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1. Introduction

In this chapter, we introduce the concept and the details of the wavelet-based scalable video
coding. The content of this chapter includes the following topics:

• Fundamentals of Wavelet-Based Scalable Video Coding : The purpose and the general
concept of scalable video coding will be introduced in this section. We also give a
brief comparison between the major two scalable video coding methods, which are
the wavelet-based scalable video coding and H.264/SVC. In addition, we introduce the
structure of wavelet-based scalable video coding in this section. A wavelet scalable video
encoder consists of two steps. The first step is to decompose each GOP (group of pictures)
into multiple subbands, and the second one is to perform entropy coding, which is usually
implemented by (embedded zero block coding) [1]. We are going to discuss why and
how these two steps achieve video compression and provide universal scalability in a
theoretical style.

• The Objective Function of Scalable Video Coding : The objective of the scalable video
coding will be discussed in this section. In the the discussion, the essential elements
that affects the performance of scalable video coding will be considered. These essential
elements are the status of network transmission, subscribers’ preferences, and the video
quality in terms of the conventional Peak-to-Noise-Ratio (PSNR). And then according
to the discussion, an objective function that considers these elements simultaneously is
established for the optimization of the scalable video coder.

• The Rate Allocation of Wavelet-Based Scalable Video Coding : Since the entropy coding
procedure needs to know the number of bits allocated (which is usually referred to as
"rate") to each subband, the encoder should decides the rates of the subbands before the
entropy coding applied to the subbands. In this section, we are going to introduce how to
perform rate allocation that optimize the SVC coder with respect to the proposed objective
function and compare its performance with those of the existing rate allocation methods.
We will also discuss several issues related to the performance of the rate allocation, such
as the concept of rate-distortion curve and the inequivalent energy between the pixel and
transform domains caused by non-orthogonal filters.
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• Implementation Issues and Experimental Results : We will discuss the computational
complexity of the proposed rate allocation method and raises several points that can
efficiently reduce the computational time. The experimental results that compare the
proposed methods and the existing methods will also be given in the section.

• Conclusion and Future Work : A conclusive discussion will be given in this section. The
discussion will list the contribution of the works mentioned in this chapter and point out
some possible issues for the future research.

2. Fundamentals of wavelet-based Scalable Video Coding

Scalable video coding (SVC) encodes a video into a single bitstream comprised of several
subset bitstreams. A subset bitstream represents a lower resolution of the video in the spatial,
temporal, or quality resolution [2, 3]. SVC is a natural solution to compress the video for a
video broadcasting system because the bit-stream generated by the SVC can be divided and
separately decoded to support different resolutions. Compared to H.264/SVC [4], which
is recently developed based on the prevailing conventional close-loop codec H.264/AVC,
the multi-resolution property of 3-D wavelet representation based on motion-compensated
temporal filtering (MCTF) is a more natural solution to the scalability issue in video coding
[5–8]. However, to compete with the great success of scalable coding methods based on
H.264, the MCTF-based 3-D wavelet video codec must be constantly improved.

2.1. The structure of the wavelet scalable video coding

In a MCTF-EZBC wavelet video coding scheme, the video frames are first decomposed into
multiple wavelet subbands by spatial and temporal wavelet transforms, then the quantization
and entropy coding are sequentially applied to the wavelet subbands. According to the
order of the spatial and the temporal decompositions, the wavelet coding schemes can be
categorized into two categories : 2D+T (spatial filtering first) and T+2D (temporal filtering
first). However, no matter 2D+T or T+2D scheme is applied, the spatial and the temporal
filterings can be described independently.

The purpose of spatial filtering is separating low and high frequency coefficients from
a video frame. The spatial filtering usually consists of multiple sequential 2D wavelet
decompositions. In a 2D wavelet decomposition, the input signal, which is represented by
a N by N two dimensional matrix, is decomposed into four N/2 by N/2 two dimensional
matrices, which are denoted by LL, HL, LH, and HH. For these subbands, the previous
letter means that the subband contains the low (L) or high (H) frequency coefficients after
the horizontal 1D wavelet transform and the following letter means the subband contains
the low (L) or high (H) frequency coefficients after the vertical 1D wavelet transform. After
the decomposition, subband LL is sequentially taken as the input of the next level spatial
decomposition.

If we let Hk,0 and Hk,1 denote the analyzing matrices in the k-th spatial decomposition, the
corresponding wavelet subbands can be computed as

[

Fk0 Fk1

Fk2 Fk3

]

=

[

Hk0

Hk1

]

F(k−1)0

[

HT

k0 HT

k1

]

(1)
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Figure 1. An example of indexing the spatial and temporal decomposed subbands. The above figure shows the indices of

the spatially decomposed subbands, in which the subband indexed by (x, y) represents the subband is the y-th after the x-th
spatial decomposition. The below figure shows the indices of the temporally decomposed subbands, in which the subband

indexed by (m, n) represents the subband is the n-th after the m-th spatial decomposition. Accordingly, any subband obtained
by the MCTF can be indexed by (xy, mn).

Figure 2. An example of the lifting structure used in the temporal decomposition. The subbands h, which contain high
frequency coefficients, are first obtained after the prediction stage. Then the subbands l, which contain the low frequency
coefficients, are obtained after the update stage.

where Fk0, Fk1, Fk2, and Fk3 correspond to the LL, HL, LH, HH subbands, respectively. If there
is another spatial decomposition applied to the frame, the subband Fk0 is further decomposed
by the k + 1-th analyzing matrices Hk+1,0 and Hk+1,1. According to this definition, the
subband F00 is the frame before any spatial decomposition and any wavelet subband after the
spatial filtering can be indexed by xy, which represent the subband is the y-th subband after
the x-th spatial decomposition. In Figure 1(a), the example shows the wavelet subbands with
the indices after performing the spatial filtering consisting of two spatial decompositions.

To reconstruct F(k−1)0 from the wavelet subbands Fk0, Fk1, Fk2, and Fk3, the synthetic matrices
Gk0 and Gk1 are used in the synthetic procedure, which can be represented by several matrix
operations as

F(k−1)0 =
[

Gk0 Gk1

]

[

Fk0 Fk1

Fk2 Fk3

] [

GT
k0

GT
k1

]

. (2)
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Figure 3. An example of MCTF motion estimation. The types of connectivity pixels in the example are single-connected,

multiple-connected, and unconnected pixels. The corresponding prediction (P) and update (U) matrices are given in Eq.(5),
where P2i,2i+1[x, y] = 1 indicates that the x-th pixel in frame f2i+1 is predicted by the y-th pixel in frame f2i . Note that

U2i+1,2i(x, y) = 1 means the x-th pixel in frame f2i is updated by the y-th pixel in frame f2i+1.

Figure 4. A video broadcasting system usually contains a video source, a scalable video coder, broadcasting servers, the

network, and subscribers. Users’ information can be delivered to the servers via feedback links.
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Figure 5. The construction of the DP graph. The x-axis indicates the subbands and the y-axis indicates the rate. For an arc,

we calculate the number of bits assigned to the subband associated with the sink node of the arc, and derive the weighted

distortion of the subband. For any node on a path, we can calculate the number of bits assigned to the subband corresponding

to the node as well as its weighted distortion. The node (x, k) maps to subband seq−1(x) and to quality resolution q(k) = ri+1.

Note that all the nodes indexed by (., k − 1), (., k), and (., k + 1) belong to quality resolution ri+1.

Compared to the spatial filtering, which takes a frame as its input, the temporal filtering
takes multiple frames (T+2D) or the subands with the same spatial indices (2D+T) as its
input. The temporal filtering consists of multiple temporal decompositions. However,
unlike the spatial filtering, which only needs several 2-D wavelet transforms during
the procedure, the temporal filtering needs multiple 1-D wavelet transforms and motion
estimation/compensation to specify the input coefficients of each wavelet transform. So the
temporal filtering is more complicated compared to the spatial filtering.

Usually, a temporal decomposition is implemented by the lifting structure, which consists of
the predicting stage and the updating stage. As depicted in Figure 2, the H-frames (denoted
by h) are firstly obtained after the predicting stage, then the L-frames (denoted by l) are
obtained after the updating stage. The lifting structure can be described by the matrix
operations, in which a frame is represented by a one dimensional matrix f . If each input
frame of the temporal filtering has the size N by N and can be represented by a N by N
two dimensional matrix F, the one dimensional matrix f has the size N2 and can be mapped
from F by letting f [i ∗ N + j] = F[i, j].

The motion vectors are computed before the predicting and updating stages. We use the
P

x,y
m , which is a two dimensional N2 by N2 matrix, to denote the motion vectors obtained by

predicting the y-th frame from the x-th frame in the m-th temporal decomposition. Then the
predicting stage of the m-th temporal decomposition can be written as

h2i+1
m = f 2i+1

m−1 − (Hm[2i]P2i,2i+1
m f 2i

m−1 +Hm[2i + 2]P2i+2,2i+1
m f 2i+2

m−1 ), (3)
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where Hm is the corresponding coefficient of the wavelet filter. Since the index m represents
the m-th lifting stage, the term f i

m−1 represents the i-th frame which is obtained after the
(m− 1)-th lifting stage. If the 5-3 wavelet transform is used, the value of Hm in the predicting
stage is −0.5.

In the updating stage, the inverse motion vector matrix U
y,x
m , which has the same size as P

x,y
m

and can be calculated from the matrix P
x,y
m [9], is used to compute the decomposed L-frame

as

l2i
m = f 2i

m−1 + (Hm[2i + 1]U2i+1,2i
m h2i+1

m +Hm[2i − 1]U2i−1,2i
m h2i−1

m ), (4)

where Hm is the corresponding coefficient of the wavelet filter. If the 5-3 wavelet transform
is used, the value of Hm in the updating stage is 1.

To understand how to represent the motion vectors with a matrix, an example is given in
Figure 3. And these two matrices are constructed as follows:

P2i,2i+1 =

















0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1

















, U2i+1,2i =

















0 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

















. (5)

After the m-th temporal decomposition, if another temporal decomposition is needed for the
temporal filtering, the L-frames generated by the current temporal decomposition are taken
as its input. So we let f i

m, which is the i-th frame of the (m + 1)-th temporal decomposition,
as l2i

m , which is the output 2i-th frame of the m-th temporal decomposition. Although the
H-frames do not participate in the (m + 1)-th temporal decomposition, we still arrange the
indices to them by letting f i+S

m = h2i+1
m , in which S is the number of the input frames in

the (m + 1)-th temporal decomposition. So any frames obtained by the temporal filtering
can be indexed by mn, which represents it is the n-th subband after the m-th temporal
decomposition.

Usually, the temporal decompositions are sequentially performed until the output has only
one L-frame. Since the decomposed frame can be synthesized, only the frames which can
not be synthesized are necessary to reconstruct all the frames. In Figure 1(b), an example, in
which the size of the group of pictures (GOP) is 8, shows the indices of the frames that can
not be synthesized from the decomposed frames.

To recover the original frames, the synthesis is applied to the decomposed frames. The
frame which is decomposed last is synthesized first, and vice versa. In the procedure of the
synthesis, the inverse updating is firstly performed as

f 2i
m−1 = l2i

m − (Gm[2j + 1]U
2j+1,2i
m h

2j+1
m + Gm[2j − 1]U

2j−1,2i
m h

2j−1
m ), (6)
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where Gm is the coefficient of the wavelet transform used in the inverse updating stage. If
the temporal 5-3 tap filter is used, the value of Gm is −1 in the inverse updating stage. After
the inverse updating stage, the inverse predicting stage is performed as

f 2i+1
m−1 = h2i+1

m + (Gm[2j]P
2j,2i+1
m f

2j
m−1 + Gm[2j + 2]P

2j+2,2i+1
m f

2j+2
m−1 ). (7)

If the temporal 5-3 filter is used, the value of Gm is 0.5 in the inverse updating stage. For
some wavelet filters, such as 9− 7 filter, a temporal decomposition needs multiple level lifting
structure, and can be easily extended by cascading multiple one level lifting structures.

After the spatial and temporal filterings, the quantization and entropy coding are applied to
these wavelet subbands. The coefficients of these subbands may be quantized by scalar or
vector quantization, then the quantized coefficients are coded without loss by the entropy
coder. The method is common in the still image compression standard, such as JPEG
2000 [10]. In the decoding process, the quantized coefficients are obtained by decoding the
received bitstream, then the subbands are rescaled according to the quantization step used
in the encoder. The advantage of separating the quantization and the entropy coding is that
the quality of the reconstructed video can be predicted according to the quantization step.

The quantization and the entropy coding can also be combined with the bitplane coding
method, such as the EZBC entropy coder [1]. In these methods, the rates allocated to the
subbands are calculated first, then the entropy coder encodes the subbands with these rates.
The advantage of the scheme is the rates of the subbands can be any non-negative integers
and the performance of the bit-allocation can be improved accordingly.

3. The objective function of Scalable Video Coding

Many researchers employ a weighting coefficient to represent the relative importance of a
resolution. For example, Ramchandran, Ortega, and Vetterli [11] model the distortion as the
summation of the weighted mean-square-errors (MSE) on different resolutions, and propose
a bit-allocation algorithm based on the exhaustive search technique. Schwarz and Wiegrand
[12] adopt a similar approach by weighting the MSEs of the base layer and the enhancement
layer, and demonstrate the effect of employing different weightings on each layer on the
overall coding performance. The above works do not explain the meaning of the weights or
how to derive them. Because the peak-signal-to-noise ratio (PSNR) is most commonly used
as a quality measurement of a coding system, instead of weighting the MSE of a resolution,
we weight the PSNR as a measurement of relative importance of the resolution to the overall
coding performance.

3.1. Design the objective function of Scalable Video Coding

A good coding performance metric for SVC should consider the subscriber’s preference for
different resolutions. For example, if we want to produce bitstreams in two scenarios: one
where all the subscribers prefer the QCIF display and the other where all the subscribers
prefer the CIF display, then the optimal bitstreams for the two scenarios should be different.
In the first scenario, the optimal bit-allocation can only be obtained by allocating all the bits to
the subbands that support the QCIF display. Obviously, this allocation cannot be optimal for
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the second scenario in which the optimal bit-allocation must encode more spatial subbands
to support a higher spatial resolution display with the CIF format.

A general video broadcasting system consists of a video source, a scalable video coder,
broadcasting servers, the network, and subscribers, as shown in Figure 4. The scalable coder
encodes a source video so that the network’s bandwidth requirement can be met and the
subscriber’s demand can be satisfied. The satisfaction of the subscriber’s demand can be
quantified to measure the system’s performance. In [3], the performance of SVC is measured
as follows:

Qall = ∑
i∈N

Qi, (8)

where N denotes the set of subscribers, and Qi denotes the satisfaction of subscriber i’s
demand by SVC, which is usually measured by the PSNR. However, we found that the
PSNR is not sufficient to satisfy the demand of a subscriber because he/she may prefer
higher frame rates or spatial resolutions than the PSNR. Thus, we introduce the preference
factor ψ ∈ [0, 1] for each subscriber and combine it with the PSNR to obtain the following
performance measurement:

Qall = ∑
i∈N

ψiPSNRi. (9)

If we let S, T, and R denote the sets of spatial, temporal, and quality resolutions respectively,
then a resolution in SVC can be represented by (s, t, r), where s ∈ S, t ∈ T, and r ∈ R.
Denote subscriber i’s preference for the resolution (s, t, r) as ψi,(s,t,r), and let the PSNR of the
resolution be PSNR(s,t,r). Then, Equation (9) can be re-written as follows:

Qall = ∑
s∈S,t∈T,r∈R

PSNR(s,t,r) ∑
i∈N

ψi,(s,t,r). (10)

The performance measurement can be normalized based on the subscriber’s preference so
that we obtain

Qaverage =
Qall

∑s∈S,t∈T,t∈R ∑i∈N ψi,(s,t,r)

= ∑
s∈S,t∈T,r∈R

PSNR(s,t,r)(
∑i∈N ψi,(s,t,r)

∑s∈S,t∈T,t∈R ∑i∈Nψi,(s,t,r)
)

= ∑
s∈S,t∈T,r∈R

PSNR(s,t,r)µ(s,t,r). (11)

Because µ(s,t,r) considers the preferences of all subscribers for the resolution (s, t, r), it can be
regarded as the preference of the system to the resolution. Moreover, from the definition of
µ(s,t,r), we have µ(s,t,r) ≥ 0 and

∑
s∈S,t∈T,r∈R

µ(s,t,r) = 1. (12)
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The PSNR(s,t,r) can be calculated as follows:

PSNR(s,t,r) = 10log10
2552

D̄(s,t,r)
, (13)

where D̄(s,t,r) denotes the average mean square error (MSE) of the frames in resolution (s, t, r).
If we substitute Equation (13) into Equation (11) and use Equation (12), we have

Qaverage = 10 log10 2552 ∑
s∈S,t∈T,r∈R

µ(s,t,r) − ∑
s∈S,t∈T,r∈R

µ(s,t,r) log10 D̄(s,t,r)

= 10 log10 2552
− log10( ∏

s∈S,t∈T,r∈R

D̄
µ(s,t,r)

(s,t,r)
). (14)

It is obvious that maximizing the average performance Qaverage is equivalent to minimizing
the geometric mean of the distortion

∏
s∈S,t∈T,r∈R

D̄
µ(s,t,r)

(s,t,r)
. (15)

Note that, in SVC, each temporal resolution involves a different number of frames. If a
scalable coder adopts the dyadic temporal structure, which assumes that the number of
frames in temporal resolution t is 2t, then the overall distortion of the resolution (s, t, r) in a
GOP is

DGOP
(s,t,r) = 2tD̄(s,t,r). (16)

3.2. Subband Weighting

The weighting factor indicates how much a unit quantization power in the subband
contributes to the overall distortion in the reconstructed GOP. That is, for the subband
indexed by z, its weighting γ(z) is given to satisfy

DGOP
(s,t,r) = ∑

z∈W(s,t)

γ(z)× Dz (17)

where DGOP
(s,t,r)

is the variance of the distortion in the pixel domain, Dz is the variance of

subband’s distortion in the wavelet domain, and W(s, t) is the set including the subbands
necessary to reconstruct the resolution (s, t, r). The weighting factor γ(z) can be computed
by

γ(z) = α(z)× β(z) (18)

where α(z) is the spatial weighting factor and β(z) is the temporal weighting factor.
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The spatial weighting factors can be directly computed according to the error propagation
model mentioned in [13]. However, to compute the temporal weighting factors, the effect of
the motion compensation must also be considered, and the approach is mentioned in [14].
Since the computational complexity is extremely high, a fast algorithm is proposed in [15] to
increase the computing speed.

3.3. Formulation of the rate-distortion function

In this sub-section, we formulate the rate-distortion function of a wavelet-based scalable
video coder. We use non-negative integers to index the spatial and temporal resolutions. The
lowest resolution is indexed by 0, and a higher resolution is indexed by a larger number.
Let p and q denote the number of spatial and temporal decompositions respectively; then,
the spatial resolution index s and temporal resolution index t are in the ranges {0, 1, · · · , p}
and {0, 1, · · · , q} respectively. Note that we use (xy, mn) to denote the spatial-temporal
subband, which is the y-th spatial subband after the x-th spatial decomposition and the n-th
temporal subband after the m-th temporal decomposition. Thus, if we let Ws,t denote the set
of subbands used to reconstruct the video of spatial resolution s and temporal resolution t,
then, Ws,t is comprised of

{(xy, mn)|x = p − s + 1, ..., p; y = 1, 2, 3; m = q − t + 1, ..., q; n = 2q−m, ..., 2q−m+1 − 1}∪

{(p0, mn)|m = q − t + 1, · · · , q; n = 2q−m, · · · , 2q−m+1 − 1}∪

{(xy, q0)|x = p − s + 1, ..., p, y = 1, 2, 3} ∪ {(p0, q0)}.(19)

Figure 1 shows an example of two spatial and three temporal resolutions.

We also assume that all the subscribers receive the same bitstream containing the quality
resolution r; therefore, a subscriber to resolution (s, t, r) can decode the substream
corresponding to the subbands that support the spatial resolution s and the temporal
resolution t. For each quality resolution r, let βr[(xy, mn)] represent the number of bits
assigned to subband (xy, mn) for the quality resolution. This assumption simplifies our
bit-allocation analysis significantly because we only need to consider the distribution of the
bits for the quality resolutions. Obviously, we have

βr+1[(xy, mn)] ≥ βr[(xy, mn)] (20)

for each subband (xy, mn). Let br denote the maximum number of bits for all the subbands
of quality resolution r in a GOP, and let W be the set of all subbands; then, the bit constraint
for the quality resolution r can be written as

br = ∑
z∈W

βr[z], (21)

where z ranges over all subbands in W. Recall that the average distortion of all the subbands
of the frames in the resolution (s, t, r) is represented by D̄w

(s,t,r)
. We introduce a new notation
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Θ(s, t, βr) for D̄w
(s,t,r)

to explicitly represent the average distortion in the wavelet domain as a

function of Br. According to Equation (17), we have

Θ(s, t, βr) =
1

2t ∑
z∈Ws,t

ws,t
z D̄w

z (βr[z])], (22)

where D̄w
z (βr[z]) indicates the average distortion of subband z encoded with βr[z] bits.

Substituting the subbands support for the resolution (s, t, r), defined in Equation (19), for
Ws,t in Equation (22), we obtain

Θ(s, t, βr) =
1

2t
(

q

∑
m=q−t+1

2q−m+1−1

∑
n=2q−m

p

∑
x=p−s+1

3

∑
y=1

ws,t
(xy,mn)

D̄w
(xy,mn)(βr[(xy, mn)])

+
q

∑
m=q−t+1

2q−m+1−1

∑
n=2q−m

ws,t
(p0,mn)

D̄w
(p0,mn)(βr[(p0, mn)])

+
p

∑
x=p−s+1

∑
y=1,2,3

ws,t
(xy,q0)

D̄w
(xy,q0)(βr[(xy, q0)])

+ws,t
(p0,q0)

D̄w
(p0,q0)(βr[(p0, q0)])). (23)

Let v be the number of quality resolutions indexed from 0 · · · , v − 1, and let {β0, · · · , βv−1}
be the bit-allocation profile. We can represent Equation (15) explicitly as D(β0, · · · , βv−1)
to indicate the dependence of the average distortion of a GOP on the bit-allocation profile.
Then, we obtain

D(β0, · · · , βv−1) =
v−1

∏
r=0

p−1

∏
s=0

q−1

∏
t=0

D̄
µ(s,t,r)

(s,t,r)
(24)

=
v−1

∏
r=0

p−1

∏
s=0

q−1

∏
t=0

Θ(s, t, βr)
µ(s,t,r) (25)

=
v−1

∏
r=0

Dr(βr), (26)

where Dr(βr) is the average distortion of quality resolution r when the subscriber’s
preference factor µ(s,t,r) is considered in weighting Θ(s, t, βr).

The rate-distortion problem (P) can now be formulated as finding the bit-allocation profile
{β0, · · · , βv−1} that satisfies the constraints in Equations (20) and (21) and minimizes the
distortion function specified in Equation (26):

minD(β0, β1, · · · , βv−1) (27)

subject to ∑z∈W βi(z) = bi, for i = 0, · · · , v − 1,

and βi−1(z) ≤ βi(z) for i = 1, · · · , v − 1,
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4. The rate allocation of wavelet-based Scalable Video Coding

The optimal bit-allocation problem (P) can be solved by solving a sequence of bit-allocation
sub-problems (Pr), with quality resolution r = 0, · · · , v − 1. The sub-problem (Pr) is defined
as follows:

minD(β0, β1, · · · , βr−1, βr, βr, · · · , βr) (28)

subject to ∑z∈W βi(z) = bi, for i = 0, · · · , r,

and βi−1(z) ≤ βi(z) for i = 1, · · · , r,

where W is the set of all subbands, and {bi} is a given non-decreasing sequence that
corresponds to the bit constraints. The problem (Pr) allocates bits from the quality resolution
1 to r; hence, all the subscriptions for a quality resolution > r will use the bit-allocation
result of the quality resolution r. Thus, we have βi = βr for i = r + 1, · · · , v − 1 in Equation
(28). The optimal bit-allocation problem (P) can be solved by solving (P0), followed by
(P1) based on the solution of (P0), and so on up to solving (Pv−1). In the following
subsections, we propose two methods to solve (Pr). The first finds the upper bound of
(Pr) by a Lagrangian-based approach, and the second finds the exact solution by using the
less efficient dynamic programming approach.

4.1. Lagrangian-based solution

The bit-allocation problem is usually analyzed by the Lagrangian multiplier method. By

assuming that ∏
b
i=a fi = 1 for any function fi with b > a, the objective of (Pr) can be

re-written as

D(β0, ..., βr−1, βr, ..., βr)

=
p−1

∏
s=0

q−1

∏
t=0

{
r−1

∏
k=0

Θ(s, t, βk)
µ(s,t,k)

v−1

∏
k=r

Θ(s, t, βr)
µ(s,t,k)}. (29)

Because ∑s∈S,t∈T,r∈R µ(s,t,r) = 1 (See Equation (12)), by applying the generalized geometric
mean - arithmetic mean inequality to Equation (29), we can obtain its upper bound as follows:

D(β0, ..., βr−1, βr, ..., βr) ≤ C +
p−1

∑
s=0

q−1

∑
t=0

v−1

∑
k=r

µ(s,t,k)Θ(s, t, βr), (30)

where the constant C = ∑
p−1
s=0 ∑

q−1
t=0 ∑

r−1
k=0 µ(s,t,k)Θ(s, t, βk). Note that the constant C is

computed from the bit-allocation results from resolution 0 to resolution r − 1.

Now we can find the solution for the problem (P+
r ), which is the upper bound of the problem

(Pr). The problem (P+
r ) is defined as

minβr
Ωr(βr) = ∑

p−1
s=0 ∑

q−1
t=0 ∑

v−1
k=r µ(s,t,k)Θ(s, t, βr) (31)

subject to ∑z∈W βr(z) = br.
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After substituting Equation (22) into Equation (31) for Θ(s, t, βr) and re-arranging the terms,
we have

Ωr(βr) = ∑
z∈W

ρr
zD̄z(βr[z]), (32)

where z is a subband, W is the set of all subbands, and ρ is the final weighting factor. Note
that ρ is computed from the preference weighting µ and the spatial-temporal weighting ws,t.

Now, replacing Ωr(βr) in Equation (31) with Equation (32), the problem (P+
r ) can be solved

optimally by using the Lagrangian approach with the Lagrangian function:

L(λ, βr) = ∑
z∈W

ρr
zD̄z(βr[z])− λ(br − ∑

z∈W

βr[z]). (33)

A necessary condition for optimal bit-allocation can be satisfied by taking the partial
derivative with respect to λ and βr and setting the results to zero. Thus, the optimal
bit-allocation vector β∗r for the quality resolution r must satisfy

∂L(λ, βr)

∂βr[z]
= ρr

z

∂D̄z(βr[z])

∂βr[z]
+ λ = 0, (34)

and

∂L(λ, βr)

∂βr[z]
= br − ∑

z∈W

βr[r] = 0. (35)

The two necessary conditions require that 1) the optimal bit-allocation β∗r must exist when
the rate-distortion functions of all the subbands have the same weighted slope; and 2) at that
particular slope, the total number of bits of all the subbands is br.

It is straightforward to show that if D̄z(βr[z]) is convex for any z, then ∑z∈W ρr
zD̄z(βr[z]) with

ρr
z ≥ 0 is a convex function; therefore, the necessary condition is also the sufficient condition

for β∗r . We can use a similar approach to that in [16] to derive an efficient algorithm to find the
optimal bit-allocation vector. Thus, we modify the distortion function D̄z(βr[z]) to make it a
convex function. We initialize βr[z] = 0 for all subbands, and divide br into ⌈br/δ⌉ segments
with δ bits for each segment. In each stage of our algorithm, we calculate D̄z(β[z] + δ) and
select the subband z′ that has the largest weighted absolute slope:

arg max
z∈W

ρr
z

|D̄z(β[z] + δ)− D̄z(β[z])|

δ
. (36)

Then, we only modify the bit-allocation vector of the component that corresponds to the
subband z′ by letting

βr[z
′]←

{

βr[z′] + δ, if ∑z∈W βr[z] ≤ br − δ,
βr[z′] + (br −∑z∈W βr[z]), otherwise .

(37)

We repeat the above process several times until the constraint is achieved.
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4.2. Optimal solution based on dynamic programming

Although the proposed Lagrangian-based method is efficient and theoretically sound, it

optimizes the upper bound of the true objective function. In this section, we propose another

optimal bit-allocation method based on dynamic programming (DP). Although the proposed

method uses more memory and requires more computation time than the Lagrangian-based

method, it can find the optimal bit-allocation for the true objective function.

To solve the bit-allocation problem with the DP-based method, we represent the problem as

an acyclic directed graph G = (N, A), called a DP graph for short, where N is the set of

nodes and the members of A are arcs. The arc from node ik to node il is represented by

ik → il where ik and il are the source node and the sink node of the arc respectively. A path

can be represented as a concatenation of arcs.

Let seq be a bijection mapping from the subbands to the integer set from 0 to |W| − 1, where

|W| is the number of subbands; and let seq−1 be its inverse mapping from an integer to

a subband. To construct the DP graph for the problem (P), we arrange the subbands z as

a sequence seq(z) ∈ {0, · · · , |W| − 1}, and divide bv−1 into M = ⌈ bv−1

ǫ
⌉ components. For

convenience, we set the bit constraint br with r = 0, · · · , v − 2 as an integer multiple of ǫ.

Then, we introduce the function q, which maps a node in the DP graph to its corresponding

quality resolution.

The nodes in the DP graph are {(seq(z), k)| k = 0, 1, · · · , M, z ∈ W}. If we let (a, b) be the

source node of the arc (a, b) → (seq(z), k) to the sink node (seq(z), k), then depending on

the position of (seq(z), k), (a, b) belongs to the set {(seq(z)− 1, i)|i ≤ k} ∪ {(seq(z), k − 1)},

{(0, k − 1)}, or {(seq(z)− 1, 0)}.

Figure 5 shows the constructed DP graph. For the node (x, k), the corresponding subband

is seq−1(x) and the corresponding quality resolution is q(k) = ri+1. We can calculate the

number of bits assigned to the subband associated with the sink node of each arc in the

DP graph as well as the weighted distortion of the subband. For example, if the arc is

(u, ku) → (v, kv), then the number of bits assigned to the subband seq−1(v) is (kv − ku)ǫ.

Accordingly, we can also calculate the number of bits assigned to each subband on any path,

which consists of consecutive arcs, in the DP graph.

The DP approach uses |W| passes to solve the problem (P) with the constraint that at the

end of pass i, the optimal path to each node in the DP graph indexed by (i, .) is found and

recorded. At the first pass 0, we find the number of bits allocated to any node (0, j) with

j ∈ {0, · · · , M − 1}. Then, based on that result, at pass 1, we find and record the optimal

bit-allocation path (the path with the smallest weighted distortion among all the paths that

end at the node) to each node (1, .). Based on the result of the previous pass i − 1, we can

repeat the process to derive the optimal bit-allocation path to any node (i, .) and record the

path to the node. After the pass |W| − 1, the bit-allocation corresponding to the optimal path

from (0, 0) to (|W| − 1, kl) with klǫ = br for some br is the optimal bit-allocation to the quality

resolution r; i.e., the optimal solution for problem (Pr) is derived. It can be shown that the

DP approach ensures there is only one optimal path beginning at (0, 0) to any node in the

DP graph, but the proof is omitted due to the space limitation.
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4.3. Min-max approach for unknown preferences

The optimization algorithms presented in previous sections require the subscriber’s
preference information. However, in many applications, the preference is not available to
the encoder. Thus, we present a min-max approach that finds the optimal bit-allocation
when the subscriber’s preference is not known. The approach is a conservative strategy that
ensures the worst performance of the algorithm is above a certain quality.

Let µ = [µ(s,t,r)] denote the subscriber’s preference vector. In addition, let β = [β0, · · · , βv−1]

and b = [b0, · · · , bv−1] be, respectively, the subband bit-allocation vector and the bit budget
vector for all quality resolutions. The min-max approach for the problem (P) can be written
as

minb,β maxµ D(β0, β1, · · · , βv−1) (38)

subject to ∑z∈W βi[z] = bi, for i = 0, · · · , v − 1,

and βi−1[z] ≤ βi[z], bi−1 ≤ bi for i = 1, · · · , v − 1.

In other words, the min-max approach finds the best bit-allocation vectors for the preference
distribution that yields the largest distortion.

First, we show that the least favorable preference distribution µ∗ is independent of the quality
resolution r. For any subband bit-allocation βr at the quality resolution r, the least favorable
preference distribution maximizes the distortion D(β0, β1, · · · , βr−1, βr, βr, · · · , βr). From
Equation (29), we have

D(β0, ..., βr−1, βr, ..., βr) ≤ max
s=0,...,p−1

max
t=0,··· ,q−1

max
k=0,··· ,r

Θ(s, t, βk), (39)

= Θ(p − 1, q − 1, β0), (40)

where Equation (39) is derived from 0 ≤ µ(s,t,r) ≤ 1, and ∑(s,t,r) µ(s,t,r) = 1; and Equation
(40) is obtained because the maximum distortion can be obtained when the bits β0 for the
coarsest quality resolution are assigned to the subbands in the highest spatial and temporal
resolutions. Thus, the least favorable preference µ∗ occurs when all users have preference 1
for the resolution (p − 1, q − 1, 0).

After deriving the least favorable preference µ∗, the problem can be solved easily by using
the methods proposed previously. It is noteworthy that the above min-max problem finds
the optimal bit-allocation for the codec containing only one spatial, temporal, and quality
resolution. This result corresponds to allocating the bits optimally for a non-scalable wavelet
codec.

5. Experiment results

We now evaluate the coding performance of the proposed bit-allocation methods on a 2D+t
wavelet encoder. In the experiment, a GOP has 32 frames. First, each frame is decomposed by
applying a three-level 2-D wavelet transform with the 9-7 wavelets; then, the five-level MCTF
method is applied to each spatial subband. The metod uses the 5-3 wavelets for temporal
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decomposition of each spatial subband, as proposed in [17]. When MCTF is applied, we
assume that the motion vectors are given. The motion estimation step uses a full search
with integer-pixel accuracy. The block size is 16 × 16, and the search range is [16,−15] both
vertically and horizontally. Finally, the 2-D EZBC method [1, 8] is used to encode the wavelet
coefficients of the 2D+t wavelet codec.

In the first two methods, the encoder knows each user’s preference profile; and the third
assumes that the preference profile is not available to the encoder. The first method is based
on the Lagrangian approach, the second is based on the DP approach, and the third is based
on the min-max approach.

We conduct four experiments on two video sequences: Foreman and Coastguard. Two of the
experiments assume that there is only one quality resolution. The first experiment assumes
that all the users subscribe to the same temporal resolution, but their spatial resolution
preferences are different. Figure 6 shows the R-D curves of each sequence versus different
spatial preference profiles. It is obvious that the scalable bit-allocation methods with known
preferences achieve a better coding performance than the method that lacks the preference
information. The DP method outperforms the Lagrangian method in all cases. Note that the
DP method finds the optimal bit-allocation for the problem (P), while the Lagrangian method
finds the optimal solution for the upper bound of the problem. In the second experiment,
it is assumed that the only difference between the subscribers’ preferences is the temporal
resolution. That is, all users subscribe to the same spatial resolution. The experimental results
shown in Figure 7 demonstrate that the DP method outperforms the Lagrangian method, and
the min-max method has the worst performance in all cases. Note that the average PSNR

improvement of the DP method over the Lagrangian method in Figure 6 is higher than that
in Figure 7, This indicates that knowing the preferences yields more PSNR gain in the spatial
resolution than in the temporal resolution.

The third experiment assumes that the users have three different spatial, temporal, and
quality resolution preferences. In the experiment, there are three preference distribution
settings. The preferences for the spatial, temporal, and quality resolutions are as follows: 1)
temporal resolutions: 7.5 fps, 15 fps, and 30 fps; 2) spatial resolutions: QuadCIF, QCIF, and
CIF; and 3) quality resolutions with bit constraints b0 = 2400 kbps, b1 = 4600 kbps, and
b2 = 6200 kbps.

Setting 1

µr=2400kbit/GOP 7.5 15 30 (fps)

QuadQCIF 0.24 0 0
QCIF 0.06 0 0
CIF 0 0 0

µr=4600kbit/GOP 7.5 15 30 (fps)

QuadQCIF 0 0.06 0
QCIF 0 0.24 0
CIF 0 0 0

µr=6200kbit/GOP 7.5 15 30 (fps)

QuadQCIF 0 0 0
QCIF 0 0 0.08
CIF 0 0 0.32

Advanced Video Coding for Next-Generation Multimedia Services132



Setting 2

µr=2400kbit/GOP 7.5 15 30 (fps)

QuadQCIF 0.24 0.06 0
QCIF 0 0 0
CIF 0 0 0

µr=4600kbit/GOP 7.5 15 30 (fps)

QuadQCIF 0 0 0
QCIF 0.06 0.24 0
CIF 0 0 0

µr=6200kbit/GOP 7.5 15 30 (fps)

QuadQCIF 0 0 0
QCIF 0 0 0
CIF 0 0.08 0.32

Setting 3

µr=2400kbit/GOP 7.5 15 30 (fps)

QuadQCIF 0.3 0 0
QCIF 0 0 0
CIF 0 0 0

µr=4600kbit/GOP 7.5 15 30 (fps)

QuadQCIF 0 0 0
QCIF 0 0.3 0
CIF 0 0 0

µr=6200kbit/GOP 7.5 15 30 (fps)

QuadQCIF 0 0 0
QCIF 0 0 0
CIF 0 0 0.4

The results are shown in Figure 8. Compared to Figures 6 and 7, there are no significant
performance differences in the curves associated with the Lagrangian method and the
min-max method.

6. Conclusion

We introduce the concept and the details of wavelet-based scalable video coding in
this chapter. We also considers subscribers’ preferred resolutions when assessing the
performance of a wavelet-based scalable video codec. We formulate the problem as a scalable
bit-allocation problem and propose different methods to solve it. Specifically, we show
that the Lagrangian-based method can find the optimal solution of the upper bound of the
problem, and that the dynamic programming method can find the optimal solution of the
problem. We also consider applications where the subscribers’ preferences are not known,
and use a min-max approach to find a solution. Our experimental results show that knowing
the users’ preferences can improve the PSNR of the 2D+t wavelet scalable video codec. The
average PSNR gain depends on the users’ preference distribution. It can range from 1 db to
8 db at a fixed bit rate. There is a significant performance gap between when the preferences
are known over when they are unknown. Hence, in our future work, we will reduce the gap
or derive a method that enables use to estimate the preference patterns in the encoder.
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Figure 6. Comparison of the performance under different spatial preferences. Four preference patterns are used to subscribe

to three spatial resolutions: QuadQCIF, QCIF, and CIF. Left: Coastguard. Right: Foreman. There is only one quality resolution

and all users subscribe to 30 fps.
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Figure 7. Comparison of the performance under different temporal preferences. Different preferences are used to subscribe to

three temporal resolutions: 7.5 fps, 15 fps, and 30 fps. Left: Coastguard. Right: Foreman. There is only one quality resolution

and all users subscribe to CIF.
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Figure 8. Comparison of the performance under different spatial, temporal, and quality preferences. Different preferences

are used to subscribe to three temporal resolutions (7.5 fps, 15 fps, and 30fps), three spatial resolutions (QuadQCIF, QCIF, and
CIF), and three quality resolutions (2400 kbps, 4600 kbps, and 6200 kbps). Left: Coastguard. Right: Foreman. Top row: the
performance of setting 1; middle row: the performance of setting 2; and, bottom row: the performance of setting 3.
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