periods, t = 1, 2, …, N

H i: Unit inventory-holding cost for item i

Si: Setup cost for item i

I i ,t : Inventory level of item i at the end of period t

xi ,t : Binary decision index addressed to capture the setup cost for item i

Di ,t : Requirements for item i in period t

Pi ,t : Production quantity for item i in period t

Ci , j: Quantity of item i required to produce one unit of item j

Γ(i): set of immediate successors of items i

M: A large number

The objective function is the sum of setup and inventory-holding costs for all items over the
entire planning horizon, denoted by TC (total cost). Then

, ,
1 1

().
M N

i i t i i t
i t

TC H I S x
= =

= × + ×åå (1)

The MLLS problem is to minimize TC under the following constraints:

, , 1 , , ,i t i t i t i tI I P D-= + - (2)

, , , | ,
j

i

i t i j j t l i
j

D C P i j+
ÎG

= × " G ¹å (3)

, , 0,i t i tP M x- × £ (4)

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

79

, , ,0, 0, {0,1}, , .i t i t i tI P x i t³ ³ Î " (5)

where Equation 2 expresses the flow conservation constraint for item i. Note that, if item i is
an end item (characterized by Γ(i)=φ), its demand is exogenously given, whereas if it is a
component (such that Γ(i)≠φ), its demand is defined by the production of its successors (items
belonging to Γ(i) as stated by Equation 3). Equation 3 guarantees that the amount P j ,t of item
j available in period t results from the exact combination of its predecessors (items belonging
to Γi in period t). Equation 4 guarantees that a setup cost is incurred when a production is
produced. Equation 5 states that backlog is not allowed, production is either positive or zero,
and that decision variables are 0, 1 variables.

Because xi ,t∈ {0, 1} is a binary decision variable for item i in period t, X = {xi ,t}M ×N represents
the solution space of the MLLS problem. Searching for an optimal solution of the MLLS
problem is equivalent to finding a binary matrix that produces a minimum sum of the setup
and inventory-holding costs. Basically, there exists an optimal solution if

, , 1 0i t i tx I -× = (6)

Equation 6 indicates that any optimal lot must cover an integer number of periods of future
demand. We set the first column of X to be 1 to ensure that the initial production is feasible
because backlog is not allowed for any item and the lead times are zero. Since there is an inner
corner property for assembly structure (see Tang (2004)), we need to have xi ,t ≥ xk ,t if item
creates internal demand for item k. Thus we need a constraint in order to guarantee that the
matrix is feasible.

3. Meta-heuristic algorithms used to solve MLLS problems

The meta-heuristic algorithms are widely used to refer to simple, hybrid and population-based
stochastic local searching (Hoos and Thomas 2005). They transfer the principle of evolution
through mutation, recombination and selection of the fittest, which leads to the development
of solutions that are better adapted for survival in a given environment, to solving computa‐
tionally hard problems. However, those algorithms often seem to lack the capability of
sufficient search intensification, that is, the ability to reach high-quality candidate solutions
efficiently when a good starting position is given. Hence, in many cases, the performance of
the algorithms for combinatorial problems can be significantly improved by adding some
implemental techniques that are used to guide an underlying problem-specific heuristic. In
this chapter, our interesting is on the mechanisms of those implemental techniques used to
solve a special combinatorial optimization problem, i.e. MLLS problem. Hence we first review
several existing meta-heuristic algorithms for solving the MLLS problems.

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios80

3.1. Soft optimization approach

Soft optimization approach (SOA) for solving the MLLS problems is based on a general
sampling approach (Kaku and Xu, 2006; Kaku et al, 2010). The main merit of soft optimization
approach is that it does not require any structure information about the objective function, so
it can be used to treat optimization problems with complicated structures. However, it was
shown that random sampling (for example simple uniform sampling) method cannot produce
a good solution. Several experiments had been derived to find the characteristics of an optimal
solution, and as a result applying the solution structure information of the MLLS problem to
the sampling method may produce a better result than that arising from the simple uniform
sampling method. A heuristic algorithm to segment the solution space with percentage of
number of 1s has been developed and the performance improvement of solving MLLS problem
was confirmed. It should be pointed that the SOA based on segmentation still remains the
essential property of random sampling but limited with the searching ranges, however the
adopted new solution(s) does not remain any information of the old solution(s). Therefore the
improvement of solution performance can only be achieved by increasing the numbers of
samples or by narrowing the range of segment.

3.2. Genetic algorithm

Genetic algorithm (GA) has been developed firstly for solving the MLLS problems in (Dellaert
and Jeunet, 2000a, Dellaert et al. 2000b, Han et al. 2012a, 2012b). In fact, it firstly created the
way that solving MLLS problems by using meta-heuristic algorithms. Several important
contributions were achieved. Firstly a very general GA approach was developed and improved
by using several specific genetic operators and a roulette rule to gather those operators had
been implemented to treat the two dimensional chromosomes. Secondly, comparison studies
had been provided to show that better solution could be obtained than those existing heuristic
algorithms, based on several benchmarks data collected from literature. Later such bench‐
marks provide a platform of developing meta-heuristic algorithms and evaluating their
performance. Because the complexity of MLLS problem and the flexibility and implement
ability of GA are matching each other so that GA seems powerful and effective for solving
MLLS problem. However, even several operators as single bit mutation; cumulative mutation;
inversion; period crossover and product crossover were combined in the GA algorithm but
what operators were effective in better solution searching process was not presented clearly.
It is the point that we try to define and solve in this chapter.

3.3. Simulated annealing

Simulated annealing (SA) has been also developed to solve the MLLS problem (Tang,2004; Raza
and Akgunduz,2008). It starts from a random initial solution and changing neighbouring states
of the incumbent solution by a cooling process, in which the new solution is accepted or rejected
according to a possibility specified by the Metropolis algorithm. Also parameters used in the
algorithm had been investigated by using the analysis of variance approach. It had been reported
that the SA is appropriate for solving the MLLS problem however verified only in very small test
problems. Based on our understanding for SA, different from other meta-heuristic algorithms

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

81

like GA, SA is rather like a local successive search approach from an initial solution. Then almost
information of the old solution can be remained which may lead a long time to search better
solution if it is far from the original solution. Also several implement methods con be used to
improve the effective of SA (see Hoos and Thomas 2005). It is a general point to improve the
effective of SA through shortening the cooling time with some other local searching methods.

3.4. Particle swarm optimization

Particle swarm optimization (PSO) is also a meta-heuristic algorithm formally introduced (Han
et al,2009, 2011). It is a suitable and effective tool for continuous optimization problems.
Recently the standard particle swarm optimization algorithm is also converted into a discrete
version through redefining all the mathematical operators to solve the MLLS problems (Han
et al, 2009). It starts its search procedure with a particle swarm. Each particle in the swarm
keeps track of its coordinates in the problem space, which are associated with the best solution
(fitness) it has achieved so far. This value is called pBest. Another “best” value tracked by the
global version of the particle swarm optimization is the overall best value, and its location,
obtained so far by any particle in the population, which is called gBest. Gather those so-called
optimal factors into current solutions then they will converge to a better solution. It has been
reported that comparing experiments with GA proposed in (Dellaert and Jeunet, 2000a,
Dellaert et al. 2000b) had been executed by using the same benchmarks and better performance
were obtained. Consider the essential mechanism of PSO, it is clear that those optimal factors
(pBest and gBest) follow the information of the particle passed and direct where the better
solution being. However, it has not been explained clearly that whether those optimal factors
remained the required information when the PSO is converted into a discrete form.

3.5. Ant colony optimization

A special ant colony optimization (ACO) combined with linear program has been developed
recently for solving the MLLS problem (Pitakaso et al. 2007, Almeda 2010). The basic idea of
ant colony optimization is that a population of agents (artificial ants) repeatedly constructs
solutions to a given instance of a combinatorial optimization problem. Ant colony optimization
had been used to select the principle production decisions, i.e. for which period production
for an item should be schedules in the MLLS problems. It starts from the top items down to
the raw materials according to the ordering given by the bill of materials. The ant’s decision
for production in a certain period is based on the pheromone information as well as on the
heuristic information if there is an external (primary) or internal (secondary) demand. The
pheromone information represents the impact of a certain production decision on the objective
values of previously generated solutions, i.e. the pheromone value is high if a certain produc‐
tion decision has led to good solution in previous iterations. After the selection of the produc‐
tion decisions, a standard LP solver has been used to solve the remaining linear problem. After
all ants of an iteration have constructed a solution, the pheromone information is updated by
the iteration best as well as the global best solutions. This approach has been reported works
well for small and medium-size MLLS problems. However for large instances the solution
method leads to high-quality results, but cannot beat highly specialized algorithms.

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios82

3.6. Variable neighbourhood search

Variable neighborhood search (VNS) is also used to solve the MLLS problem (Xiao et al.,
2011a, 2011b, 2012). The main reasoning of this searching strategy, in comparison to most local
search heuristics of past where only one neighborhood is used, is based on the idea of a
systematic change of predefined and ordered multi neighborhoods within a local search. By
introducing a set of distance-leveled neighborhoods and correlated exploration order, the
variable neighborhood search algorithm can perform a high efficient searching in nearby
neighborhoods where better solutions are more likely to be found.

There may other different meta-heuristic algorithms have been proposed for solving the MLLS
problems, but it can be considered that the algorithms updated above can cover almost fields
of the meta-heuristic so that the knowledge obtained in this chapter may has high applicable
values. All of the meta-heuristic algorithms used to solve the MLLS problems are generally
constructed by the algorithm describe in Fig.1 as follows.

Repeat the following step (1), (2) and (3):

(1)Find an initial solution(s) by using the init function.

(2)Repeat (a) and (b) steps:

 (a)Find a new solution randomly in solution space by using the step function;

 (b)Decide whether the new solution should be accepted.

(3)Terminate the search process by using the terminate function and output the best solution found.

Figure 1. General algorithm for solving the MLLS problem

In Fig. 1, at the beginning of the search process, an initial solution(s) is generated by using the
function init. A simple init method used to generate the initial solution may be the random
sampling method, and often several heuristic concepts of MLLS problem are employed to
initialize the solution because they can help obtaining better performance. Moreover, the init
methods are usually classified into two categories in terms of single solution or multi solutions
(usually called population). Function step shows the own originality of the algorithm by using
different implement techniques. By comparing the total costs of old and new solutions, it
accepts usually the solution with smaller one as next incumbent solution. Finally, function
terminate, a user-defined function such as numbers of calculation, coverage rate and so on, is
used to terminate the program.

All of the implement techniques used in step function, which are represented in all of the meta-
heuristic algorithms for solving the MLLS problems, can be summarized as below.

1. Single- bit mutation

Just one position (i,t) has randomly selected to change its value (from 0 to 1 or the reverse)

2. Cumulative mutation

When a single-bit mutation is performed on a given item, it may trigger mutating the value(s)
of its predecessors.

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

83

3. Inversion

One position (i,t) has been randomly selected, then compare its value to that of its neighbor in
position (i,t+1). If the two values are different from each other(1 and 0, or 1 and 0), then
exchanges the two values. Note the last period t=N should not be selected for inversion
operation.

4. Period crossover

A point t in period (1, N) is randomly selected for two parents to produce off-springs by
horizontally exchanging half part of their solutions behind period t.

5. Product crossover

An item i is randomly selected for two parents to produce off-springs by vertically exchanging
half part of their solutions below item i.

Table 1 summaries what implement techniques and init function have been used in the existing
meta-heuristic algorithms. From Table 1 it can be observed that all of the algorithms use the single-
bit mutation method in their step function, but their ways of making the mutations are different.
Clearly, SOA creates new solution(s) without using any previous information so that it may is
recognized a non-implemental approach. Reversely SA uses single-bit and cumulative muta‐
tion based on incumbent solution therefore it reserves almost all of the previous information.
Moreover, a random uphill technique is used in SA to escape from local optima so that the global
optimal solution may is obtained. However a very long computing time is needed to get it. On the
other hand, PSO uses the single-bit mutation method to create the new candidate in step function
but starting with multiple initial solutions. According to the concept of original PSO, some
information of solutions obtained before may be added into the construction of new solutions in
order to increase the probability of generating better solutions. However, it needs a proof of such
excellent property is guaranteed in the implemental process but is not appeared in the algorithm
proposed before. It may is a challenge work for developing a new PSO algorithm for solving the
MLLS problem. Finally, because the techniques of inversion and crossover (which were usually
used in other combinational optimization problem such as a Travelling Salesman Problem) only
have been used in GA, it is not able to compare them with other algorithms.

Single- bit

mutation

Cumulative

mutation
Inversion Period crossover

Product

crossover
initial solution

SOA ― ― ― ― ― many

GA ○ ○ ○ ○ ○ multi

SA ○ ○ ― ― ― single

PSO ○ ○ ― ― ― multi

ACO ○ ― ― ― ― single

VNS ○ ○ ○ ― ― single

Table 1. The implement techniques used in various algorithms

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios84

Note the implement techniques can change the states of the incumbent solution(s) to improve
the performance with respect to total cost function, so that which implement technique could
do how many contributions to the solution improvement is very important for the computing
efficiency of MLLS problems. Here our interesting is on those implement techniques used in
the above algorithms, which had been reported appropriate in their calculation situations. We
define several criteria for evaluating the performance and effective of the implemental
techniques. We firstly define distance-based neighborhood structures of the incumbent
solution. The neighborhoods of incumbent solution are sets of feasible solutions associated
with different distance measurements from the incumbent solutions. The distance means the
exchanged number of different points of two incumbent solutions.

Definition 1. Distance from incumbent solution: For a set of feasible solutions of a MLLS problem,
i.e., X = {xi ,t}, a solution X ' belongs to the kth-distance of incumbent solution x, i.e. Nk(x), if and
only if it satisfies, x '∈Nk (x)⇔ρ(x, x ') =k , where k is a positive integer. Distance between any
two elements in in X, e.g., x and x’, is measured by

(, ') \ ' '\ , 'x x x x x x x x Xr = = " Î (7)

Where | • \ • | denotes the number of different points between two solutions, i.e.,

| • \ • | =∑
i=1

M
∑
t=1

N | xi ,t − xi ,t
' |

For example of a MLLS problem with 3 items and 3 periods, and three feasible solutions: x, x’
and x’’, which are as following,

x = |1 0 0
1 0 0
1 1 1

| , x ' = |1 0 0
1 0 1
1 1 1

| , x ' ' = |1 0 0
1 0 1
1 0 1

|
According to Definition 1 above, we can get their distances such that:
ρ(x, x ') =1, ρ(x ', x ' ') =1, ρ(x, x ' ') =2.

Therefore, creating a solution with kth distance, i.e. Nk(x), to the incumbent solution can be
realized by changing the values of k different points of incumbent solution. It can be considered
that less changes, e.g. N1(x), can avoid too much damage to the maybe good properties of the
incumbent solution, in which some points may be already in its optimal positions. While
multiple changes, e.g. Nk(x) (k>1), lead a new solution to be very different from the incumbent
solution, so it may also destroy the goodness of the original solution. However on the other
hand local optimization may be overcame by multiple changes. Hence, following hypothesis
may be considered to evaluate the performance and effective of an implement technique.
Secondly we define range measurements that means the changing points are how far from the
incumbent solutions. Eventually, we can evaluate those implemental techniques used in the
algorithms to solve the MLLS problems by measuring the distance and range when the solution
has been changed.

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

85

Definition 2. Changing Range of incumbent solution: Any elements belong to the kth-distance of
incumbent solution x, i.e. Nk(x), have a range in which the changed items and periods of
incumbent solution have been limited.

Therefore, if the changing result of an incumbent solution by an implement technique falls into
a small range, it seems be a local search and hence may give little influence on the total cost
function. Otherwise a change of incumbent solution within a large range may be a global search
increasing the probability of worse solutions found and resulting lower searching efficiency.
Comparing the considerations of constructing mutation in the algorithms above, we can find
that only short distance (for cumulative mutation, it is a very special case of long distance) has
been executed in GA, SA and PSO with different implement techniques. For example, all of
the algorithms use mutation to change the solution but only GA uses the probability of
obtaining a good solution to increase the share rate of the operators. While SA uses a probability
of accepting a worse solution to create an uphill ability of escaping from the traps of local
optima, and PSO uses other two factors (pBest and gBest) to point a direction in which the
optimal solution maybe exist. SOA and ACO are using basic random sampling principle to
select the decisions in all positions of item and period. The difference is that SOA does not
remain any information of previous solutions so large numbers of solution should be initialed
and long distance (about half of items*periods) always existed, whereas ACO uses a level by
level approach to do single-bit mutation in a solution so goodness of previous solution may
has been remained with long distance. Finally, VNS directly use distances to search good
solution so that its distance is controllable.

Next, regarding the other three implement techniques, i.e., the inversion, the item crossover,
and the period crossover, which are not used in other algorithms except GA, we can find that
the inversion is just a special mutation that changes the solution with two points distance.
However crossover(s) may change the original solutions with a longer distance so only partial
goodness of previous solution has been remained. In GA algorithm, the implement techniques
with long and short distance are combined together, therefore it should be considered more
effective for solving the MLLS problem. However, we have to say that those implement
techniques used in above algorithms (includes GA) seem not effective in finding good solution.
Because even a good solution exists near by the original solution, here is no way to guarantee
that it will be found by above algorithms since the candidate solution is randomly generated.
It can be considered that not only distance but also range should be used in the step function
to find a better solution. However, two problems here need to answer. Can distance and range
evaluate the effective of implement techniques using in the MLLS problem? How do the
implement techniques should be applied?

For proofing our consideration above, simulation experiments were executed by using the
general algorithm for solving the MLLS problems shown in Fig.1. Initial solution(s) is pro‐
duced with a randomized cumulative Wagner and Whitin (RCWW) algorithm. The step
function uses a GA algorithm, because all kinds of the implemental techniques had been
included in the algorithm. We can control what the implemental technique should be used
then evaluate the efficiency of the techniques. However the terminate functions used in different
problem instances are different. In the experiments we first show the relationship among

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios86

distance range and searching effective. Then we investigate the performance effective of
various implemental techniques. For calculating the distance, set k←1, and repeated to find
randomly a better solution from Nk(x) and accept it until non better solution could be found
(indicated by 100 continuous tries without improvement). And then, search better solutions
from next distance (k←k+1) until k>kmax. The calculation is repeated for 10 runs in different rages
and the averages are used. In the step of GA, each of the five operators (single-bit mutation,
cumulative mutation, inversion, period crossover and product crossover) are used with a fixed
probability 20%, to produce new generation. Initial populations are generated and maintained
with a population of 50 solutions. In each generation, new 50 solutions are randomly generated
and added into the populations, then genetic operation with the five operators was performed
and related total cost has been calculated. In the selection, top 50 solutions starting from lowest
total cost are remained as seeds for the next generation and the rest solutions are removed
from the populations. We use a stop rule of maximum 50 generations in terminate function.
The successful results are counted in terms of distance and range (maximum deviation item/
period position among changed points). If there is only one point changed, then the range is
zero. Finaly, simulation is excuted by using the same banch marks of Dellaert and Jeunet
(2000a).

Remark 1: Distance, range and searching effective

Table 2 and 3 show an example of better solutions with different distances in different ranges.
Better solution is defined as that the new solutions are better than the incumbent, so we count
the number of better solutions and calculate the ratio of different distances. It can be observed
from Table 2 that different distances lead to different number of better solutions found. Most
of them (94.82%) are found in the nearest neighbourhood with one point distance and the ratio
decreases as the distance increasing, which indicates a less probability of finding better solution
among those whose distance are long from the incumbent. However, the incumbent solution
did be improved by candidate solutions from longer distance. Even so the results with same
tendency can be observed from Table 3 in which a limited range has been used. However very
different meanings can be observed from Table 3. Firstly, limiting the search range can lead to
a more efficiency for searching better solutions, which is represented by the fact that the total
number of better solutions found is about 4% more than that of the non-limited search, and it
also leads to obtain a solution with a better total cost (comparing with Table 2). Secondly, even
the number of better solutions are almost same in distance 1 (changing just one position of the
incumbent solution), but the number of better solutions in distance 2 was about three times of
that of non-limited search. That is, longer time and less effect were performed in distance 1 if
the range is not limited. This observation can lead a considerable result of implementing a
faster searching in distance 1 and a faster changing between distances. That is the superiors of
limited searching range.

Distance Better solutions Ratio

1 3333 94.82%

2 135 3.84%

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

87

Distance Better solutions Ratio

3 28 0.80%

4 14 0.40%

5 5 0.14%

Total cost=826.23 3515 100.00%

Table 2. A non limited search in distances in small MLLS problems (Parameters: kmax=5, Δi = ± 5, Δt = ± 12)

Distance Better solutions Ratio

1 3232 88.57%

2 332 9.10%

3 55 1.51%

4 25 0.69%

5 5 0.14%

Total cost=824.37 3649 100%

Table 3. A limited search in distances in small MLLS problems (Parameters: kmax=5, Δi = ± 1, Δt = ± 3)

That means even the implemental techniques used in algorithms such as SA, PSO, and VNS
are seemly different, but the results from them may be totally similar. In addition, GA uses
other implement techniques like crossover(s), so it may lead a longer distance and improve
the searching performance basically. Moreover, distance and range have a very flexible
controllability to produce candidate solutions. It gives a very important observation that a
special range which includes some heuristic information (such as period heuristics is effective
but level heuristic is not effective, and so on) can improve the performance of implemental
technique, therefore they should be used as some new implemental methods into the meta-
heuristic algorithms.

Remark 2: effective of various implement techniques

Here five implemental techniques, i.e., single-bit mutation, cumulative mutation, inversion,
product crossover, and period crossover, were tested by using GA algorithm. These implement
techniques are used in the step function of our GA algorithm. The RCWW algorithm is used
as the initial method to produce a population of 50 solutions as the first generation. Then, each
of the five implemental techniques is selected with equal probability, namely, 20%, to produce
a new generation, and each generation keeps only a population of 50 solutions after the
selections by total cost function. The algorithm stops after 50 generations have been evolved.
A solution is said to be a better solution if its objective cost is better than those of its parent
and is counted in terms of changing distance and changing range from its parent. Therefore,
simulation experiment is able to show the relationships among distance, range and searching
effectives (represented by the number of better solutions found) of each implemental techni‐

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios88

que. We represent the relationships among distance, range and searching effectives in a three
dimensional figure, in which the dimensions are the distance, the range and the number of better
solutions found. Then the distribution in the figures can show how the criteria of distance and
range segmenting the searching effectives.

Firstly, it can be considered that the single-bit mutation and the inversion are very similar since
the candidate solutions are always in distance 1 and range ±0 by single-bit mutation and always
in distance 2 and range ±1 by inversion, so the better solutions found are always in distance 1
and range ±0 for the former and distance 2 and range ±1 for the latter, which have been verified
in Fig.2 and Fig.3. Comparing Fig.2 and Fig.3, we also can find that the searching effective of
reversion is little better than that of single-bit mutation because more better solutions can be
found by reversion.

0 1 2 3 4
1

2
3

4
5

0

10000

20000

30000

40000

50000

60000

N
um

be
r o

f b
et

te
r s

ol
ut

io
ns

Range

Dis

Distribution of better solutions by single-bit mutation

Figure 2. The result of single-bit mutation

0 1 2 3 4 5
1

2
3

4
5

0

10000

20000

30000

40000

50000

60000

70000

80000

N
um

be
r o

f b
et

te
r s

ol
ut

io
ns

Range

Dis

Distribution of better solutions by reverse

Figure 3. The result of reverse

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

89

0 1 2 3 4
1

2
3

4
5

0

10000

20000

30000

40000

50000

60000

N
um

be
r o

f b
et

te
r s

ol
ut

io
ns

Range

Dis

Distribution of better solutions by cumulative mutation

Figure 4. The result of cumulative mutation

0 1 2 3 4 5 6 7 8 9
1

2
3

4
5

6
7

8
910

0

20000

40000

60000

80000

100000

120000

N
um

be
r o

f b
et

te
r s

ol
ut

io
ns

Range

Dis

Distribution of better solutions by period crossover

Figure 5. The result of period crossover

0 1 2 3 4 5 6 7 8 9 10
1

3
5

7
9

11

0

10000

20000

30000

40000

50000

60000

70000

80000

N
um

be
r o

f b
et

te
r s

ol
ut

io
ns

Range

Dis

Distribution of better solutions by item crossover

Figure 6. The result of item crossover

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios90

0 1 2 3 4 5 6 7 8 9 10
1

3
5

7
9

11

0

50000

100000

150000

200000

250000

300000

N
um

be
r o

f b
et

te
r s

ol
ut

io
ns

Range

Dis

Mixed distribution of better solutions by five techniques

Figure 7. The mixed result of five implemental techniques

Secondly, it seems the cumulative mutation may trigger longer distance and larger range (than
the single-bit mutation) to the incumbent solutions, the results of the experiment shown in
Fig.4 can illustrate the correctness of this observation. Also it can be observed that only those
with small distance and range are more effective in improving the performance of cost
function.

Thirdly, the implemental techniques of item crossover and period crossover are more complex
than cumulative mutation and reversion, and the offspring consequently may be associated
with very large range and very long distance in comparison to their parents. Still, it can be
observed from our experimental results in Fig.5 and Fig.6 that only those offspring with small
distance and range are more effective on improving the fitness function. Moreover, comparing
with simple implemental techniques (single-bit mutation, reversion and cummulative
mutation), crossover techniques can achieve significent performance improvements in
searching effective.

Finally in Fig.7, we show the mixed distribution of all the five implemental techniques. The
results of simulation experiments show that a total signifecent effective of searching better
solution can be obtained by using the mixed implemental techniques. Also repeatly, almost
achievements of searching effective are in smaller distance and range. This phenominon may
be used to conduct a more effective implemental technique in GA algorithms than pure free
crossover.

However, for candidate solutions with larger range and longer distance, they still provided
improvements on fitness function with probability so should not be ignored by any meta-
heuristic algorithms for optimality purpose. Nevertherless, we can develop more effective and
more efficient implemental techniques by matching to the ratio of better solution can be found
in different ranges and distances. For example, those crossover operations resulting in
offspring with too long distance are non-effective and should be avoided as possible.

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

91

4. An example: A IVNS algorithm for solving MLLS problems

The VNS/VND algorithm initiated by Mladenovic and Hansen (1997), Hansen and Mladenovic
(2001) and Hansen et al. (2001, 2008), is a top-level methodology for solving the combinatorial
optimization problems. Because its principle is simple and easily understood and implement‐
ed, it has been successfully applied to several optimization problems in different fields. The
success of VNS is largely due to its enjoying many of the 11 desirable properties of meta-
heuristic generalized by Hansen et al., (2008), such as simplicity, user-friendliness, efficiency,
effectiveness, and so on. Since the MLLS problem is observed to share common characteristics,
e.g., a binary decision variable, with those problems successfully solved by VNS/VND based
algorithm, it is promising to develop an efficient algorithm for this problem (Xiao et al.,
2011a, 2011b, 2012). Here an iterated variable neighborhood descent (IVND) algorithm, which
is a variant of VNS, is proposed as an example to show the utility and performance improve‐
ment of considerations descripted above.

4.1. Initial method

We use a randomized cumulative Wagner and Whitin (RCWW) based approach to initialize the
solution for our proposed IVNS algorithm. The RCWW method was introduced by Dellaert and
Jeunet(2000a), of which the main idea is based on the fact that lot-sizing a product in the one period
will trigger demands for its components in previous periods with leading time corrections(or in
same period for the case of zero leading time). Therefore, the real setup cost of an item is in fact
greater than its own setup cost and should be modified when using the wellknown sequentiail
WW algorithm to generate a initial solution. The time-varying modified setup cost is a improved
concept introduced by Dellaert et al(2000b, 2003) and used by Pitakaso et al(2007) which dispos‐
es of using a constant modified setup cost for the whole planning horizon; it suggested the costs
might vary from one time period to the next, and reported good in getting better initial solutions.

In the IVND algorithm, we use the sequential WW algorithm based on randomly initialized
constant modified setup cost to generate initial solutions. For each item i, its modified setup
cost Si

' can be calculated recursively by

1

'
'

1
i

j
i i j

j j

S
S S r S

-
-

ÎG

é ùæ ö
ê úç ÷= + +ê úç ÷ç ÷Gê úè øë û
å (8)

where Si is the original setup cost of item i, r is a random value uniformly distributed between
[0,1], |Γi

−1 | is the set of immediate predecessors(components) of product i and |Γi
−1 | is its

cardinality.

In addition to the modified setup cost, we also use the modified unit inventory holding cost
to construct initial solutions. It is simply based on the consideration that a positive inventory
balance of one product in one period causes not only its own inventory holding cost but also

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios92

additional inventory holding cost from its predecessors because not all the demands for
predecessors are met by timely production; some of them may also be satisfied by inventory.
Therefore and similarly, the modified unit inventory holding cost of product i, i.e., H i

' can be
calculated recursively by

1

'
'

1
i

j
i i j

j j

H
H H q H

-
-

ÎG

é ùæ ö
ê úç ÷= + +ê úç ÷ç ÷Gê úè øë û
å (9)

where Hi is the original unit inventory holding cost of product i and q is a random value
uniformly distributed between [0,1].

4.2. Implemental techniques

Here six implemental techniques are used in the IVND algorithm which are integrated together
to deliver good performance in the computing experiments.

1. Limit the changing range of incumbent solution within one item. Limit the changing range of
incumbent solution within one item, i.e., N1(x), when exploring a neighborhood farther
than N1(x). That is, when multiple mutations are done on incumbent solution, they must
occur on same item but different periods.

2. All mutations are limited between the first period and the last period that have positive demand.
This technique makes the search algorithm to avoid invalid mutations. Nevertheless, the
first period with positive demand should be fixed with 1.

3. No demand, no setup. Mutation must not try of arranging setups for products in periods
without positive demand, which is obviously non-optimal operation and should be
banned in the whole searching process.

4. Triggerrecursive mutations. A mutation of canceling a setup for a product in a period will
trigger recursive mutations on all of its ancestors. While a mutation of canceling a setup
occurs, e.g. changing the value of bit xit from 1 to 0, it withdraws demands for the
immediate predecessors in previous periods of leading time. As a consequence, some of
these predecessors their demands may drop to zero such that their setups (if they have)
in these periods should be canceled at the same time; other predecessors who remain non-
zero demands due to product commonality should remain unchanged. The recursive
mutations are only triggered for cancellation of a setup for production; they will not occur
when arranging a setup.

5. Shift a setup rather than cancel a setup. When the setup for product i at period t need to be
canceled, try to shift the setup to the first period with positive demand behind t, rather
than simply cancel it. For example, when xit is to be canceled, find the first period t* behind
t of product i that satisfies Dit* >0 and arrange a setup by setting xit*←1 if xit* is 0. Notably,
this arrangement of this setup will also trigger recursive mutations.

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

93

6. Only affected products and periods are recalculated of their inventory holding costs and setup
costs. Different to other evolutionary algorithms like GA and PSO where a group of
incumbent solutions have to be maintained, the IVND algorithm has only one incumbent
solution. In fact, when a mutation occurs, most area of the solution states including setup
matrix Yit, lot-sizing matrix Xit and demand matrix Dit are remain unchanged. Thus, it just
needs to recalculate the affected products and the affected periods of the setup cost and
inventory holding cost after a mutation operation. By taking this advantage, the comput‐
ing efficiency of IVND algorithm can be significantly improved since the recalculation of
the objective function--the most time-consuming part of IVND algorithm, are avoided.

The above six implemental techniques are all used in our proposed IVND algorithm to mutate
the incumbent solution into its neighborhood. Steps of implementing these techniques on
neighborhood search, e.g., neighborhood Nk(x), can be explained by Fig.8.

To generate a candidate solution from neighborhood Nk(x) of the incumbent solution x:

(1)Select randomly k bits of x, e.g.,
1 2, , ,, ,...,

k
i t i t i t
x x x , and sequentially mutate them. The first three implement

techniques mentioned above must follow in the selection: the first implemental technique that the to-be bits must be

within an identical item; the second implemental technique that the to-be mutated periods should between the first

period and last period with positive demand; the third implemental technique that those periods without demand

should not be selected for mutation.

(2)For each mutation from 1 to 0(noticeably not including those from 0 to 1), the forth implemental technique must

be followed to trigger recursive mutations toward its predecessors with zero demand. In the recursive mutation

process, the fifth implemental technique must be implemented to try of shifting the setup to the first sequential period

with positive demand, rather than simply removed it.

(3)Whenever a bit of the incumbent solution is changed, the sixth implemental technique is implemented to

recalculate the objective function just by recalculating the affected items and their periods.

Figure 8. The implementation of implemental techniques

Although the new solutions from Nk(x) may has a greater than k unit distance from the
incumbent solution x after implemented with these six implemental techniques, it is still
considered as a member of Nk(x). These implemental techniques are only deemed as additional
actions implemented on the new solution toward better solution. Moreover, benefiting from
these actions, higher efficiency of VNS algorithm could be consequently anticipated, which
has been confirmed in the experiments of Section 4.

4.3. The IVND algorithm

The algorithm IVND is a variant of the basic VND algorithm. It starts from initiating a solution
as the incumbent solution, and then launches a VND search. The VND search repeatedly tries
of finding a better solution in the nearby neighborhood of the incumbent solution and moves
to the better solution found; if a better solution cannot be found in current neighborhood, then
go to explore a father neighborhood until the farthest neighborhood is reached. Once the VND
process is stopped(characterized by the farthest neighborhood been explored), another initial
solution is randomly generated and restarts the VND search again. This simply iterated search

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios94

process loops until the stop condition is met. The stop condition can be a user-specified
computing time or a maximum span between two restarts without improvement on the best
solution found. In our experiments of the next section, we use the later one, i.e., a fixed times
of continuous restarts without improvement, as the stop condition. The basic scheme the
proposed IVND algorithm is illustrated in Fig. 9.

Define the set of neighborhood structures Nk, k=1,…,kmax, that will be used in the search; choose a stop condition.

Repeat the following step (1), (2) and (3) until the stop condition is met:

(1)Find an initial solution x0 by using RCWW algorithm

(2)Set k←1, n← 0;

(3)Until k=kmax repeat (a), (b), and (c) steps:

 (a)Find at random a solution x’ in Nk(x);

 (b)Move or not: if x’ is better than x, then 'x x , k←1 and n←0, go to step (a) ; otherwise, n← n+1;

 (c) If n=N, then shift to search a farther neighborhood by k←k+1 and reset n←0;

(4)Output the best solution found.

Figure 9. The IVND algorithm for MLLS problem

There are three parameters, i.e., P, N, and Kmax, in the IVND algorithm for determining the
tradeoff between searching efficiency and the quality of final solution. The first parameter P
is a positive number which serves as a stop condition indicating the maximum span between
two restarts without improvement on best solution found. The second parameter N is the
maximum number of explorations between two improvements within a neighborhood. If a
better solution cannot be found after N times of explorations in the neighborhood Nk(x), it is
then deemed as explored and the algorithm goes to explore a farther neighborhood by k←k+1.
The third parameter Kmax is the traditional parameter for VND search indicating the farthest
neighborhood that the algorithm will go.

5. Computational experiments and the results

5.1. Problem instances

Three sets of MLLS problem instances under different scales(small, medium and large) are
used to test the performance of the proposed IVND algorithm. The first set consists of 96 small-
sized MLLS problems involving 5-item assembly structure over a 12-period planning horizon,
which was developed by Coleman and McKnew (1991) on the basis of work by Veral and
LaForge (1985) and Benton and Srivastava (1985), and also used by Dellaert and Jeunet
(2000a). In the 96 small-sized problems, four typical product structures with an one-to-one
production ratio are considered, and the lead times of all items are zero. For each product
structure, four cost combinations are considered, which assign each individual item with
different setup costs and different unit holding costs. Six independent demand patterns with
variations to reflect low, medium and high demand are considered over a 12-period planning
horizon. Therefore, these combinations produce 4×4×6=96 problems for testing. The optimal

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

95

solutions of 96 benchmark problem are previously known so that can serve as benchmark for
testing against the optimality of the new algorithm.

The second set consists of 40 medium-sized MLLS problems involving 40/50-item product
structure over a 12/24-period planning horizon, which are based on the product structures
published by Afentakis et al. (1984), Afentakis and Gavish (1986), and Dellaert and Jeunet
(2000). In the 40 medium-sized problems, four product structures with an one-to-one produc‐
tion ratio are constructed. Two of them are 50-item assembly structures with 5 and 9 levels,
respectively. The other two are 40-item general structure with 8 and 6 levels, respectively. All
lead times were set to zero. Two planning horizons were used: 12 and 24 periods. For each
product structure and planning horizon, five test problems were generated, such that a total
number of 4×2×5=40 problems could be used for testing.

The third set covers the 40 problem instances with a problem size of 500 products and 36/52
periods synthesized by Dellaert and Jeunet (2000). There are 20 different product structures
with one-to-one production ratio and different commonality indices1. The first 5 instances are
pure assembly structures with one end-product. The instances from 6 to 20 are all general
structure with five end-products and different communality indices ranges from 1.5 to 2.4. The
first 20 instances are all over a 36-period planning horizon; the second 20 instances are of the
same product structures of the first 20 instances but over a 52-period planning horizon. The
demands are different for each instances and only on end-products.

Since the hybrid GA algorithm developed by Dellaert and Jeunet (2000a) is the first meta-
heuristic algorithm for solving the MLLS problem, it was always selected as a benchmark
algorithm for comparison with newly proposed algorithm. Therefore, we compared the
performance of our IVND algorithm with the hybrid GA algorithm on the all instances of three
different scales. We also compared our IVND algorithm with the MMAS algorithm developed
by Pitakaso et al.(2007), and the parallel GA algorithm developed by Homberger (2008) since
both of them used the same three set of instances used in this paper.

5.2. Test environment

The IVND algorithm under examination were coded in VC++6.0 and ran on a notebook
computer equipped with a 1.6G CPU operating under Windows XP system. We fixed the
parameter Kmax to be 5 for all experiments, and let the parameter P and N changeable to fit for
the different size of problem. The symbol ‘IVNDN

P ’ specifies the IVND algorithm with the

parameter P and N, e.g., IVND200
50 indicates P=50, N=200, and Kmax=5 by default. The effect of

individual parameter on the quality of solution was tested in section 5.6.

5.3. Small-sized MLLS problems

We repeatedly ran IVND200
50 on the 96 small-sized MLLS problems for 10 times and got 960

results among which 956 were the optimal results so the optimality was 99.58% indicated by

1 Commonality index is the average number of successors of all items in a product structure

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios96

the column Best solutions found(%). The column average time(s) indicates the average computing
time in second of one run for each problem. The average result of 10 and the minimum result
of 10 are both shown in Table 4 and compared to the HGA algorithm of Dellaert and Jeunet
(2000a), the MMAS algorithm of Pitakaso et al.(2007) and the PGA algorithm of Homberger
(2008). It can be observed from Table 4 that IVND200

50 uses 0.7 second to find 100% optimal
solutions of 96 benchmark problems. Although the PGAC and the GA3000 can also find 100%
optimal solutions, they take longer computing time and also take the advantage of hardware
(for PGAC 30 processors were used to make a parallel calculation). After that, we adjust the
parameter P from 50 to 200 and repeatedly ran IVND200

200 on the 96 problems for 10 times again.
Surprisingly, we got 960 optimal solutions (100% optimality) with computing time of 0.27
second.

Method
Avg.

cost

Best

solutions

found (%)

Mean dev. if

best solution

not found

Average

time(s)
CPU type

Number of

processors
Sources

HGA50 810.74 96..88 0.26 5.14s -- 1 Dellaert et al.(2000)

MMAS 810.79 92.71 0.26 <1s P4 1.5G 1 Pitakaso et al.(2007)

GA100 811.98 75.00 0.68 5s P4 2.4G 1 Homberger(2008)

GA3000 810.67 100.00 0.00 5s P4 2.4G 1 Homberger(2008)

PGAI 810.81 94.79 0.28 5s P4 2.4G 30 Homberger(2008)

PGAC 810.67 100.00 0.00 5s P4 2.4G 30 Homberger(2008)

IVND
50

100
 (Avg. of 10) 810.69 99.58 0.02 0.07s NB 1.6G 1 IVND

IVND
50

100
 (Min. Of 10) 810.67 100.00 0.00 0.7s NB 1.6G 1 IVND

IVND
200
200

(Avg. Of 10) 810.67 100.00 0.00 0.27s NB 1.6G 1 IVND

OPT. 810.67 100.00 0.00 -- -- - --

Table 4. Comparing IVND with existing algorithms on 96 small-sized problems

5.4. Medium-sized MLLS problems

Secondly, we ran IVND600
100 algorithm on 40 medium-sized MLLS benchmark problems and

repeated 10 runs. We summarize the 400 results and compare them with the existing algo‐
rithms in Table 5. More detailed results of 40 problems are listed in Table 6 where the previous
best known solutions summarized by Homberger(2008) are also listed for comparison. After
that, we repeatedly ran IVND600

100 algorithm for several times and updated the best solutions
for these 40 medium-sized problems which are listed in column new best solution in Table 6.

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

97

Method Avg. cost

Optimality on

previous best

solutions (%)

Comp.

Time(s)
CPU type

Number of

processors
Sources

HGA250* 263,931.8 17.50 <60s -- 1 Dellaert et all(2000)

MMAS 263,796.3 22.50 <20s P4 1.5G 1 Pitakaso et al.(2007)

GA100 271,268.2 0.00 60s P4 2.4G 1 Homberger(2008)

GA3000 266,019.8 15.00 60s P4 2.4G 1 Homberger(2008)

PGAI 267,881.4 0.00 60s P4 2.4G 30 Homberger(2008)

PGAC 263,359.6 65.00 60s P4 2.4G 30 Homberger(2008)

IVND
100
600

(Avg. of 10) 263,528.5 30.00 2.67 NB 1.6G 1 IVND

IVND
100
600

 (Min. of 10) 263,398.8 60.00 26.7 NB 1.6G 1 IVND

Prev. best solution 263,199.8 -- -- -- -- --

New best solution 260,678.3 -- -- -- - --

Table 5. Comparing IVND with existing algorithms on 40 medium-sized problems

It can be observed from Table 5 that the PGAC and IVND600
100 (Min. of 10) algorithm are among

the best and very close to each other. Although the optimality of PGAC (65%) is better than
that of IVND600

100 (Min. of 10) (60%) in terms of the baseline of previous best known solutions,
it may drop at least 17% if in terms of new best solutions since 12 of 40 problems had been
updated their best known solutions by IVND algorithm(see the column new best solution in
Table 6) and 7 of the 12 updated problems’ previous best known solution were previously
obtained by PGAC. Furthermore, by taking account into consideration of hardware advantage
of the PGAC algorithm(multiple processors and higher CPU speed), we can say that the IVND
algorithm performances at least as best as the PGAC algorithm on medium-sized problems, if
not better than.

Instance IVND400 Prev. best

Solution

New best

solution

New

methodS D I P Avg. of 10 Min. of 10

0 1 1 50 12 196,084 196,084 194,571 194,571 B&B

1 1 2 50 12 165,682 165,632 165,110 165,110 B&B

2 1 3 50 12 201,226 201,226 201,226 201,226 B&B

3 1 4 50 12 188,010 188,010 187,790 187,790 B&B

4 1 5 50 12 161,561 161,561 161,304 161,304 B&B

5 2 1 50 12 179,761 179,761 179,762 179,761 B&B

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios98

Instance IVND400 Prev. best

Solution

New best

solution

New

methodS D I P Avg. of 10 Min. of 10

6 2 2 50 12 155,938 155,938 155,938 155,938 B&B

7 2 3 50 12 183,219 183,219 183,219 183,219 B&B

8 2 4 50 12 136,474 136,462 136,462 136,462 B&B

9 2 5 50 12 186,645 186,597 186,597 186,597 B&B

10 3 1 40 12 148,004 148,004 148,004 148,004 PGAC

11 3 2 40 12 197,727 197,695 197,695 197,695 PGAC

12 3 3 40 12 160,693 160,693 160,693 160,693 MMAS

13 3 4 40 12 184,358 184,358 184,358 184,358 PGAC

14 3 5 40 12 161,457 161,457 161,457 161,457 PGAC

15 4 1 40 12 185,507 185,170 185,170 185,161 PGAC→IVND

16 4 2 40 12 185,542 185,542 185,542 185,542 PGAC

17 4 3 40 12 192,794 192,794 192,157 192,157 MMAS

18 4 4 40 12 136,884 136,757 136,764 136,757 PGAC→IVND

19 4 5 40 12 166,180 166,122 166,041 166,041 PGAC

20 1 6 50 24 344,173 343,855 343,207 343,207 PGAC

21 1 7 50 24 293,692 293,373 292,908 292,908 HGA

22 1 8 50 24 356,224 355,823 355,111 355,111 HGA

23 1 9 50 24 325,701 325,278 325,304 325,278 PGAC

24 1 10 50 24 386,322 386,059 386,082 385,954 HGA→IVND

25 2 6 50 24 341,087 341,033 340,686 340,686 HGA

26 2 7 50 24 378,876 378,845 378,845 378,845 HGA

27 2 8 50 24 346,615 346,371 346,563 346,358 HGA→IVND

28 2 9 50 24 413,120 412,511 411,997 411,997 HGA

29 2 10 50 24 390,385 390,233 390,410 390,233 PGCA→IVND

30 3 6 40 24 344,970 344,970 344,970 344,970 HGA

31 3 7 40 24 352,641 352,634 352,634 352,634 PGAC

32 3 8 40 24 356,626 356,456 356,427 356,323 PGAC→IVND

33 3 9 40 24 411,565 411,438 411,509 411,438 MMAS→IVND

34 3 10 40 24 401,732 401,732 401,732 401,732 HGA

35 4 6 40 24 289,935 289,846 289,883 289,846 PGAC→IVND

36 4 7 40 24 339,548 339,299 337,913 337,913 MMAS

37 4 8 40 24 320,920 320,426 319,905 319,905 PGCA

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

99

Instance IVND400 Prev. best

Solution

New best

solution

New

methodS D I P Avg. of 10 Min. of 10

38 4 9 40 24 367,531 367,326 366,872 366,848 PGCA→IVND

39 4 10 40 24 305,729 305,363 305,172 305,053 PGCA→IVND

Average 263,529 263,399 263,199.8 260,677.1

Avg. computing time 2.67s 26.7s

Note. Boldface type denotes previous best solution; underline type denotes better solution; Boldface&underline denotes
the new best solution.

Table 6. Results of 40 medium-sized problems and the new best solutions

5.5. Large-sized MLLS problems

Next, we ran IVND1000
50 algorithm on 40 large-sized MLLS benchmark problems and repeated

10 runs. We summarize the 400 results and compare them with the existing algorithms in Table
7, and show detailed results of 40 problems in Table 8.

Method Avg. Cost

Optimality on

prev. best

solutions (%)

Time

(m)
CPU type

Number of

processors
Sources

HGA1000* 40,817,600 10.00 -- 1 Dellaert et all(2000)

MMAS 40,371,702 47.50 P4 1.5G 1 Pitakaso et al.(2007)

GA100 41,483,590 0.00 60 P4 2.4G 1 Homberger(2008)

GA3000 -- -- 60 P4 2.4G 1 Homberger(2008)

PGAI 41,002,743 0.00 60 P4 2.4G 30 Homberger(2008)

PGAC 39,809,739 52.50 60 P4 2.4G 30 Homberger(2008)

IVND
50

1000
(Avg. of 10) 40,051,638 65.00 4.44 NB 1.6G 1 IVND

IVND
50

1000
(Min. of 10) 39,869,210 70.00 44.4 NB 1.6G 1 IVND

Prev. best solution 39,792,241 -- -- -- -- --

New best solution 39,689,769 -- -- -- - --

Table 7. Comparing IVND with existing algorithms on 40 large-sized problems

It can be observed from Table 7 and Table 8 that the IVND algorithm shows its best optimality
among all existing algorithms since 70% of these 40 problems were found new best solution
by IVND algorithm. The average computing time for each problem used by IVND algorithm
was relatively low. However, four problems, i.e., problem 19, 15, 25, and 50, used much long

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios100

time to finish their calculation because the interdependencies among items are relatively high
for these four problems. The column Inter D. in Table 8 is the maximum number of affected
items when the lot-size of end-product is changed.

Instance IVND1000
Prev. best

known

New best

known
New source

I P Inter D. Avg. of 10 Min. of 10
Time

(m)

0 500 36 500 597,940 597,560 6.3 595,792 595,792 PGAC

1 500 36 500 817,615 816,507 6.8 816,058 816,058 HGA

2 500 36 500 929,097 927,860 6.4 911,036 911,036 PGAC

3 500 36 500 945,317 944,626 6.2 942,650 942,650 MMAS

4 500 36 500 1,146,946 1,145,980 6.5 1,149,005 1,145,980 MMAS→IVND

5 500 36 11036 7,725,323 7,689,434 71.9 7,812,794 7,689,434 PGAC→IVND

6 500 36 3547 3,928,108 3,923,336 22.5 4,063,248 3,923,336 MMAS→IVND

7 500 36 1034 2,724,472 2,713,496 17.2 2,704,332 2,703,004 HGA→IVND

8 500 36 559 1,898,263 1,886,812 10.3 1,943,809 1,865,141 PGAC→IVND

9 500 36 341 1,511,600 1,505,392 6.0 1,560,030 1,502,371 MMAS→IVND

10 500 36 193607 59,911,520 59,842,858 179.9 59,866,085 59,842,858 PGAC→IVND

11 500 36 22973 13,498,853 13,441,692 58.6 13,511,901 13,441,692 PGAC→IVND

12 500 36 3247 4,751,464 4,731,818 34.4 4,828,331 4,731,818 PGAC→IVND

13 500 36 914 2,951,232 2,937,914 18.6 2,910,203 2,910,203 HGA

14 500 36 708 1,759,976 1,750,611 8.9 1,791,700 1,740,397 MMAS→IVND

15 500 36 1099608 472,625,159 472,088,128 106.1 471,325,517 471,325,517 PGAC

16 500 36 24234 18,719,243 18,703,573 80.5 18,750,600 18,703,573 MMAS→IVND

17 500 36 7312 7,321,985 7,292,340 33.7 7,602,730 7,292,340 MMAS→IVND

18 500 36 1158 3,592,086 3,550,994 23.4 3,616,968 3,550,994 PGAC→IVND

19 500 36 982 2,326,390 2,293,131 13.8 2,358,460 2,291,093 MMAS→IVND

20 500 52 500 1,189,599 1,188,210 22.4 1,187,090 1,187,090 MMAS

21 500 52 500 1,343,567 1,341,412 14.9 1,341,584 1,341,412 HGA→IVND

22 500 52 500 1,403,822 1,402,818 8.7 1,400,480 1,384,263 MMAS→IVND

23 500 52 500 1,386,667 1,384,263 9.1 1,382,150 1,382,150 MMAS

24 500 52 500 1,660,879 1,658,156 8.8 1,660,860 1,658,156 MMAS→IVND

25 500 52 11036 12,845,438 12,777,577 117.7 13,234,362 12,776,833 PGAC→IVND

26 500 52 3547 7,292,728 7,246,237 27.7 7,625,325 7,246,237 PGAC→IVND

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

101

Instance IVND1000
Prev. best

known

New best

known
New source

I P Inter D. Avg. of 10 Min. of 10
Time

(m)

27 500 52 1034 4,253,400 4,231,896 21.9 4,320,868 4,199,064 PGAC→IVND

28 500 52 559 2,905,006 2,889,328 10.7 2,996,500 2,864,526 MMAS→IVND

29 500 52 341 2,198,534 2,186,429 7.8 2,277,630 2,186,429 MMAS→IVND

30 500 52 193607 103,535,103 103,237,091 297.4 102,457,238 102,457,238 PGAC

31 500 52 22973 18,160,129 18,104,424 49.4 18,519,760 18,097,215 PGAC→IVND

32 500 52 3247 6,932,353 6,905,070 44.3 7,361,610 6,905,070 MMAS→IVND

33 500 52 914 4,109,712 4,095,109 41.1 4,256,361 4,080,792 PGAC→IVND

34 500 52 708 2,602,841 2,573,491 20.5 2,672,210 2,568,339 MMAS→IVND

35 500 52 1099608 768,067,039 762,331,081 121.4 756,980,807 756,980,807 PGAC

36 500 52 24234 33,393,240 33,377,419 137.7 33,524,300 33,356,750 MMAS→IVND

37 500 52 7312 10,506,439 10,491,324 52.1 10,745,900 10,491,324 MMAS→IVND

38 500 52 1158 5,189,651 5,168,547 29.5 5,198,011 5,120,701 PGAC→IVND

39 500 52 982 3,406,764 3,394,470 14.3 3,485,360 3,381,090 MMAS→IVND

Average 40,051,638 39,869,210 44.4 39,792,241 39,689,769 --

Avg. computing time 4.44m 44.4m

Note. Boldface type denotes previous best solution; underline type denotes better solution; Boldface&underline denotes
the new best solution.

Table 8. Results of 40 large-sized problems and the new best solutions

5.6. The effectiveness of individual parameter of VIND

Finally, we used the 40 medium-sized problems to test parameters, i.e., P, N and Kmax, of IVND
algorithm their relation between effectiveness and computing load (using medium-sized
problems is just for saving computing time). We did three experiments by varying one
parameter while fixing other two parameters. First, we fixed N=200 and Kmax=5, and increased
P from 10 to 200, and repeated 10 runs for each P. Second, we fixed P=50 and Kmax=5, and
increase N from 50 to 500. thirdly, P, N were fixed to 50 and 200, and Kmax was increased from
1 to 10. The average costs gotten by the three experiments against varied parameters are shown
in Table 9. A general trend can be observed that increases parameter P, N or Kmax will all lead
to better solutions been found but at the price of more computing time. However, all the
parameter may contribute less to the quality of solution when they are increased large enough.
Obviously, the best effectiveness-cost combination of these parameters exists for the IVND
algorithm which is a worthwhile work to do in future works, but we just set these parameters
manually in our experiments.

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios102

P N Kmax Avg. Cost of 10 runs Comp. time of 10 runs (s)

5 200 5 264,111 30

10 200 5 263,914 57

20 200 5 263,816 104

30 200 5 263,744 144

50 200 5 263,712 233

70 200 5 263,671 308

100 200 5 263,640 433

130 200 5 263,614 553

160 200 5 263,620 674

200 200 5 263,579 832

50 10 5 266,552 40

50 50 5 264,395 87

50 100 5 263,920 135

50 150 5 263,775 186

50 200 5 263,702 220

50 250 5 263,672 274

50 300 5 263,634 309

50 400 5 263,613 376

50 500 5 263,603 463

50 600 5 263,585 559

50 200 1 263,868 74

50 200 2 263,775 100

50 200 3 263,715 136

50 200 4 263,713 178

50 200 5 263,709 225

50 200 6 263,704 276

50 200 7 263,693 341

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

103

P N Kmax Avg. Cost of 10 runs Comp. time of 10 runs (s)

50 200 8 263,684 420

50 200 9 263,688 527

50 200 10 263,678 567

Table 9. Experimental results of different parameters for medium-sized problem

6. Summarization

The consideration of meta-heuristic is widly used in a lot of fields. Deffirent meta-heuristic
algorithms are developed for solving deffirent problems, especially combinational optimiza‐
tion problems. In this chapter, we discussed a special case of MLLS problem. First, the general
definition of MLLS problem was described. We shown its solution structure and explained its
NP completeness. Second, we reviewed the meta-heuristic algorithms which have been use to
solve the MLLS problem and pointed their merits and demerits. Based on the recognition,
third, we investigated those implement techniques used in the meta-heuristic algorithms for
solving the MLLS problems. And two criteria of distance and range were firstly defined to
evaluate the effective of those techniques. We brifly discussed the mechanisms and character‐
istics of the techniques by using these two criteria, and provided simulation experiments to
prove the correctness of the two criteria and to explain the performance and utility of them.
This is one of our contributions. Fourth, we presented a succinct and easily implemented IVND
algorithm and six implemental techniques for solving the MLLS problem. The IVND algorithm
was evaluated by using 176 benchmark problems of different scales (small, medium and large)
from literatures. The results on 96 small-sized benchmark problems showed the IVND
algorithm of good optimality; it could find 100% optimal solutions in repeated 10 runs using
a very low computing time(less than 1s for each problem). Experiments on other two sets of
benchmark problems (40 medium-sized problems and 40 large-sized problems) showed it
good efficiency and effectiveness on solving MLLS problem with product structure complex.
For the medium-sized problems, the IVND can use 10 repeated runs to reach 40% of the 40
problems of their previous known best solutions and find another 20% of new best known
solutions. By more repeated runs, our IVND algorithm actually had updated 30% (12 prob‐
lems) of the best known solutions, and computing efficiency was also very acceptable because
the longest computing time for each problem was less than one minute. For the 40 large-sized
problems, the IVND algorithm delivered even more exciting results on the quality of solution.
Comparison of the best solutions achieved with the new method and those established by
previous methods including HGA, MMAS, and PGA shows that the IVND algorithm with the
six implemental techniques are till now among the best methods for solving MLLS problem
with product structure complexity considered, not only because it is easier to be understood
and implemented in practice, but more importantly, it also provides quite good solutions in
very acceptable time.

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios104

Acknowledgements

This work is supported by the Japan Society for the Promotion of Science (JSPS) under the
grant No. 24510192.

Author details

Ikou Kaku1*, Yiyong Xiao2 and Yi Han3

*Address all correspondence to: kakuikou@tcu.ac.jp

1 Department of Environmental and Information studies, Tokyo City University, Japan

2 School of Reliability and System Engineering, Beihang University, Beijing, China

3 College of Business Administration, Zhejiang University of Technology, Hangzhou, China

References

[1] Afentakis, P, Gavish, B, & Kamarkar, U. (1984). Computationally efficient optimal
solutions to the lot-sizing problem in multistage assembly systems, Management Sci‐
ence, , 30, 223-239.

[2] Afentakis, P, & Gavish, B. (1986). Optimal lot-sizing algorithms for complex product
structures, Operations Research, , 34, 237-249.

[3] Almeder, C. (2010). A hybrid optimization approach for multi-level capacitated lot-
sizing problems, European Journal of Operational Research, , 200, 599-606.

[4] Benton, W. C, & Srivastava, R. (1985). Product structure complexity and multilevel
lot sizing using alternative costing policies, Decision Sciences, , 16, 357-369.

[5] Blackburn, J. D, & Millen, R. A. (1985). An evaluation of heuristic performance in
multi-stage lot-sizing systems, International Journal of Production Research, , 23,
857-866.

[6] Coleman, B. J, & Mcknew, M. A. (1991). An improved heuristic for multilevel lot siz‐
ing in material requirements planning. Decision Sciences, , 22, 136-156.

[7] Crowston, W. B, & Wagner, H. M. (1973). Dynamic lot size models for multi-stage as‐
sembly system, Management Science, , 20, 14-21.

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

105

[8] Dellaert, N, & Jeunet, J. (2000). Solving large unconstrained multilevel lot-sizing
problems using a hybrid genetic algorithm, International Journal of Production Re‐
search, 38(5), 1083-1099.

[9] Dellaert, N, Jeunet, J, & Jonard, N. (2000). A genetic algorithm to solve the general
multi-level lot-sizing problem with time-varying costs, International Journal of Produc‐
tion Economics, , 68, 241-257.

[10] Han, Y, Tang, J. F, Kaku, I, & Mu, L. F. (2009). Solving incapacitated multilevel lot-
sizing problem using a particle swarm optimization with flexible inertial weight,
Computers and Mathematics with Applications, , 57, 1748-1755.

[11] Han, Y, Kaku, I, Tang, J. F, Dellaert, N, Cai, J. H, Li, Y. L, & Zhou, G. G. (2011). A
scatter search approach for uncapacitated multilevel lot-sizing problems, Internation‐
al Journal of Innovative Computing, Information and Control, 7(7), 4833-4848.

[12] Han, Y, Cai, J. H, Kaku, I, Lin, H. Z, & Guo, H. D. (2012a). A note on “a genetic algo‐
rithm for the preemptive and non-preemptive multi-mode resource-constrained
project scheduling problem”, Applied Mechanics and Materials, , 127, 527-530.

[13] Han, Y, Cai, J. H, Kaku, I, Li, Y. L, Chen, Y. Z, & Tang, J. F. (2012b). Evolutionary
algorithms for solving unconstrained multilevel lot-sizing problem with series struc‐
ture, Journal of Shanghai Jiaotong University, 17(1), 39-44.

[14] Hansen, P, & Mladenovic, N. (2001a). Variable neighborhood search: principles and
applications, European Journal of Operational Research, 130(3), 449-467.

[15] Hansen, P, Mladenovic, N, & Perez, D. (2001b). Variable neighborhood decomposi‐
tion search, Journal of Heuristics, , 7, 335-350.

[16] Hansen, P, & Mladenovic, N. and Pe´rez J. A. M., (2008). Variable neighborhood
search, European Journal of Operational Research, Editorial., 191, 593-595.

[17] Homberger, J. (2008). A parallel genetic algorithm for the multilevel unconstrained
lot-sizing problem, INFORMS Journal on Computing, 20(1), 124-132

[18] Hoos, H. H, & Thomas, S. (2005). Stochastic Local Search-Foundations and Applica‐
tions, Morgan Kaufmann Publishers.

[19] Kaku, I, & Xu, C. H. (2006). A soft optimization approach for solving a complicated
multilevel lot-sizing problem, in Proc. 8th Conf. Industrial Management, ICIM’200638

[20] Kaku, I, Li, Z. S, & Xu, C. H. (2010). Solving Large Multilevel Lot-Sizing Problems
with a Simple Heuristic Algorithm Based on Segmentation, International Journal of In‐
novative Computing, Information and Control, 6(3), 817-827.

[21] Mladenovic, N, & Hansen, P. (1997). Variable neighborhood search, Computers & Op‐
erations Research, , 24, 1097-1100.

Recent Advances on Meta-Heuristics and Their Application to Real Scenarios106

[22] Pitakaso, R, Almeder, C, Doerner, K. F, & Hartlb, R. F. ant system for unconstrained
multi-level lot-sizing problems, Computer & Operations Research, , 34, 2533-2552.

[23] Raza, A. S, & Akgunduz, A. (2008). A comparative study of heuristic algorithms on
Economic Lot Scheduling Problem, Computers and Industrial Engineering. 55(1),
94-109.

[24] Steinberg, E, & Napier, H. A. (1980). Optimal multilevel lot sizing for requirements
planning systems, Management Science, 26(12), 1258-1271.

[25] Tang, O. (2004). Simulated annealing in lot sizing problems, International Journal of
Production Economics, , 88, 173-181.

[26] Veral, E. A. and LaForge R. L., (1985). The performance of a simple incremental lot-
sizing rule in a multilevel inventory environment, Decision Sciences, , 16, 57-72.

[27] Xiao, Y. Y, Kaku, I, Zhao, X. H, & Zhang, R. Q. (2011a). A variable neighborhood
search based approach for uncapacitated multilevel lot-sizing problems, Computers &
Industrial Engineering, , 60, 218-227.

[28] Xiao, Y. Y, Zhao, X. H, Kaku, I, & Zhang, R. Q. (2011b). A reduced variable neighbor‐
hood search algorithm for uncapacitated multilevel lot-sizing problems, European
Journal of Operational Research, 214, 223-231.

[29] Xiao, Y. Y, Zhao, X. H, Kaku, I, & Zhang, R. Q. (2012). Neighborhood search techni‐
ques for solving uncapacitated multilevel lot-sizing problems, Computers & Opera‐
tions Research, 57((3)

[30] Yelle, L. E. (1979). Materials requirements lot sizing: a multilevel approach, Interna‐
tional Journal of Production Research, , 17, 223-232.

[31] Zhangwill, W. I. (1968). Minimum concave cost flows in certain network, Management
Science, , 14, 429-450.

[32] Zhangwill, W. I. (1969). A backlogging model and a multi-echelon model of a dy‐
namic economic lot size production system-a network approach, Management Sci‐
ence, , 15, 506-527.

A Comparative Study on Meta Heuristic Algorithms for Solving Multilevel Lot-Sizing Problems
http://dx.doi.org/10.5772/55279

107

