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1. Introduction

The study of component and process reliability is the basis of many efficiency evaluations in
Operations Management discipline. For example, in the calculation of the Overall Equipment
Effectiveness (OEE) introduced by Nakajima [1], it is necessary to estimate a crucial parameter
called availability. This is strictly related to reliability. Still as an example, consider how, in the
study of service level, it is important to know the availability of machines, which again depends
on their reliability and maintainability.

Reliability is defined as the probability that a component (or an entire system) will perform its
function for a specified period of time, when operating in its design environment. The elements
necessary for the definition of reliability are, therefore, an unambiguous criterion for judging
whether something is working or not and the exact definition of environmental conditions and
usage. Then, reliability can be defined as the time dependent probability of correct operation
if we assume that a component is used for its intended function in its design environment and
if we clearly define what we mean with "failure". For this definition, any discussion on the
reliability basics starts with the coverage of the key concepts of probability.

A broader definition of reliability is that "reliability is the science to predict, analyze, prevent
and mitigate failures over time." It is a science, with its theoretical basis and principles. It also
has sub-disciplines, all related - in some way - to the study and knowledge of faults. Reliability
is closely related to mathematics, and especially to statistics, physics, chemistry, mechanics
and electronics. In the end, given that the human element is almost always part of the systems,
it often has to do with psychology and psychiatry.

In addition to the prediction of system durability, reliability also tries to give answers to other
questions. Indeed, we can try to derive from reliability also the availability performance of a

© 2015 De Carlo; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



system. In fact, availability depends on the time between two consecutive failures and on how
long it takes to restore the system. Reliability study can be also used to understand how faults
can be avoided. You can try to prevent potential failures, acting on the design, materials and
maintenance.

Reliability involves almost all aspects related to the possession of a property: cost management,
customer satisfaction, the proper management of resources, passing through the ability to sell
products or services, safety and quality of the product.

This chapter presents a discussion of reliability theory, supported by practical examples of
interest in operations management. Basic elements of probability theory, as the sample space,
random events and Bayes' theorem should be revised for a deeper understanding.

2. Reliability basics

The period of regular operation of an equipment ends when any chemical-physical phenom‐
enon, said fault, occurred in one or more of its parts, determines a variation of its nominal
performances. This makes the behavior of the device unacceptable. The equipment passes from
the state of operation to that of non-functioning.

In Table 1 faults are classified according to their origin. For each failure mode an extended
description is given.

Failure cause Description

Stress, shock,

fatigue

Function of the temporal and spatial distribution of the load conditions and of the response of the

material. The structural characteristics of the component play an important role, and should be

assessed in the broadest form as possible, incorporating also possible design errors, embodiments,

material defects, etc..

Temperature Operational variable that depends mainly on the specific characteristics of the material (thermal

inertia), as well as the spatial and temporal distribution of heat sources.

Wear State of physical degradation of the component; it manifests itself as a result of aging phenomena

that accompany the normal activities (friction between the materials, exposure to harmful agents,

etc..)

Corrosion Phenomenon that depends on the characteristics of the environment in which the component is

operating. These conditions can lead to material degradation or chemical and physical processes

that make the component no longer suitable.

Table 1. Main causes of failure. The table shows the main cases of failure with a detailed description

To study reliability you need to transform reality into a model, which allows the analysis by
applying laws and analyzing its behavior [2]. Reliability models can be divided into static and
dynamic ones. Static models assume that a failure does not result in the occurrence of other
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faults. Dynamic reliability, instead, assumes that some failures, so-called primary failures,
promote the emergence of secondary and tertiary faults, with a cascading effect. In this text
we will only deal with static models of reliability.

In the traditional paradigm of static reliability, individual components have a binary status:
either working or failed. Systems, in turn, are composed by an integer number n of compo‐
nents, all mutually independent. Depending on how the components are configured in
creating the system and according to the operation or failure of individual components, the
system either works or does not work.

Let’s consider a generic X system consisting of nelements. The static reliability modeling
implies that the operating status of the i - th component is represented by the state function X i

defined as:

X i = {1     if the  i - th component works 
0     if the  i - th component fails  

(1)

The state of operation of the system is modeled by the state function Φ(X )

Φ(X )= {1      if the system works
0     if the system fails    

(2)

The most common configuration of the components is the series system. A series system works
if and only if all components work. Therefore, the status of a series system is given by the state
function:

Φ(X )=∏
i=1

n
X i = min

i∈{1,2,…,n}
X i (3)

where the symbol ∏  indicates the product of the arguments.

System configurations are often represented graphically with Reliability Block Diagrams
(RBDs) where each component is represented by a block and the connections between them
express the configuration of the system. The operation of the system depends on the ability to
cross the diagram from left to right only by passing through the elements in operation. Figure
1 contains the RBD of a four components series system.

Figure 1. Reliability block diagram for a four components (1,2,3,4) series system.
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The second most common configuration of the components is the parallel system. A parallel
system works if and only if at least one component is working. A parallel system does not

work if and only if all components do not work. So, if Φ
-

(X ) is the function that represents the

state of not functioning of the system and X
-

i indicates the non-functioning of the i - th element,
you can write:

Φ
-

(X )=∏
i=1

n
X
-

i (4)

Accordingly, the state of a parallel system is given by the state function:

Φ(X )=1 -∏
i=1

n
(1 - X i)=∐

i=1

n
X i = max

i∈{1,2,…,n}
X i (5)

where the symbol ∐  indicates the complement of the product of the complements of the
arguments. Figure 2 contains a RBD for a system of four components arranged in parallel.

Figure 2. Parallel system. The image represents the RBD of a system of four elements (1,2,3,4) arranged in a reliability
parallel configuration.

Another common configuration of the components is the series-parallel systems. In these
systems, components are configured using combinations in series and parallel configurations.
An example of such a system is shown in Figure 3.

State functions for series-parallel systems are obtained by decomposition of the system. With
this approach, the system is broken down into subsystems or configurations that are in series
or in parallel. The state functions of the subsystems are then combined appropriately, de‐
pending on how they are configured. A schematic example is shown in Figure 4.
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Figure 3. Series-parallel system. The picture shows the RBD of a system due to the series-parallel model of 9 elementa‐
ry units.

Figure 4. Calculation of the state function of a series-parallel. Referring to the configuration of Figure 3, the state
function of the system is calculated by first making the state functions of the parallel of{1,2}, of {3,4, 5} and of
{6,7, 8 ,  9}. Then we evaluate the state function of the series of the three groups just obtained.
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A particular component configuration, widely recognized and used, is the parallel kout ofn.
A system kout of nworks if and only if at least kof the ncomponents works. Note that a series
system can be seen as a system nout of nand a parallel system is a system 1 out ofn. The state
function of a system kout of nis given by the following algebraic system:

Φ(X )= {1      if ∑
i=1

n
X i ≥k

0      otherwise      
(6)

The RBD for a system kout of nhas an appearance identical to the RBD schema of a parallel
system of ncomponents with the addition of a label "k  out of n". For other more complex system
configurations, such as the bridge configuration (see Figure 5), we may use more intricate
techniques such as the minimal path set and the minimal cut set, to construct the system state
function.

A Minimal Path Set - MPS is a subset of the components of the system such that the operation
of all the components in the subset implies the operation of the system. The set is minimal
because the removal of any element from the subset eliminates this property. An example is
shown in Figure 5.

Figure 5. Minimal Path Set. The system on the left contains the minimal path set indicated by the arrows and shown in
the right part. Each of them represents a minimal subset of the components of the system such that the operation of
all the components in the subset implies the operation of the system.

A Minimal Cut Set - MCS is a subset of the components of the system such that the failure of all
components in the subset does not imply the operation of the system. Still, the set is called min‐
imal because the removal of any component from the subset clears this property (see Figure 6).

MCS and MPS can be used to build equivalent configurations of more complex systems, not
referable to the simple series-parallel model. The first equivalent configuration is based on the
consideration that the operation of all the components, in at least a MPS, entails the operation
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of the system. This configuration is, therefore, constructed with the creation of a series
subsystem for each path using only the minimum components of that set. Then, these subsys‐
tems are connected in parallel. An example of an equivalent system is shown in Figure 7.

4

1

5

2

3

1 2

1 3 5

4 3 2

4 5

Figure 7. Equivalent configurations with MPS. You build a series subsystem for each MPS. Then such subsystems are
connected in parallel.

The second equivalent configuration, is based on the logical principle that the failure of all the
components of any MCS implies the fault of the system. This configuration is built with the
creation of a parallel subsystem for each MCS using only the components of that group. Then,
these subsystems are connected in series (see Figure 8).

After examining the components and the status of the system, the next step in the static
modeling of reliability is that of considering the probability of operation of the component and
of the system.

Figure 6. Minimal Cut Set. The system of the left contains the minimal cut set, indicated by the dashed lines, shown in
the right part. Each of them represents a minimum subset of the components of the system such that the failure of all
components in the subset does not imply the operation of the system.
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The reliability Ri of the i - th component is defined by:

Ri = P(X i =1) (7)

while the reliability of the systemR is defined as in equation 8:

R = P(Φ(X )=1) (8)

The methodology used to calculate the reliability of the system depends on the configuration
of the system itself. For a series system, the reliability of the system is given by the product of
the individual reliability (law of Lusser, defined by German engineer Robert Lusser in the 50s):

R =∏
i=1

n
Ri     since     R = P(⋂

i=1

n

(X i =1))=∏
i=1

n
P(X i =1)=∏

i=1

n
Ri (9)

For an example, see Figure 9.

Figure 9. serial system consisting of 4 elements with reliability equal to 0.98,  0.99,  0.995 and 0.975. The reliability of
the whole system is given by their product: R =  0.98 ·  0.99 ·  0.995 ·  0.975 =  0.941

For a parallel system, reliability is:

Figure 8. Equivalent configurations with MCS. You build a subsystem in parallel for each MCS. Then the subsystems
are connected in series.
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R =1 -∏
i=1

n
(1 - R i)=∐

i=1

n
Ri (10)

In fact, from the definition of system reliability and by the properties of event probabilities, it
follows:

R = P(⋃
i=1

n

(X i =1))=1 - P(⋂
i=1

n

(X i =0))=1 -∏
i=1

n
P(X i =0)= =1 -∏

i=1

n
1 - P(X i =1) =1 -∏

i=1

n
(1 - R i)=∐

i=1

n
Ri (11)

In many parallel systems, components are identical. In this case, the reliability of a parallel
system with n elements is given by:

R =1 - (1 - R i)n (12)

Figure 10. A parallel system consisting of 4 elements with the same reliability of 0.85. The system reliability s given by
their co-product: 1 - (1 - 0.85)4 = 0.9995.

For a series-parallel system, system reliability is determined using the same approach of
decomposition used to construct the state function for such systems. Consider, for instance,
the system drawn in Figure 11, consisting of 9 elements with reliability
R1 = R2 =0.9;  R3 = R4 = R5 =0.8 and R6 = R7 = R8 = R9 =0.7. Let’s calculate the overall reliability of the
system.
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Figure 11. The system consists of three groups of blocks arranged in series. Each block is, in turn, formed by elements
in parallel. First we must calculate R1,2 = 1 - (1 - 0.8)2 = 0.99. So it is possible to estimated R3,4,5 = 1 - (1 - 0.8)3 = 0.992.

Then we must calculate the reliability of the last parallel block R6,7,8,9 = 1 - (1 - 0.7)4 = 0.9919. Finally, we proceed to the
series of the three blocks: R = R1,2∙R3,4,5∙R6,7,8,9 = 0.974.

To calculate the overall reliability, for all other types of systems which can’t be brought back
to a series-parallel scheme, it must be adopted a more intensive calculation approach [3] that
is normally done with the aid of special software.

Reliability functions of the system can also be used to calculate measures of reliability
importance.

These measurements are used to assess which components of a system offer the greatest
opportunity to improve the overall reliability. The most widely recognized definition of
reliability importance I '

i of the components is the reliability marginal gain, in terms of overall
system rise of functionality, obtained by a marginal increase of the component reliability:

I '
i = ∂R

∂Ri
(13)

For other system configurations, an alternative approach facilitates the calculation of reliability
importance of the components. Let R(1i)be the reliability of the system modified so that Ri =1
and R(0i)be the reliability of the system modified withRi =0, always keeping unchanged the
other components. In this context, the reliability importance I i is given by:

I i = R(1i) - R(0i) (14)

In a series system, this formulation is equivalent to writing:
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I i =∏
j=1
j≠i

n
R j (15)

Thus, the most important component (in terms of reliability) in a series system is the less
reliable. For example, consider three elements of reliability R1 =0.9, R2 =0.8 e R3 =0.7. It is
therefore: I1 =0.8∙0.7=0.56, I2 =0.9∙0.7=0.63 and I3 =0.9 · 0.8=0.72 which is the higher value.

If the system is arranged in parallel, the reliability importance becomes as follows:

I i =∏
j=1
j≠i

n
(1 - R j) (16)

It follows that the most important component in a parallel system is the more reliable. With the
same data as the previous example, this time having a parallel arrangement, we can verify Eq. 16
for the first item: I1 = R(11) - R(01)= 1 - (1 - 1) · (1 - 0.8)∙ (1 - 0.7) - 1 - (1 - 0) · (1 - 0.8)∙ (1 - 0.7)
=1 - 0 - 1 + (1 - 0.8)∙ (1 - 0.7)= (1 - 0.8)∙ (1 - 0.7).

For the calculation of the reliability importance of components belonging to complex systems,
which are not attributable to the series-parallel simple scheme, reliability of different systems
must be counted. For this reason the calculation is often done using automated algorithms.

3. Fleet reliability

Suppose you have studied the reliability of a component, and found that it is 80% for a mission
duration of 3 hours. Knowing that we have 5 identical items simultaneously active, we might
be interested in knowing what the overall reliability of the group would be. In other words,
we want to know what is the probability of having a certain number of items functioning at
the end of the 3 hours of mission. This issue is best known as fleet reliability.

Consider a set of midentical and independent systems in a same instant, each having a
reliabilityR. The group may represent a set of systems in use, independent and identical, or
could represent a set of devices under test, independent and identical. A discrete random
variable of great interest reliability isN , the number of functioning items. Under the assump‐
tions specified, N is a binomial random variable, which expresses the probability of a Bernoulli
process. The corresponding probabilistic model is, therefore, the one that describes the
extraction of balls from an urn filled with a known number of red and green balls. Suppose
that the percentage Rof green balls is coincident with the reliability after 3 hours. After each
extraction from the urn, the ball is put back in the container. Extraction is repeated mtimes,
and we look for the probability of finding ngreen. The sequence of random variables thus
obtained is a Bernoulli process of which each extraction is a test. Since the probability of
obtaining N successes in mextractions from an urn, with restitution of the ball, follows the
binomial distribution B(m, R)B, the probability mass function of N is the well-known:

Reliability and Maintainability in Operations Management
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P(N =n)= m !
n ! (m - n) ! R n(1 - R)m-n (17)

The expected value of N is given by: E (N )=μN =m∙Rand the standard deviation is:

σN = m∙R ∙ (1 - R).

Let’s consider, for example, a corporate fleet consisting of 100 independent and identical
systems. All systems have the same mission, independent from the other missions. Each system
has a reliability of mission equal to 90%. We want to calculate the average number of missions
completed and also what is the probability that at least 95% of systems would complete their
mission. This involves analyzing the distribution of the binomial random variable character‐
ized by R =  0.90andm =  100. The expected value is given by E (N )=μN =100∙0.9=90.

The probability that at least 95% of the systems complete their mission can be calculated as the
sum of the probabilities that complete their mission 95, 96, 97, 98, 99 and 100 elements of the
fleet:

P(N ≥n)= ∑
n=95

100 m !
n ! (m - n) ! R n(1 - R)m-n =0,058 (18)

4. Time dependent reliability models

When reliability is expressed as a function of time, the continuous random variable, not
negative, of interest is T , the instant of failure of the device. Let f (t) be the probability density
function of T , and let F (t) be the cumulative distribution function of T . F (t) is also known as
failure function or unreliability function [4].

In the context of reliability, two additional functions are often used: the reliability and the
hazard function. Let’s define Reliability R(t)as the survival function:

R(t)= P(T ≥ t)=1 - F (t) (19)

The Mean Time To Failure - MTTF is defined as the expected value of the failure time:

MTTF = E(T )= ∫0
∞t ∙ f (t)∙dt (20)

Integrating by parts, we can prove the equivalent expression:

MTTF = E(T )= ∫0
∞R(t)∙dt (21)

5. Hazard function

Another very important function is the hazard function, denoted by λ(t), defined as the trend
of the instantaneous failure rate at time t  of an element that has survived up to that time t . The
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failure rate is the ratio between the instantaneous probability of failure in a neighborhood of
t- conditioned to the fact that the element is healthy in t- and the amplitude of the same
neighborhood.

The hazard function λ(t) [5] coincides with the intensity function z(t) of a Poisson process. The
hazard function is given by:

λ(t)= lim
Δt→0

P (t ≤T < t + ∆ t | T ≥ t )
∆ t (22)

Thanks to Bayes' theorem, it can be shown that the relationship between the hazard function,
density of probability of failure and reliability is the following:

λ(t)= f (t )
R(t ) (23)

Thanks to the previous equation, with some simple mathematical manipulations, we obtain
the following relation:

R(t)= e
-∫

0

t
λ(u)∙du (24)

In fact, since ln R(0) = ln 1 =0,  we have:

R(t)= f (t )
λ(t ) = 1

λ(t ) ∙
dF (t )

dt = - 1
λ(t ) ∙

dR(t )
dt → 1

R(t ) dR(t)= - λ(t)dt →ln R(t) - ln R(0) = - ∫0
tλ(u)du (25)

From equation 24 derive the other two fundamental relations:

F (t)=1 - e
-∫

0

t
λ(u)∙du

f (t)=λ(t)∙ e
-∫

0

t
λ(u)∙du (26)

The most popular conceptual model of the hazard function is the bathtub curve. According
to this model, the failure rate of the device is relatively high and descending in the first part
of the device life, due to the potential manufacturing defects, called early failures. They
manifest themselves in the first phase of operation of the system and their causes are often
linked to structural deficiencies, design or installation defects. In terms of reliability, a system
that manifests infantile failures improves over the course of time.

Later, at the end of the life of the device, the failure rate increases due to wear phenomena.
They are caused by alterations of the component for material and structural aging. The
beginning of the period of wear is identified by an increase in the frequency of failures which
continues as time goes by. The wear-out failures occur around the average age of operating;
the only way to avoid this type of failure is to replace the population in advance.
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Between the period of early failures and of wear-out, the failure rate is about constant: failures
are due to random events and are called random failures. They occur in non-nominal operating
conditions, which put a strain on the components, resulting in the inevitable changes and the
consequent loss of operational capabilities. This type of failure occurs during the useful life of
the system and corresponds to unpredictable situations. The central period with constant
failure rate is called useful life. The juxtaposition of the three periods in a graph which
represents the trend of the failure rate of the system, gives rise to a curve whose characteristic
shape recalls the section of a bathtub, as shown in Figure 12.

Figure 12. Bathtub curve. The hazard function shape allows us to identify three areas: the initial period of the early
failures, the middle time of the useful life and the final area of wear-out.

The most common mathematical classifications of the hazard curve are the so called Constant
Failure Rate - CFR, Increasing Failure Rate - IFR and Decreasing Failure Rate - DFR.

The CFR model is based on the assumption that the failure rate does not change over time.
Mathematically, this model is the most simple and is based on the principle that the faults are
purely random events. The IFR model is based on the assumption that the failure rate grows
up over time. The model assumes that faults become more likely over time because of wear,
as is frequently found in mechanical components. The DFR model is based on the assumption
that the failure rate decreases over time. This model assumes that failures become less likely
as time goes by, as it occurs in some electronic components.

Since the failure rate may change over time, one can define a reliability parameter that behaves
as if there was a kind of counter that accumulates hours of operation. The residual reliabili‐
ty function R(t + t0 | t0), in fact, measures the reliability of a given device which has already
survived a determined time t0. The function is defined as follows:
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R(t + t0 | t0)= P(T > t + t0 |T > t0) (27)

Applying Bayes' theorem we have:

P(T > t + t0 |T > t0)=
P (T > t0 | T > t + t0) ∙ P (T > t + t0)

P (T > t0)
(28)

And, given that P(T > t0 |T > t + t0)=1, we obtain the final expression, which determines the

residual reliability:

R(t + t0 | t0)=
R(t + t0)

R(t0)
(29)

The residual Mean Time To Failure – residual MTTF measures the expected value of the
residual life of a device that has already survived a time t0:

MTTF (t0)= E(T - t0 |T > t0)= ∫0
∞R(t + t0 | t0)∙dt (30)

For an IFR device, the residual reliability and the residual MTTF, decrease progressively as
the device accumulates hours of operation. This behavior explains the use of preventive actions
to avoid failures. For a DFR device, both the residual reliability and the residual MTTF increase
while the device accumulates hours of operation. This behavior motivates the use of an intense
running (burn-in) to avoid errors in the field.

The Mean Time To Failure –MTTF, measures the expected value of the life of a device and
coincides with the residual time to failure, where t0 =0. In this case we have the following

relationship:

MTTF =MTTF (0)= E (T |T >0)= ∫0
∞R(t)∙dt (31)

The characteristic life of a device is the time tC  corresponding to a reliability R(tC) equal to
1

e
, that is the time for which the area under the hazard function is unitary:

R(tC)= e -1 =0,368 → R(tC)= ∫
0

tC

λ(u)∙du =1 (32)

Let us consider a CFR device with a constant failure rate λ. The time-to-failure is an exponential
random variable. In fact, the probability density function of a failure, is typical of an expo‐
nential distribution:
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f (t)=λ(t)∙ e
-∫

0

t
λ(u)∙du

=λe-λ∙t (33)

The corresponding cumulative distribution function F (t)is:

F (t)= ∫
-∞

t
f (z)dz = ∫

-∞

t
λe-λ∙zdz =1 - e -λ∙t (34)

The reliability function R(t)is the survival function:

R(t)=1 - F (t)= e -λ∙t (35)

For CFR items, the residual reliability and the residual MTTF both remain constant when the
device accumulates hours of operation. In fact, from the definition of residual reliability,
∀ t0∈ 0, ∞ , we have:

R(t + t0 | t0)=
R(t + t0)

R(t0) = e
-λ∙(t +t0)

e
-λ∙t0

= e -λ∙(t+t0)+λ∙t0 = e -λ∙t = R(t) (36)

Similarly, for the residual MTTF, is true the invariance in time:

MTTF (t0)= ∫0
∞R(t + t0 | t0)∙dt = ∫0

∞R(t)∙dt      ∀ t0∈ 0, ∞ (37)

This behavior implies that the actions of prevention and running are useless for CFR devices.
Figure 13 shows the trend of the function f (t)=λ ∙ e -λ∙t  and of the cumulative distribution
function F (t)=1 - e -λ∙t  for a constant failure rate λ =1. In this case, since λ =1, the probability
density function and the reliability function, overlap: f (t)= R(t)= e -t .

The probability of having a fault, not yet occurred at time t , in the next dt , can be written as
follows:

P(t <T < t + dt |T > t) (38)

Recalling the Bayes' theorem, in which we consider the probability of an hypothesis H, being
known the evidence E:

P(H | E )= P (E | H ) ∙ P (H )
P (E ) (39)

we can replace the evidence E with the fact that the fault has not yet taken place, from which
we obtain P(E )→ P(T > t). We also exchange the hypothesis H with the occurrence of the fault
in the neighborhood of t , obtaining P(H )→  P(t <T < t + dt). So we get:

Operations Management96



P(t <T < t + dt |T > t)= P (T > t | t < T < t + dt ) ∙ P (t < T < t + dt )
P (T > t ) (40)

Since P(T > t | t <T < t + dt)=1, being a certainty, it follows:

P(t <T < t + dt |T > t)= P (t < T < t + dt )
P (T > t ) = f (t )dt

e -λ∙t = λe -λ∙t dt
e -λ∙t =λ ∙dt (41)

As can be seen, this probability does not depend on t , i.e. it is not function of the life time
already elapsed. It is as if the component does not have a memory of its own history and it is
for this reason that the exponential distribution is called memoryless.

The use of the constant failure rate model, facilitates the calculation of the characteristic life of
a device. In fact for a CFR item, tCis the reciprocal of the failure rate. In fact:

R(tC)= e -λ∙tC = e -1 → tC = 1
λ (42)

Therefore, the characteristic life, in addition to be calculated as the time value tC  for which the
reliability is 0.368, can more easily be evaluated as the reciprocal of the failure rate.

The definition of MTTF, in the CFR model, can be integrated by parts and give:

MTTF = ∫0
∞R(t)∙dt = ∫0

∞e -λ∙t ∙dt =- 1
λ e -λ∙t| ∞0 = - 0

λ + 1
λ = 1

λ (43)

In the CFR model, then, the MTTF and the characteristic life coincide and are equal to 1
λ
.

Figure 13. Probability density function and cumulative distribution of an exponential function. In the figure is seen
the trend of f (t) = λ ∙e -λ∙t  and of f (t) = λ ∙e -λ∙t  with λ = 1.
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Let us consider, for example, a component with constant failure rate equal to λ =0.0002failures
per hour. We want to calculate the MTTF of the component and its reliability after 10000 hours
of operation. We’ll calculate, then, what is the probability that the component survives other
10000 hours. Assuming, finally, that it has worked without failure for the first 6000 hours, we’ll
calculate the expected value of the remaining life of the component.

From equation 43 we have:

MTTF = 1
λ = 1

0.0002
failures

h

=5000 h (44)

For the law of the reliability R(t)= e -λ∙t , you get the reliability at 10000 hours:

R(10000)= e -0.0002∙10000 =0.135 (45)

The probability that the component survives other 10000 hours, is calculated with the residual
reliability. Knowing that this, in the model CFR, is independent from time, we have:

R(t + t0 | t0)= R(t)→ R(20000|10000)= R(10000)=0.135 (46)

Suppose now that it has worked without failure for 6000 hours. The expected value of the
residual life of the component is calculated using the residual MTTF, that is invariant. In fact:

MTTF (t0)= ∫0
∞R(t + t0 | t0)∙dt →MTTF (6000)= ∫0

∞R(t + 6000|6000)∙dt = ∫0
∞R(t)∙dt =MTTF =5000 h (47)

6. CFR in series

Let us consider n different elements, each with its own constant failure rate λi and reliability

Ri = e -λi∙t , arranged in series and let us evaluate the overall reliability RS . From equation 9 we
have:

RS =∏
i=1

n
Ri =∏

i=1

n
e-λi∙t =e

-∑
i=1

n
λi∙t

(48)

Since the reliability of the overall system will take the form of the type RS = e -λs∙t , we can
conclude that:

RS =e
-∑

i=1

n
λi∙t

= e -λs∙t →λs =∑
i=1

n
λi

(49)
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In a system of CFR elements arranged in series, then, the failure rate of the system is equal to
the sum of failure rates of the components. The MTTF can thus be calculated using the simple
relation:

MTTF = 1
λs

= 1

∑
i=1

n
λi

(50)

For example, let me show the following example. A system consists of a pump and a filter,
used to separate two parts of a mixture: the concentrate and the squeezing. Knowing that the
failure rate of the pump is constant and is λP =1,5∙10-4 failures per hour and that the failure

rate of the filter is also CFR and is λF =3∙10-5, let’s try to assess the failure rate of the system,
the MTTF and the reliability after one year of continuous operation.

To begin, we compare the physical arrangement with the reliability one, as represented in the
following figure:

Figure 14. physical and reliability modeling of a pump and a filter producing orange juice.

As can be seen, it is a simple series, for which we can write:

λs =∑
i=1

n
λi =λP + λF =1.8∙10-4 failures

h (51)

MTTF is the reciprocal of the failure rate and can be written:

MTTF = 1
λs

= 1
1.8 ∙ 10-4 =5,555 h (52)

As a year of continuous operation is 24 · 365=8,760 hours, the reliability after one year is:

RS = e -λs∙t = e -1.8∙10-4·8760 =0.2066
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7. CFR in parallel

If two components arranged in parallel are similar and have constant failure rate λ, the
reliability of the system RP  can be calculated with equation 10, wherein RC  is the reliability of

the component RC = e -λt :

RP =1 -∏
i=1

2
(1 - R i)=1 - (1 - R1)2 =2RC - RC

2 =2e-λ∙t - e-2λ∙t (53)

The calculation of the MTTF leads to MTTF = 3
2λ . In fact we have:

MTTF = ∫0
∞R(t)∙dt = ∫0

∞2e-λ∙t - e-2λ∙t ∙dt = - 2
λ e -λt + 1

2λ e -2λt| ∞0 = 2
λ (0 - 1) + 1

2λ (0 - 1)= 3
2λ (54)

Therefore, the MTTF increases compared to the single component CFR. The failure rate of the
parallel system λP , reciprocal of the MTTF, is:

λP = 1
MTTF = 2

3 λ (55)

As you can see, the failure rate is not halved, but was reduced by one third.

For example, let us consider a safety system which consists of two batteries and each one is
able to compensate for the lack of electric power of the grid. The two generators are equal and
have a constant failure rate λB =9∙10-6 failures per hour. We’d like to calculate the failure rate
of the system, the MTTF and reliability after one year of continuous operation.

As in the previous case, we start with a reliability block diagram of the problem, as visible in
Figure 15.

Figure 15. Physical and reliability modeling of an energy supply system.

It is a parallel arrangement, for which the following equation is applicable:
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λP = 2
3 λ = 2

3 9∙10-6 =6∙10-6 guasti
h (56)

The MTTF is the reciprocal of the failure rate and is:

MTTF = 1
λp

= 1
6 ∙ 10-6 =166,666 h (57)

As a year of continuous operation is 24 · 365=8,760 hours, the reliability after one year is:

RP = e -λp∙t = e -6∙10-6·8,760 =0.9488 (58)

It is interesting to calculate the reliability of a system of identical elements arranged in a parallel
configuration k  out of n. The system is partially redundant since a group of k  elements is able
to withstand the load of the system. The reliability is:

Rk  out of n = P(k ≤ j ≤n)= ∑
j=k

n ( n
j )R j ∙ (1 - R)n- j (59)

Let us consider, for example, three electric generators, arranged in parallel and with failure
rate  λ =9 · 10-6. In order for the system to be active, it is sufficient that only two items are in
operation. Let’s get the reliability after one year of operation.

We’ll have: n =3, k =2. So, after a year of operation (t =8760 h ), reliability can be calculated as
follows:

R2 out of  3 = ∑
j=2

3 ( 3
j )R j ∙ (1 - R)3- j = ( 3

2 )e-2λt(1 - e-λt)3-2 + ( 3
3 )e-λt(1 - e-λt)3-3 =

= 3 !
2 ! (3 - 2) ! e -2λt ∙ (1 - e -λt)3-2 + 3 !

3 ! (3 - 3) ! e -λt ∙ (1 - e -λt)3-3 =

=3∙ e -2λt ∙ (1 - e -λt)3-2 + 1∙ e -λt ∙ (1 - e -λt)3-3 =0.963

A particular arrangement of components is that of the so-called parallel with stand-by: the
second component comes into operation only when the first fails. Otherwise, it is idle.

Figure 16. RBD diagram of a parallel system with stand-by. When component 1 fails, the switch S activates compo‐
nent 2. For simplicity, it is assumed that S is not affected by faults.
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If the components are similar, then λ1 =λ2. It’s possible to demonstrate that for the stand-by
parallel system we have:

MTTF = 2
λ (60)

Thus, in parallel with stand-by, the MTTF is doubled.=

8. Repairable systems

The devices for which it is possible to perform some operations that allow to reactivate the
functionality, deserve special attention. A repairable system [6] is a system that, after the
failure, can be restored to a functional condition from any action of maintenance, including
replacement of the entire system. Maintenance actions performed on a repairable system can
be classified into two groups: Corrective Maintenance - CM and Preventive Maintenance -
PM. Corrective maintenance is performed in response to system errors and might correspond
to a specific activity of both repair of replacement. Preventive maintenance actions, however,
are not performed in response to the failure of the system to repair, but are intended to delay
or prevent system failures. Note that the preventive activities are not necessarily cheaper or
faster than the corrective actions.

As corrective actions, preventive activities may correspond to both repair and replacement
activities. Finally, note that the actions of operational maintenance (servicing) such as, for
example, put gas in a vehicle, are not considered PM [7].

Preventative maintenance can be divided into two subcategories: scheduled and on-condi‐
tion. Scheduled maintenance (hard-time maintenance) consists of routine maintenance
operations, scheduled on the basis of precise measures of elapsed operating time.
Condition-Based Maintenance - CBM [8] (also known as predictive maintenance) is one of
the most widely used tools for monitoring of industrial plants and for the management of
maintenance policies. The main aim of this approach is to optimize maintenance by reduc‐
ing costs and increasing availability. In CBM it is necessary to identify, if it exists, a measur‐
able parameter, which expresses, with accuracy, the conditions of degradation of the system.
What is needed, therefore, is a physical system of sensors and transducers capable of moni‐
toring the parameter and, thereby, the reliability performance of the plant. The choice of the
monitored parameter is crucial, as is its time evolution that lets you know when mainte‐
nance action must be undertaken, whether corrective or preventive.

To adopt a CBM policy requires investment in instrumentation and prediction and control
systems: you must run a thorough feasibility study to see if the cost of implementing the
apparatus are truly sustainable in the system by reducing maintenance costs.

The CBM approach consists of the following steps:

• group the data from the sensors;
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• diagnose the condition;

• estimate the Remaining Useful Life – RUL;

• decide whether to maintain or to continue to operate normally.

CBM schedule is modeled with algorithms aiming at high effectiveness, in terms of cost
minimization, being subject to constraints such as, for example, the maximum time for the
maintenance action, the periods of high production rate, the timing of supply of the pieces
parts, the maximization of the availability and so on.

In support of the prognosis, it is now widespread the use of diagrams that do understand, even
graphically, when the sensor outputs reach alarm levels. They also set out the alert thresholds
that identify ranges of values for which maintenance action must arise [9].

Starting from a state of degradation, detected by a measurement at the time tk , we calculate
the likelihood that the system will still be functioning within the next instant of inspection
tk +1. The choice to act with a preventive maintenance is based on the comparison of the expected
value of the cost of unavailability, with the costs associated with the repair. Therefore, you
create two scenarios:

• continue to operate: if we are in the area of not alarming values. It is also possible that being
in the area of preventive maintenance, we opt for a postponement of maintenance because
it has already been established replacement intervention within a short interval of time

• stop the task: if we are in the area of values above the threshold established for preventive
maintenance of condition.

The modeling of repairable systems is commonly used to evaluate the performance of one or
more repairable systems and of the related maintenance policies. The information can also be
used in the initial phase of design of the systems themselves.

In the traditional paradigm of modeling, a repairable system can only be in one of two states:
working (up) or inoperative (down). Note that a system may not be functioning not only for
a fault, but also for preventive or corrective maintenance.

9. Availability

Availability may be generically be defined as the percentage of time that a repairable system
is in an operating condition. However, in the literature, there are four specific measures of
repairable system availability. We consider only the limit availability, defined with the limit
of the probability A(t) that the system is working at time t , when t  tends to infinity.

A= lim
t→∞

A(t) (61)

The limit availability just seen is also called intrinsic availability, to distinguish it from the
technical availability, which also includes the logistics cycle times incidental to maintenance
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actions (such as waiting for the maintenance, waiting for spare parts, testing...), and from the
operational availability that encompasses all other factors that contribute to the unavailability
of the system such as time of organization and preparation for action in complex and specific
business context [10].

The models of the impact of preventive and corrective maintenance on the age of the compo‐
nent, distinguish in perfect, minimal and imperfect maintenance. Perfect maintenance (perfect
repair) returns the system as good as new after maintenance. The minimal repair, restores the
system to a working condition, but does not reduce the actual age of the system, leaving it as
bad as old. The imperfect maintenance refers to maintenance actions that have an intermediate
impact between the perfect maintenance and minimal repair.

The average duration of maintenance activity is the expected value of the probability distri‐
bution of repair time and is called Mean Time To Repair - MTTR and is closely connected
with the concept of maintainability. This consists in the probability of a system, in assigned
operating conditions, to be reported in a state in which it can perform the required function.

Figure 17 shows the state functions of two repairable systems with increasing failure rate,
maintained with perfect and minimal repair.

Figure 17. perfect maintenance vs minimal repair. In figure are represented the state functions of two systems both
with IFR. Y (t) is equal to 1 when the system wotks, otherwise it’s 0. The left system is subject to a policy of perfect
repair and shows homogeneous durations of the periods of operation. The right system adopts the minimal repair for
which the durations of the periods of operation are reducing as time goes by.

10. The general substitution model

The general substitution model, states that the failure time of a repairable system is an
unspecified random variable. The duration of corrective maintenance (perfect) is also a random
variable. In this model it is assumed that preventive maintenance is not performed.
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Let’s denote by T i the duration of the i - th  interval of operation of the repairable system. For
the assumption of perfect maintenance (as good as new), {T1, T2, …, T i, …, Tn} is a sequence
of independent and identically distributed random variables.

Let us now designate with Di the duration of the i - th corrective maintenance action and
assume that these random variables are independent and identically distributed. Therefore,
each cycle (whether it is an operating cycle or a corrective maintenance action) has an identical
probabilistic behavior, and the completion of a maintenance action coincides with time when
system state returns operating

Regardless of the probability distributions governing T i and Di, the fundamental result of the
general pattern of substitution is as follows:

A=
E (T i)

E (T i) + E (Di) = MTTF
MTTF + MTTR = MTTF

MTBF (62)

11. The substitution model for CFR

Let us consider the special case of the general substitution model where T i is an exponential
random variable with constant failure rate λ. Let also Di be an exponential random variable
with constant repair rate μ. Since the reparable system has a constant failure rate (CFR), we
know that aging and the impact of corrective maintenance are irrelevant on reliability
performance. For this system it can be shown that the limit availability is:

A= μ
λ + μ (63)

Let us analyze, for example, a repairable system, subject to a replacement policy, with failure
and repair times distributed according to negative exponential distribution. MTTF=1000 hours
and MTTR=10 hours.

Let’s calculate the limit availability of the system. The formulation of the limit availability in
this system is given by eq. 63, so we have:

A= μ
λ + μ =

1
10

1
1000 +

1
10

= 0,1
0.101 =0.990 (64)

This means that the system is available for 99% of the time.

12. General model of minimal repair

After examining the substitution model, we now want to consider a second model for
repairable system: the general model of minimal repair. According to this model, the time of
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system failure is a random variable. Corrective maintenance is instantaneous, the repair is
minimal, and not any preventive activity is performed.

The times of arrival of faults, in a repairable system corresponding to the general model of
minimal repair, correspond to a process of random experiments, each of which is regulated by
the same negative exponential distribution. As known, having neglected the repair time, the
number of faults detected by time t , {N (t),  t ≥0}, is a non-homogeneous Poisson process,
described by the Poisson distribution.

13. Minimal repair with CFR

A well-known special case of the general model of minimal repair, is obtained if the failure
time T is a random variable with exponential distribution, with failure rate λ.

In this case, the general model of minimal repair is simplified because the number E N (t)  of
faults that occur within the time t : {N (t),  t ≥0} is described by a homogeneous Poisson process
with intensity z(t)=λ, and is:

E N (t) =μN (t ) =Z (t)= ∫
0

t
z(u)∙du = ∫

0

t
λ ∙du =λt (65)

If, for example, we consider λ =0.1 faults/hour, we obtain the following values at time 100, 1000
and 10000:
E N (100) =0,1∙100=10;  E N (1000) =0,1∙1000=100;  E N (10000) =0,1∙10000=1000. It
should be noted, as well, a linear trend of the expected number of failures given the width of
the interval taken.

Finally, we can obtain the probability mass function of N (t), being a Poisson distribution:

P N (t)=n = Z (t )n

n ! e -Z (t ) =
(λt )n

n ! e -λt (66)

Also, the probability mass function of N (t + s) - N (s), that is the number of faults in a range of
amplitude t shifted forward of s, is identical:

P N (t + s) - N (s)=n =
(λt )n

n ! e -λt (67)

Since the two values are equal, the conclusion is that in the homogeneous Poisson process
(CFR), the number of faults in a given interval depends only on the range amplitude.

The behavior of a Poisson mass probability distribution, with rate equal to 5 faults each year,
representing the probability of having n∈N faults within a year, is shown in Figure 18.
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Figure 18. Poisson distribution. In the diagram you can see the probability of having N  faults within a year, having a
homogeneous Poisson process with a rate of 5 faults each year.

Since in the model of minimal repair with CFR, repair time is supposed to be zero (MTTR = 0),
the following relation applies:

MTBF =MTTF + MTTR =MTTF = 1
λ (68)

Suppose that a system, subjected to a repair model of minimal repair, shows failures according
to a homogeneous Poisson process with failure rate λ =  0.0025 failures per hour. We’d like to
estimate the average number of failures that the system will have during 5000 hours. Then,
determine the probability of having not more than 15 faults in a operation period of 5000 hours.

The estimate of the average number of failures in 5000 hours, can be carried out with the
expected value function:

E N (t) =λ ∙ t  →  E N (5000) =0.0025 failures
h ∙5000 h =12.5 failures (69)

The probability of having not more than 15 faults in a period of 5000 hours of operation, is
calculated with the sum of the probability mass function evaluated between 0 and 15:

P N (5000)≤15 = ∑
n=0

15 (λt )n

n ! e -λ∙t = ∑
n=0

15 12.5n

n ! e -12.5 =0.806 (70)
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14. Minimal repair: Power law

A second special case of the general model of minimal repair, is obtained if the failure time T
is a random variable with a Weibull distribution, with shape parameter β and scale parameter
α.

In this case the sequence of failure times is described by a Non-Homogeneous Poisson Process
- NHPP with intensity z(t) equal to the probability density function of the Weibull distribution:

z(t)= β
α β t β-1 (71)

Since the cumulative intensity of the process is defined by:

Z (t)= ∫
0

t
z(u)∙du (72)

the cumulative function is:

Z (t)= ∫
0

t β
α β u β-1∙du = β

α β ∙
u β

β |
0

t
= t β

α β = ( t
α )β (73)

As it can be seen, the average number of faults occurring within the time t ≥0 of this not
homogeneous poissonian process E N (t) =Z (t), follows the so-called power law.
If β >1, it means that the intensity function z(t) increases and, being this latter the expression
of the average number of failures, it means that faults tend to occur more frequently over
time. Conversely, if β <1, faults decrease over time.

In fact, if we take   α =10 hours (λ =0.1 failures/h) and β =2, we have:
E N (100) = (0.1∙100)2 =100=102; E N (1000) = (0.1∙1000)2 =10000=1002;
E N (10000) = (0.1∙10000)2 =1000000=10002. We can observe a trend no longer linear but
increasing according to a power law of a multiple of the time width considered.

The probability mass function of N (t) thus becomes:

P N (t)=n = Z (t )n

n ! e -Z (t ) =
( t

α
)β∙n

n ! e -( t
α

)β
(74)

For example, let us consider a system that fails, according to a power law, having β =2.2 and
α =1500 hours. What is the average number of faults occurring during the first 1000 hours of
operation? What is the probability of having two or more failures during the first 1000 hours
of operation? Which is the average number of faults in the second 1000 hours of operation?

The average number of failures that occur during the first 1000 hours of operation, is calculated
with the expected value of the distribution:
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E N (t) =μN (t ) =Z (t)= ( t
α )β → E N (1000) = ( 1000

1500 )2.2 =0.41 (75)

The probability of two or more failures during the first 1000 hours of operation can be
calculated as complementary to the probability of having zero or one failure:

P N (1000)≥2 =1 - P N (1000)<2 =1 - ∑
n=0

1 ( t
α

)β∙n

n ! e -( t
α

)β

=1 - 0.410

0 ! e -0.41 - 0.411

1 ! e -0.41 =1 - 0.663 - 0.272=0.064 (76)

The average number of faults in the succeeding 1000 hours of operation is calculated using the
equation:

E N (t + s) - N (s) =Z (t + s) - Z (s) (77)

that, in this case, is:

E N (2000) - N (1000) =Z (2000) - Z (1000)=1.47 (78)

15. Conclusion

After seeing the main definitions of reliability and maintenance, let's finally see how we can
use reliability knowledge also to carry out an economic optimization of replacement activities.

Consider a process that follows the power law with β >1. As time goes by, faults begin to take
place more frequently and, at some point, it will be convenient to replace the system.

Let us define with τthe time when the replacement (here assumed instantaneous) takes place.
We can build a cost model to determine the optimal preventive maintenance time τ * which
optimizes reliability costs.

Let’s denote by C f  the cost of a failure and with Cr  the cost of replacing the repairable system.

If the repairable system is replaced every τ time units, in that time we will have the replacement
costs Cr  and so many costs of failure C f  as how many are the expected number of faults in the
time range (0;τ . The latter quantity coincides with the expected value of the number of faults
E N (τ) .

The average cost per unit of time c(τ), in the long term, can then be calculated using the
following relationship:

c(τ)=
C f ∙ E N (τ) + Cr

τ
(79)

Then follows:
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c(τ)=
C f ∙Z (τ) + Cr

τ (80)

Differentiating c(τ) with respect to τ and placing the differential equal to zero, we can find the
relative minimum of costs, that is, the optimal time τ * of preventive maintenance. Manipulat‐
ing algebraically we obtain the following final result:

τ * =α ∙
Cr

C f (β - 1)

1
β (81)

Consider, for example, a system that fails according to a Weibull distribution with β =2.2 and
α =1500 hours. Knowing that the system is subject to replacement instantaneous and that the
cost of a fault C f =2500 € and the cost of replacing Cr =18000 €, we want to evaluate the optimal
interval of replacement.

The application of eq. 81 provides the answer to the question:

τ * =α ∙
Cr

C f (β - 1)

1
β =1500∙ 18000

2500(2.2 - 1)

1
2.2 =1500 · 2.257=3387 h (82)

Nomenclature

RBD: Reliability Block Diagram

CBM: Condition-Based Maintenance

CFR: Constant Failure Rate

CM: Corrective Maintenance

DFR: Decreasing Failure Rate

IFR: Increasing Failure Rate

MCS: Minimal Cut Set

MPS: Minimal Path Set

MTTF: Mean Time To Failure

MTTR: Mean Time To Repair

NHPP: Non-Homogeneous Poisson Process

PM: Preventive Maintenance

Operations Management110



Author details

Filippo De Carlo

Address all correspondence to: filippo.decarlo@unifi.it

Industrial Engineering Department, University of Florence, Florence, Italy

References

[1] Nakajima S. Introduction to TPM: Total Productive Maintenance. Productivity Press,
Inc., 1988, 1988:129.

[2] Barlow RE. Engineering Reliability. SIAM; 2003.

[3] De Carlo F. Impianti industriali: conoscere e progettare i sistemi produttivi. New York:
Mario Tucci; 2012.

[4] O’Connor P, Kleyner A. Practical Reliability Engineering. John Wiley & Sons; 2011.

[5] Meyer P. Understanding Measurement: Reliability. Oxford University Press; 2010.

[6] Ascher H, Feingold H. Repairable systems reliability: modeling, inference, misconcep‐
tions and their causes. M. Dekker; 1984.

[7] De Carlo F, Borgia O, Adriani PG, Paoli M. New maintenance opportunities in legacy
plants. 34th ESReDA Seminar, San Sebastian, Spain: 2008.

[8] Gertler J. Fault detection and diagnosis in engineering systems. Marcel Dekker; 1998.

[9] Borgia O, De Carlo F, Tucci M. From diagnosis to prognosis: A maintenance experience
for an electric locomotive. Safety, Reliability and Risk Analysis: Theory, Methods and
Applications - Proceedings of the Joint ESREL and SRA-Europe Conference, vol. 1,
2009, pp. 211–8.

[10] Racioppi G, Monaci G, Michelassi C, Saccardi D, Borgia O, De Carlo F. Availability
assessment for a gas plant. Petroleum Technology Quarterly 2008;13:33–7.

Reliability and Maintainability in Operations Management
http://dx.doi.org/10.5772/54161

111




