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1. Introduction 

Hardware acceleration is the general concept of applying a specialized hardware for a given 

problem instead of an ordinary CPU in order to get lower processing time. General purpose 

CPUs can be considered as a totally general platform suitable for executing virtually any 

software or algorithm. Application specific accelerators have a custom architecture that fits 

the needs of a certain family of algorithms. As a consequence, they are able to outperform 

CPUs by orders of magnitude in a special application area but they are unfit for other, more 

general tasks. In contrast to normal CPUs, which are essentially serial machines executing 

instructions sequentially, hardware accelerators use parallel architectures which allow them 

to exploit the parallelism available in the given application by performing independent 

operations simultaneously.  

The most important examples of hardware accelerators are graphics processing units 

(GPUs) and field-programmable gate array devices (FPGAs). GPUs are special many-core 

processors optimized for 3D rendering and image processing purposes. GPU devices are 

nowadays part of any desktop PC configurations and they can be programmed with general 

purpose programming languages. These facts make them an easily accessible and cost-

effective accelerator platform and explain why they are used more and more frequently 

even in applications that are not graphics-related (general purpose GPU programming). 

FPGAs are programmable logic devices consisting of hundreds of thousands of general logic 

elements whose interconnection can be configured by the user. Thus FPGAs have a highly 

flexible architecture that allows to implement a totally custom digital hardware without the 

enormous cost of designing and manufacturing an application-specific integrated circuit 

(ASIC). When using an FPGA as a hardware accelerator a custom logic device is realized in 

the FPGA whose only purpose is to execute the algorithm to be accelerated as effectively as 

possible; thus the algorithm is usually implemented as pure hardware instead of software. 
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Hardware accelerators such as GPUs or FPGAs are utilized in many scientific applications, 

when the time-consuming operations make it impractical or even impossible to use ordinary 

CPUs. Bioinformatics is not an exception; it includes many problems and algorithms which 

are computationally expensive due to the large amount of data to be processed or the 

complex operations involved. Typical examples are different sequence alignment 

algorithms, protein structure prediction algorithms and molecular dynamics simulations 

which were implemented on various accelerator platforms several times.  

Molecular docking is another key field of bioinformatics whose purpose is to determine the 

binding geometry of molecules and is used by the pharmaceutical industry for identifying 

drug candidate compounds. Docking algorithms are usually computationally demanding 

since they consist of generating and evaluating a large amount of different molecule 

conformations and placements. However, these different placements can often be processed 

simultaneously and evaluating a single placement usually offers further parallelization 

possibilities. These facts make molecular docking an ideal target for hardware acceleration. 

In accordance with this, several GPU- and FPGA-based docking implementations were 

reported applying different approaches for hardware acceleration. In this chapter our 

purpose is to give a general overview of the most interesting implementations and to 

compare them with respect to the applied parallelization, applicability and achieved 

speedup. The remainder of this chapter is organized as follows. Section 2 surveys the 

concept and methods of molecular docking. Section 3 gives a general overview of FPGA and 

GPU devices. Section 4 and 5 introduce the existing FPGA- and GPU-based docking 

implementations, respectively. Finally, Section 6 surveys the current state and perspectives 

of hardware accelerated molecular docking.  

2. Overview of molecular docking 

Molecular docking is a computer simulation technique for determining the possible binding 

position and binding energy of molecules whose initial 3D spatial structure is known. Many 

docking methods and software exist, which may be different in several respects such as the 

size and number of molecules involved, the applied docking algorithm, the applied 

chemical model or the modeling of molecular flexibility. 

Molecular docking usually refers to docking a molecule to another one, that is, to determine 

the binding pose of the former relative to the latter. In case of protein-protein docking both 

of the molecules are large macromolecules. The more typical case is the protein-ligand 

docking when one of them is a small ligand molecule whose binding pose needs to be 

determined within the active site of a receptor. Since the computational complexity (the 

number of atoms, the size of the search space, etc.) differ by orders of magnitude, protein-

protein and protein-ligand docking usually require different approaches. Although the 

number of molecules involved in the docking problem is generally two, some protein-ligand 

docking software allow to dock more than one ligand to a macromolecule simultaneously. 

For some software a good starting position has to be provided manually which is then 
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refined by the algorithm; other ones are totally automated and try to find the docked 

position without any a priori knowledge. 

Another important aspect is how the docking algorithm takes into account molecular 

flexibility. Rigid-body docking methods keep the structure of the molecules rigid, flexible 

algorithms consider one or both of the molecules flexible allowing their conformation to 

change. The two approaches correspond to the lock-key and the induced fit model, 

respectively. Rigid docking methods are usually much faster but may easily fail to find the 

proper binding position in case of molecules that actually undergo a conformational change 

upon binding. The most obvious way to model flexibility is to consider some bonds 

rotatable by allowing their torsional angle to change during docking. This method is 

effective in case of small ligands, but greatly increases the number of degrees of freedom 

and the computational complexity of the docking problem when applied for a large protein. 

As a consequence, protein flexibility is often taken into account only partially (allowing a 

few bonds of some side chains to rotate) or is modeled differently. One example is the soft 

receptor technique which allows small atomic collisions between neighboring protein and 

ligand atoms by reducing the repulsion energy term. The method is based on the 

assumption that the highly flexible protein could avoid the collision in practice by a low 

energy conformational change. Modeling flexibility in this way is computationally economic 

but may easily lead to invalid docked positions. Another straightforward technique is to 

keep the protein structure rigid and repeat the docking process with different pre-generated 

(or experimentally determined) protein conformations. Ultimately, this enables taking into 

account both protein and ligand flexibility even in case of rigid-body docking methods. The 

approach is also useful for considering the flexibility of rings within the ligand, which 

cannot be modeled with rotatable bonds; instead, a set of pre-generated, valid substructure 

conformations can be used during docking.  

Although there are numerous different molecular docking algorithms, essentially each of 

them consists of two important components: a scoring function and a search method. The 

scoring function represents a chemical model and usually estimates the free energy of a 

geometrical arrangement of the molecules, thus it scores the given placement. The search 

method tries to find the ideal arrangement by sampling the search space according to a 

strategy. Docking can be viewed as an optimization problem where the global optimum of 

the scoring function is to be identified and the degrees of freedom are the variables 

describing the position, orientation and conformation of the molecules. Some docking 

methods apply one of the standard force fields as scoring function such as AMBER or 

CHARMM [1-4]. Other ones use empirical scoring functions that consist of a sum of terms 

representing different interaction types between the molecules; the term types are weighted 

with values determined empirically from a set of protein-ligand complexes [5, 6]. 

Knowledge-based functions are also typical which are derived from the statistical analysis 

of a large database containing molecular structures [7, 8]. The search methods applied by the 

different docking methods are also very diverse. One example is incremental reconstruction 

applied by the docking tools DOCK [4] and FlexX [9], which split the ligand to be docked 

and place the fragments one-by-one at the binding site. AutoDock [6] and GOLD [10] use 
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genetic algorithms as global optimization methods. AutoDock Vina [11] applies a quasi-

Newton BFSG algorithm along with Monte Carlo simulation. Other standard algorithms 

such as simulated annealing, tabu search or particle swarm optimization techniques are also 

common. A good overview of the general terms and concepts of molecular docking can be 

found in references [12-14].  

The most important application area of molecular docking is computer-aided, structure-

based drug design. Docking can be used for identifying drug candidates (potential 

inhibitors) for a given target receptor molecule. During virtual screening the members of a 

large ligand database are docked one by one to the target; promising compounds are 

subjected to further experiments. Virtual screening is extremely time-consuming; 

accelerating it can make the drug design process more effective. Trivially, this can be done 

by executing the docking runs of different molecules in parallel utilizing a lot of CPU cores. 

The other method is to accelerate the applied docking algorithm itself, potentially by an 

FPGA- or GPU-based hardware accelerator.  

3. Accelerator platforms 

3.1. FPGA devices 

A field-programmable gate array is a programmable logic device - an integrated circuit with a 

flexible hardware architecture that can be configured to implement a specific functionality. 

FPGAs represent a trade-off between highly flexible, general purpose microprocessors and 

high-performance application-specific integrated circuits (ASICs). FPGA devices execute the 

required computation with a specific hardware architecture just like ASICs. Although they are 

not as efficient in terms of performance and power consumption, implementing a custom 

hardware in a 100-1000$ FPGA does not require to manufacture a new chip which is affordable 

only in case of large-scale production. In addition, FPGAs can be reconfigured many times. 

Thus they can be considered general-purpose similarly to CPUs but due to the applied custom 

architecture they can be orders of magnitude faster in case of a specific application. 

The two major FPGA vendors, Xilinx and Altera offer a wide range of FPGAs and FPGA 

families with different capabilities, the performance and complexity of the devices is also 

continuously growing; however, the basic architecture remains the same. FPGA devices 

consist of a large number of similar basic logic blocks or cells arranged usually in rows and 

columns on the chip and a configurable interconnect structure. Figure 1. shows a simplified 

diagram of the basic logic block (slice) of a Xilinx Virtex-4 FPGA. The slice consists of two 4-

input LUTs (look-up tables), two D flip-flops, carry logic supporting chaining of 

neighboring slices for high-performance arithmetic operations and routing resource 

configurable by multiplexers. A 4-input look-up table is a simple 24=16 bit memory element 

that can realize any four-variable logic functions when initialized with the truth table of the 

corresponding function. D flip-flops are 1-bit registers that capture and store the value of the 

D input at every active CLK clock edge. Thus LUTs are the basic resources of the FPGA for 

implementing combinational logic and D flip-flops for sequential logic, respectively. In 
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addition to the general logic resources FPGAs usually include special purpose cells such as 

dedicated memory blocks or DSP (digital signal processing) blocks consisting of adders and 

multipliers for arithmetic-intensive applications. FPGA-based accelerator cards are usually 

equipped with high-capacity external memory modules and high-speed interfaces like PCIe 

in addition to the FPGA. 

 

Figure 1. Virtex-4 slice  

FPGA devices have an inherently parallel architecture which makes them suitable for high-

performance computing applications. Different parts of an algorithm are executed by 

different hardware elements or modules; the execution can be simultaneous if the 

operations are independent. In data-parallel applications, where the same steps need to be 

performed on different data elements, the data can be distributed among many identical 

processing elements in the FPGA. In this case the achievable parallelism is limited only by 

the capacity of the device and the speed of the interface providing the input data. Another 

typical design concept is to apply a pipeline consisting of serially connected stages, which 

execute different steps of the same algorithm on different independent data elements.  

Implementing an algorithm in an FPGA instead of a CPU may lead to a much shorter 

execution time; however, it usually requires more programming time and effort. The FPGA 

configuration can be defined with hardware description languages (HDL) such as VHDL 

and Verilog. HDLs allow the designer to describe the operation and interconnection of 

general digital circuits at a relatively high level (called register-transfer level). The HDL 

description is then mapped to the FPGA architecture by automatic tools. Further 

information regarding FPGA architectures, programming languages and design 

methodologies can be found in references [15-16].  

3.2. GPU devices 

Graphics processing units are massively parallel processors consisting of hundreds of 

processing cores, thus capable of executing hundreds of threads in parallel. Their 
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architecture is optimized for data-parallel applications, which consist of instructions that 

have to be carried out on many different data elements. GPU operation is akin to the SIMD 

(single instruction multiple data) behavior – the parallel threads execute the same code but 

process independent input data. There are two main GPU manufacturers, AMD and 

NVIDIA, and although there are differences between the GPU architectures, the basic 

concepts are very similar. The same is true for the two widely used programming 

languages, CUDA and OpenCL. The former is developed by NVIDIA and is applicable to 

NVDIA devices only. OpenCL in turn is a standard parallel programming language 

supporting not only both GPU architectures but also multicore CPUs and heterogeneous 

platforms in general. The remainder of this section gives an overview of NVIDIA GPUs and 

CUDA since this is used by the majority of the GPU-based molecular docking 

implementations introduced in Section 5. However, the basic methodology and design 

patterns are very similar in case of OpenCL, only the terminology differs. 

CUDA (Compute Unified Device Architecture) is the computing architecture of NVIDIA 

GPUs, which defines a parallel programming model based on high-level programming 

languages. CUDA C gives minimal extensions to the standard C language and provides an 

API, which enable the user to write a CUDA program consisting of serial code and special 

parallel functions called kernels. The former runs on the host CPU, the latter are executed K-

times parallel by K different CUDA threads on the GPU. Threads of a kernel are grouped 

into thread blocks; the blocks in turn form a grid. Threads within the same block can 

communicate and synchronize with each other. This is not possible between different blocks 

of threads, since these are scheduled and executed in a random, non-deterministic order 

based on run-time decisions. This leads to automatic scalability; among ideal circumstances 

a GPU with twice as many processing cores can execute the same kernel twice faster. 

The simplified hardware architecture can be seen on Figure 2. An NVIDIA GPU consists of 

multiprocessors. Each multiprocessor includes several processing cores, a large amount of 

registers, shared memory and a scheduler. In addition, each multiprocessor can access the 

external memory and has caches for texture and constant data access. When a kernel is 

launched, a certain number of thread blocks is assigned to every multiprocessor and 

becomes active. A multiprocessor executes its active blocks logically in parallel, and it 

manages, schedules and executes the threads of its active blocks in groups of 32 threads 

called warps. Warps are executed physically in parallel, that is, a multiprocessor is able to 

execute the same operation of every 32 thread within a warp simultaneously in one or a few 

clock cycle. However, if threads of a warp take different execution paths after a conditional 

branch statement, the different instructions get serialized, that is, they are executed 

sequentially (warp divergence). 

Keeping the number of active blocks and warps high is important since this helps keeping 

every multiprocessor of the GPU busy as well as since the scheduler can hide the instruction 

and memory access latencies by switching between active warps. The maximal number of 

blocks that can be active on a multiprocessor is limited by the register and shared memory 

usage of the block since these resources are split among the active blocks. On the other 
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hand, internal register and shared memory access is very fast. Threads can access their own 

registers in parallel; shared memory is divided into banks, and can be accessed also in 

parallel, as long as parallel threads access different memory banks. This suggests that data 

should be stored in registers and shared memory whenever possible. External memory 

access is much slower, but if threads of a warp read from or write to a contiguous memory 

space, the memory operations can be coalesced and executed as a single access, which can 

greatly increase the effective memory bandwidth. Constant data access is faster than 

ordinary memory read operations since it is cached. All of the aspects mentioned above 

have to be taken into account when choosing data storage areas, grid and block sizes. 

Further information about GPU architectures and programming can be found in references 

[17-19]. 

 

Figure 2. NVIDIA GPU architecture 

4. Molecular docking on FPGA platforms 

We believe that there are only three FPGA-based docking implementations which have been 

published until now. This chapter introduces all of them: a docking engine using 3D 

correlation, its successor, the FPGA-based implementation of the PIPER [20] docking 

program, and the FPGA-based acceleration of AutoDock.  

4.1. Docking with 3D correlation 

This implementation is described in references [21, 22]. The applied algorithm uses 3D 

correlation which is a common rigid-body docking technique. The molecules to be docked 

are represented with 3D grids whose voxels consist of pre-calculated values expressing 

some property of the molecule at the corresponding spatial location related to the binding 

affinity. In order to evaluate an arrangement the two grids are shifted relative to each other, 

then the voxels are multiplied pairwise and the values are summed to get the final score. By 

calculating the whole correlation array every possible translational position is evaluated. 
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This process has to be repeated for each orientation to be investigated, which requires the 

rotation of one of the grids periodically. In case of correlation-based docking methods the 

applied search method is essentially exhaustive search. Obviously the molecules are treated 

rigid during docking, since their structure is hard-coded in the grids.  

The CPU-based docking programs using correlation usually replace it with Fourier 

transformation (FFT) and multiplication, which can be much faster on serial machines. The 

described FPGA-based implementation, however, performs direct correlation which can be 

effectively implemented with a highly parallel systolic chain in the FPGA. Another 

advantage of this method is that, by avoiding FFT, the operation for determining the voxel-

voxel interaction is not restricted to multiplication; even non-linear functions can be used. In 

order to exploit this the implementation has a flexible structure; the design can be easily 

configured to adapt different scoring schemes. The initial implementation [21] used a very 

simple voxel type consisting of only two bits that distinguish molecule interiors from 

exteriors and mark the surface of the molecules. The final version allows using voxels with 

tuple data type that represent different effects including directional interactions like 

hydrogen bonding. 

 

Figure 3. Systolic 3D array architecture [22, 23]  

The core element of the implementation is a systolic 3D correlation array consisting of cells. 

Each cell stores one voxel of the grid corresponding to the smaller (ligand) molecule. The 

receptor grid is stored in external memory. Instead of rotating the ligand at the beginning of 

each new correlation cycle, rotated orientation is obtained by reading the receptor voxels in 

rotated order. Thus rotation is performed on the fly by the address logic and uses only little 
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of the FPGA resources. The receptor voxels read from the memory are also rotated in case of 

directional data types; then they are passed to the systolic array. Figure 3/a shows a 1D 

correlation array consisting of pipelined cells. Each cell executes a pairwise operation (in this 

case, a multiplication) defined by the scoring method on its ligand voxel (Li) and the 

receptor voxel (Ri) available at its input, then adds it to the sum received from the previous 

cell and stores the result in a register. 1D correlation arrays are connected by FIFO delay 

lines to form a 2D correlation plane; planes in turn are connected by delay planes to obtain 

the 3D correlation array (Figure 3/b and 3/c). Due to the pipeline-based structure, the 

systolic array produces the result of one position evaluation (correlation) in each clock cycle, 

and the achieved parallelism is proportional to the number of ligand grid voxels. Due to the 

large amount of output data the resulting grids are not sent to the host machine directly. 

Instead, a data reduction filter module detects the best score (local maximum) within each 

subblock of the correlation array; only these promising docked positions are returned for 

further analysis. Certain parts of the FPGA design are configurable according to the applied 

voxel word with and type, score data type, and the applied pairwise scoring operation in 

order to support various force laws and scoring schemes. 

Performance tests were carried out with a Xilinx Virtex-II Pro XC2VP70-5 FPGA. Results 

were compared to a software running on a 3 GHz Xeon CPU. The software applied direct 

correlation since FFT proved to be slower for the applied small problem sizes. FPGA 

speedup varied between ×100-1000 according to the scoring method used.  

4.2. PIPER on FPGA 

The docking engine described in reference [23] is a modified, extended version of the 

docking core introduced in Section 4.1 and implements the PIPER software [20]. PIPER is 

based on 3D correlation and calculates it with the standard FFT method. The scoring 

function of PIPER consists of the weighted sum of different terms represented with separate 

grids; as a consequence, several independent forward FFTs have to be performed during 

evaluation. In addition to the van der Waals repulsion and attraction terms and the 

electrostatic interaction, desolvation effect is taken into account as well. The latter is 

described by a pairwise potential which is transformed to correlation grids with eigenvalue-

eigenvector decomposition. Grids corresponding to low eigenvalues are often discarded 

which reduces computational complexity but retains the accuracy of the algorithm [20]. 

The original implementation described in Section 4.1 was modified in a variety of ways to 

support multiple energy grids as well as to allow docking of larger molecules which would 

not fit in the systolic 3D array, thus permitting even protein-protein docking. The basic cell 

element of the systolic array is extended to process the independent grids in parallel; as a 

consequence, each correlation is performed simultaneously. At the end of every 1D 

correlation array a new weighted scorer module sums the partial correlation results with 

respect to the weights defined in PIPER. New FIFOs are used to propagate the output of a 

scorer module to the input of the next one. Calculating the weighted sum at the end of every 
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1D array requires a balanced amount of multipliers and FIFOs (block RAMs) of the FPGA 

keeping the resource utilization optimal. To support large molecules both the receptor and 

the ligand are stored in external memories. The ligand grid is partitioned into subgrids 

small enough to fit the size of the correlation array. Correlation is performed piece-wise; 

each subgrid is first loaded to the FPGA, then the receptor voxels are streamed through the 

array. 

The docking engine was implemented on an Altera Stratix-II EP2S180 and was validated 

against the original PIPER software. FPGA performance, however, was determined with 

post place-and-route simulations supposing an Altera Stratix-III EPSL340. Performance was 

compared to the original PIPER code, its multithreaded version, as well as a GPU-based 

implementation of PIPER (introduced in Section 5.1). The host CPU was a quad-core Intel 

Xeon 2 GHz CPU, the GPU code run on an NVIDIA Tesla C1060 device. The measured 

FPGA speedup depended greatly on the ligand grid size. In case of a 43 ligand grid speedup 

of the correlation task only and that of the whole application was almost ×1000 and ×37, 

respectively, compared to the single-core PIPER. However, it dropped exponentially with 

respect to the ligand size, decreasing below the ×16 speedup of the GPU at grid edge size 16 

and below the ×3 speedup of the quad-core version at grid edge size 32. The reason for this 

is that the FFT method applied by the CPU and the GPU became greatly superior to direct 

convolution at this problem sizes.  

4.3. AutoDock on FPGA 

References [24, 25] introduce our own FPGA-based docking implementation, the 

acceleration of the AutoDock [6] docking software. AutoDock is applicable basically for 

protein-ligand docking and models molecular flexibility with rotatable bonds. AutoDock 

uses a semi-empirical scoring function that consists of weighted terms representing van der 

Waals and electrostatic interactions, hydrogen bonding and desolvation. The scoring 

function gives the energy contribution of one non-bonded atom pair; this value has to be 

summed over all movable atom pairs of the system to determine the score. To reduce 

computational complexity AutoDock represents the rigid part of the receptor molecule with 

pre-calculated potential grids. Thus the energy contribution of a given ligand atom and the 

whole receptor can be determined with trilinear interpolation and iterating over the receptor 

atoms is not necessary. AutoDock uses a standard genetic algorithm (GA) as search method. 

Genetic algorithms generate sets of potential solutions (generations of entities) iteratively. 

Solutions are represented with values of the degrees of freedom (called genes) and are 

created by combining the genes (crossover) of selected previous entities (selection) and 

altering them randomly (mutation). In addition to the genetic algorithm AutoDock subjects 

some selected entities of each generation to an iterative local search method (LS) similar to 

hill climbing, which greatly increases the effectiveness of the algorithm. 

AutoDock was implemented on the SGI RASC RC100 module on a Xilinx Virtex-4 LX200 

FPGA. The design consists of four main blocks organized as a three stage pipeline (Figure 4). 

The first pipeline stage executes the genetic algorithm, that is, it generates the genes of a 
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new entity periodically. The second stage calculates the positions of the atoms of the ligand 

based on the input gene values. This step consists mainly of performing atomic rotations 

according to the positions of rotatable bonds and to the orientation of the ligand. The third 

stage includes two modules. One of them determines the receptor-ligand interaction energy 

based on the potential grids stored in external memory, that is, it performs a trilinear 

interpolation for each ligand atom; the other one calculates the energy contribution of each 

movable ligand atom pair by evaluating the scoring function directly. Each of the four 

modules consists of massively parallel, fine-grained internal pipelines; as a consequence, all 

of them are able to produce a new result of the realized operation in each clock cycle. The 

first module generates a new gene value, the second one performs the rotation of an atom, 

the other ones calculate the interaction energy of a ligand atom and the receptor molecule or 

that of an internal ligand atom pair in every clock cycle.  

 

Figure 4. FPGA core implementing AutoDock [24]  

In order to increase the performance of the docking engine the implemented algorithm 

slightly differs from the original AutoDock code and uses fixed-point arithmetic that fits 

better the FPGA architecture. According to test runs these differences does not degrade the 

accuracy of docking. Performance tests showed that the FPGA-based implementation yields 

an average speedup of ×23 over AutoDock running on a 3.2 GHz Intel Xeon CPU; the actual 

speedup varied between ×10-40 according to the structure and size of the molecules.  

5. GPU-based implementations 

Compared to the relatively small number of FPGA-accelerated docking engines, quite a lot 

of GPU-based solutions have been reported, which clearly indicates the advantages of 

GPUs over FPGAs in terms of accessibility and programming effort. It is neither reasonable 

nor possible to introduce every one of them. Instead, we aim at describing a wide variety of 

different approaches, and we tried to select the most promising implementations. Two of 
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the docking codes introduced in the following subsections were implemented also on 

FPGA.  

5.1. PIPER on GPU 

The authors of the FPGA-based PIPER (Section 4.2) published also a GPU-based version 

[26]. In case of the FPGA the FFT applied in PIPER was replaced with direct correlation, 

which can be executed by a very effective standard structure in the FPGA. On GPU, both 

FFT and direct correlation were implemented and they proved to be advantageous at 

different ligand grid sizes. Other steps such as summing the grids and filtering the results 

by identifying local maxima also run on the GPU; although they comprise only a few 

percent of total PIPER runtime, executing them on the CPU would have limited the 

achievable speedup. The only exception is re-calculation of the ligand grid according to the 

current orientation and charges, which run on the host CPU. 

3D correlation includes a lot of parallelism which can be exploited on a GPU as easily as on 

FPGA. Each voxel of the result grid can be calculated by a different thread simultaneously; 

in addition, correlation of grids representing different terms can be performed in parallel. In 

this implementation two different approaches are applied whose performance turned out to 

be similar: assigning each 2D plain to a different tread block, and assigning the same part of 

each 2D plain to a thread block. Receptor grid is stored in the external memory of the GPU 

due to its size and since it has to be available for each thread block (multiprocessor). Ligand 

grid is stored in shared or constant memory if possible; if the grid is small enough grids 

corresponding to multiple ligand orientations are stored and processed in parallel, which 

leads to further performance improvement. 

Forward and inverse FFT is executed with the standard NVIDIA CUFFT library consisting 

of optimized FFT-related CUDA functions. Receptor grids are calculated by the CPU, 

moved to the GPU memory and transformed by the GPU only once at initialization. Ligand 

grids are re-calculated, copied and transformed for each ligand orientation. Voxels of the 

transformed receptor and ligand grids are multiplied pairwise by the GPU. The CUDA 

implementation is trivial, since each voxel pair can be processed independently by a 

different thread. Finally the product grid is inverse transformed. 

The final step of each orientation evaluation is to sum the result grids according to the 

PIPER coefficients and find the voxels with the best scores corresponding to the best 

translational poses. PIPER uses several different sets of weights; these are assigned to 

different thread blocks in the GPU. Each block performs averaging according to the given 

set of weights. Individual threads process different parts of the grid. During averaging each 

thread identifies the best score of the grid part assigned to it and stores it in shared memory. 

Finally a single thread iterates over the scores to find the best one. Clearly the last filtering 

step could be implemented on the GPU the less effectively; if the number of coefficient sets 

is less than that of the multiprocessors, certain processors are not utilized, and serial steps 

such as finding the very last best score leads to idle threads. The majority of the algorithm, 

however, suits well the GPU architecture. 
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Performance tests were carried out on the platforms already mentioned in Section 4.2; the 

CUDA code run on a Tesla C1060 GPU and was compared to the FPGA-based version and to 

PIPER running on a single core and on all the four cores of a 2 GHz Intel Xeon CPU. Speedup 

of the correlation task was about ×300 compared to the single core version at a minimal 

ligand grid size of 4, but decreased exponentially with respect to ligand size similarly to the 

FPGA-based implementation. FPGA speedup was about ×1000 in case of a 43 ligand grid, so 

in case of direct correlation the FPGA outperformed the GPU. The FFT-based GPU code 

achieved a speedup of about ×30 regardless the ligand size and proved to be faster than GPU-

based direct correlation above ligand grid size 83. Worst-case speedup of the whole GPU 

application was ×17.7 and ×6.1 versus single core and quad-core PIPER, respectively, and was 

faster than the FPGA accelerated version if ligand grid size was above 83.  

5.2. A general FFT-based approach 

In reference [27] another CUDA implementation is presented that applies FFT for 

performing the correlation-based rigid docking algorithm. The approach is very similar to 

the one described in Section 5.1. The scoring function is very simple; it consists of two terms 

which represent the shape of the molecules and the electrostatic field. These terms are 

calculated over the 3D grid for the receptor and for each orientation of the ligand. Again, 

FFT is executed with the CUDA library. 

The test environment consisted of a dual-core AthlonX2 3600+ CPU and an NVIDIA 

GeForce9800GT GPU. The GPU speedup proved to be about ×3-4, depending on the grid 

size and the angle step size between different ligand orientations. That is, for the same 

search space size a finer discretization of the grids (meaning higher number of grid voxels) 

and a finer discretization of the ligand orientation (leading to more different orientations to 

be evaluated) resulted higher speedup. The reason is that in this case the FFT-grid 

multiplication-IFFT steps became more dominant compared to the whole GPU algorithm, 

and these can be executed the most effectively on the GPU. 

The achieved GPU performance seems to be lower with respect to the GPU-based PIPER 

(Section 5.1). Although the applied algorithms and implementation methods are similar, the 

achieved speedups are hard to compare due to the different hardware platforms. The 

GeForce 9800 GT includes about half the number of multiprocessors than Tesla C1060. CPU 

frequencies are the same but the architectures are very different; the applied AMD CPU is 

older than the Intel used in case of PIPER. The other possible explanation of the different 

performance improvements is that in case of PIPER several grids has to be processed during 

docking, which leads to more parallelism and requires more FFT computation; thus the 

advantages of the GPU can be exploited more effectively.  

5.3. AutoDock on GPU 

AutoDock is one of the best-known docking software; it was the most cited docking 

program in the ISI Web of Science database in 2005 [28]. This explains why it is a popular 
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subject for GPU-based acceleration. There is even a related SourceForge project called 

gpuautodock. The following subsections focus on three different AutoDock 

implementations; each of them maps different parts of the original algorithm to the GPU 

architecture.  

5.3.1. Acceleration based on profiling 

This AutoDock implementation is described in a case study [29]. The authors followed a 

traditional way – they profiled the original code in order to identify the most time-

consuming functions and ported only these to GPU. Two functions were selected – eintcal() 

and trilininterp() – which together accounted for about 63% of the total runtime. The former 

calculates the internal energy of the ligand molecule, that is, it evaluates the scoring function 

for each ligand atom pair whose distance can change due to rotatable bonds. The latter is 

called for each ligand atom during the calculation of receptor-ligand intermolecular energy 

to perform interpolation based on the pre-calculated potential grids. 

Each time these functions are called the corresponding CUDA kernel is executed instead of 

the original function. In both cases the number of threads within the kernel equals to the 

number of ligand atoms. This molecule usually consists of a few tens of atoms, which is a 

very low number compared to the GPU capabilities leading to a poor GPU utilization ratio. 

In addition, before each kernel call some data is transferred from the main memory to the 

GPU according to the current ligand position; these frequent memory transfer operations 

further decrease the performance.  

According to test runs, which were executed on an NVIDIA GeForce GTX 280 GPU, the 

GPU accelerated application could not achieve speedup but was slower than the CPU for 

typical ligand sizes. Performance improvement was obtained only if the number of atoms 

(threads) was in the range of 104, which is not a realistic use case. The reasons are mentioned 

above. Accelerating only a few computationally expensive functions without restructuring 

the original code is straightforward and does not require much programming effort; 

however, it does not allow to exploit all the parallelism available in the algorithm, and also 

limits the maximal achievable speedup according to Amdahl’s law.  

5.3.2. Acceleration excluding local search  

AutoDock includes further parallelism that is not exploited by the implementation 

described in Section 5.3.1. It uses a genetic algorithm as search method, which can be 

parallelized easily; each entity of the next generation can be created and evaluated 

simultaneously by different processing cores. The default population size is 150, which 

makes this approach promising with respect to GPU-based acceleration. However, 

AutoDock also applies an iterative local search method in addition to the GA, which is 

executed only on a few percent of the population (6%, that is, averagely 9 entities by 

default). Executing local search of different entities in parallel is possible, but would lead to 

low GPU utilization. In addition, performing the local search algorithm on an entity may 
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consist of hundreds of iterations (energy evaluations); that is, executing the whole LS on 

CPU would greatly reduce the achievable speedup.  

To overcome this problem, the authors of reference [30] chose to exclude the local search 

from the algorithm, but implement virtually every other part of AutoDock (the genetic 

algorithm, the ligand position calculation and the scoring function evaluation) on the GPU. 

Although the genetic algorithm (generating the degrees of freedom according to the GA 

rules) is usually not time-critical, leaving it on the host CPU would require periodic CPU-

GPU memory transfer operations, which is avoided if it is executed by the GPU.  

The main idea behind the implementation is to assign a different thread block to each entity 

of the new generation, whose threads cooperatively execute the different steps on the given 

entity. Another scheme was also tried where different entities were assigned to different 

threads, but this leads to low GPU utilization in case of typical population sizes – using 

default size, the number of parallel threads would be only 150 instead of 150 multiplied by 

the thread block size. The coordinates of ligand atoms are stored in the fast shared memory, 

which is crucial since every step of the scoring function evaluation modifies or reads this 

data and each thread of the block has to access it. During evaluation, each thread block first 

determines the atom positions (using two kernels for calculating the ligand conformation 

and orientation). Independent rotations of different atoms can be executed by different 

threads of the block. Then each thread performs trilinear interpolation for a different ligand 

atom (determining the atom-receptor intermolecular energy), and each thread evaluates the 

scoring function directly for a different ligand-ligand atom pair. Trilinear interpolation 

offers a further optimization, since NVIDIA GPUs support the fast access of 3D data by 

hardware. 

Parallelization of the GA operators (selection, crossover and mutation) is also 

straightforward. Selection requires to calculate the relative score (fitness) of the entities 

compared to the average score, which can be performed for each entity simultaneously. 

Genes of the new entities can be generated by crossover and mutation in parallel by threads 

of the block assigned to the entity. 

The test platform included an AMD Athlon 2.4 GHz and an NVIDIA Tesla C1060. 

Validation of the CUDA code was performed by using the same random seeds and 

comparing the output to that of original AutoDock. The results differed slightly only due to 

the single precision arithmetic applied in the GPU. The speedup of the different kernels 

depended highly on the population size. At default size speedup of the scoring function 

evaluation proved to be ×50, the selection and crossover ×1.25 and ×2.75. In case of mutation 

no speedup was obtained. The overall speedup of the algorithm was ×10 for a population 

size 50, it increased to ×20 for the default size and become saturated at 10000 yielding a 

speedup of ×47 over the CPU. On one hand, the GA operators could be implemented on the 

GPU much less effectively than the fitness evaluation. The probable reason is that they are 

much more control-intensive than the different steps of the scoring function evaluation 

consisting of a lot of arithmetic operations. On the other hand, executing GA on the CPU 
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would certainly decrease the speedup due to the additional transfer operations between the 

CPU and GPU memory.  

5.3.3. Acceleration including local search  

Implementing AutoDock on CUDA without local search as in Section 5.3.2 clearly offers a 

straightforward parallelization scheme that avoids GPU underutilization. However, the 

local search process usually increases docking accuracy of AutoDock significantly [31]. In 

order to include the LS in the implemented algorithm and simultaneously achieve a high 

speedup we ported AutoDock to CUDA exploiting a further high-level parallelization 

possibility [25]. Due to the heuristic nature of the search algorithm, often several (10-100) 

different docking runs are performed with AutoDock for the same receptor-ligand complex. 

This increases the reliability of the results as well as helps identifying multiple valid docked 

poses. Since these docking runs are totally independent from each other, they can be 

executed in parallel. 

Our implementation includes two CUDA kernels. In each generational cycle, first Kernel A 

is launched that creates and evaluates a whole population; then Kernel B is launched for 

performing LS on the selected entities. The two kernels call the same CUDA functions for 

scoring function evaluation; they differ only in how the degrees of freedom are generated 

(using either GA or LS rules). Basically, our implementation is quite similar to the one 

introduced in Section 5.3.2. Each thread block of the kernels is assigned to a different entity. 

Threads within a thread block generate different gene values, calculate independent 

rotations, and process different ligand atoms or atom pairs during scoring function 

evaluation. However, in case of kernel A a thread block is launched for each new entity of 

every independent docking run; in case of kernel B a block is launched for each entity of 

every run which is selected for local search.  

The advantage of this method is that local search is included which allows preserving 

docking accuracy, and even significant performance improvement can be achieved if the 

number of independent runs is high enough. The performance improvement, however, 

depends strongly on this number and in case of too few parallel runs the GPU is 

underutilized during LS, which leads to a low speedup.  

Test runs were carried out on an NVIDIA GeForce GTX 260 GPU; performance was 

compared with that of AutoDock running on a 3.2 GHz Intel Xeon CPU. In case of only one 

docking run the GPU achieved a low, ×2-5 speedup depending on the ligand structure and 

size. In case of 10 and 100 independent runs the average speedup proved to be ×30 and ×65, 

respectively, for a large set of ligands.  

Our FPGA-based AutoDock implementation described in Section 4.3 achieved an average 

speedup of ×23. This value does not depend on the number of docking runs since the FPGA 

executes only one at a time. Due to the applied three stage pipeline (Figure 4) only three 

entities are processed simultaneously in the FPGA. On the contrary, the GPU applies a brute 

force approach by processing each entity of every run in parallel. The low level (per 
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rotation, per atom, etc.) parallelization possibilities are exploited by fine-grained pipelines in 

the FPGA very effectively; this allows the FPGA-based implementation to achieve a 

significant speedup regardless the number of runs. As a consequence, the FPGA is faster 

than the GPU for a low number of runs. Further advantage of the FPGA architecture is that 

implementing local search is not problematic. However, if the number of runs is high 

enough, the GPU outperforms the FPGA; that is, similarly to the FPGA and GPU-based 

PIPER (Section 4.2 and 5.1) the two platforms are advantageous at different parameter 

ranges.  

5.4. MolDock on GPU 

Reference [32] describes the GPU-based acceleration of the MolDock [33] docking software. 

MolDock is very similar to AutoDock: it models molecular flexibility with rotatable bonds, 

its scoring function consists of the summation of pairwise energy terms, it uses pre-

calculated potential grids for representing the receptor during docking and it applies a 

genetic (evolutionary) algorithm as search method. Differences are the actual form of the 

energy terms (which is virtually irrelevant from the point of view of parallelization) and the 

lack of local search. 

Due to the similar algorithms the basic implementation schemes are practically the same as 

the ones described in Section 5.3.2 and 5.3.3; the gene values and atoms of every entity are 

distributed among the threads and are processed in parallel. Although no local search 

process is used, independent docking runs are performed in parallel to increase GPU 

utilization ratio (like in Section 5.3.3). Due to these similarities the implementation is not 

described here in more details. However, we would like to emphasize an apparent 

difference regarding how different jobs are aligned to the threads of the kernel. 

 

Figure 5. Job alignment comparison 
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In the GPU-based AutoDock implementations each thread block processes a different entity. 

In case of receptor-ligand energy calculation, for example, threads within the block perform 

trilinear interpolation for different atoms of the same ligand orientation (Figure 5/a). On the 

contrary, in this implementation threads within the same block perform interpolation for the 

same ligand atom of different entities (orientations) (Figure 5/b). Parallelization of other 

steps (genetic operators, internal energy calculation, etc.) also follows this scheme. This 

makes orientation calculation more effective; its disadvantage is that data corresponding to 

a given entity has to be stored in external GPU memory. 

Performance tests were carried out using a 2.66 GHz Intel Core 2 Quad CPU and an 

NVIDIA GeForce 8800 GT. Average GPU speedup was ×5, ×27 and ×33 for 1, 10 and 20 

parallel docking runs, respectively. The speedup, that is, GPU utilization showed a similar 

saturating tendency as in case of our GPU-based AutoDock implementation (Section 5.3.3).  

5.5. PLANTS on GPU 

PLANTS [34] stands for Protein-Ligand ANT System; it is a docking software using ant 

colony optimization (ACO) as search method. ACO is an optimization technique that 

mimics the behavior of ants when they collectively found the shortest path between the food 

source and the nest. At initialization, the degrees of freedom of the problem are discretized, 

and the same probability (pheromone level) is assigned to each discrete value of every 

degree of freedom. Then in each iteration a set of ants (potential solutions of the problem) 

choose a value for each degree of freedom according to the probability distribution. At the 

end of the iteration most of the probabilities are decreased (pheromone evaporation), but the 

ones corresponding to the best solution (shortest route) of the current iteration are 

increased, making it more likely that these values will be chosen by the ants in the next 

iteration. In PLANTS each solution is subjected to a local search algorithm at the end of each 

ACO iteration; then in a refinement step the LS is repeated for the best solution, which 

potentially further increases its fitness. PLANTS models flexibility with rotatable bonds and 

uses two different empirical scoring functions. One of them includes terms for protein-

ligand steric interactions, torsions and clashes of the ligand (representing ligand internal 

energy), in addition, steric interactions and side-chain clashes of the protein (representing 

protein internal energy). The other scoring function is similar but models hydrogen bonds as 

well. The protein is represented with 3D grids during docking making the protein-ligand 

energy calculation more effective. From the point of view of parallelization ACO is similar 

to genetic algorithms: the ants can be generated, evaluated and subjected to local search in 

parallel like the entities of the GA. 

The GPU accelerated PLANTS is described in reference [35]. The authors followed the 

traditional way of GPU programming using OpenGL and the NVIDIA Cg shading 

language. This method is less flexible than using CUDA; input data has to be encoded as 

textures, and functionality is implemented as shader programs processing these textures. 

The receptor grids, for example, are stored in a four channel (red, green, blue and alpha) 3D 

texture; the channels correspond to the four atom types which the scoring function of 
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PLANTS distinguishes. The optimization algorithms run on the CPU. The degrees of 

freedom are generated for each ant, then they are mapped to textures and moved to the 

GPU memory. Different shader programs calculate the coordinates of atoms, the protein-

ligand interaction energy (by exploiting the interpolation capabilities of the GPU), the ligand 

clash and torsional energy terms. Finally a shader sums the partial energy terms. These 

steps are executed for each ant of the current ACO or LS iteration in parallel. 

In order to exploit the capabilities of the GPU effectively the optimization algorithm was 

modified. The default value of ant colony size is 20 in PLANTS; to increase the number of 

solutions than can be evaluated in parallel multiple colonies are used, which sometimes 

exchange information by modifying the pheromone values of every colony according to the 

currently best solution. The refinement step was removed since it involves only one 

solution; in addition, the termination criterion of the LS was modified to prevent the parallel 

LS iterations from stopping after different number of steps. Although these modifications 

were necessary to achieve a high GPU utilization ratio, the altered algorithm turned out to 

be less effective than the original one; it requires a higher number of evaluations for finding 

the same solutions.  

Test runs were performed on a 3.0 GHz dual core Pentium 4 CPU and an NVIDIA GeForce 

8800 GTX GPU. For protein-ligand complexes the speedup of GPU accelerated steps was ×2-

6 in case of 100 parallel solutions (5 colonies) and ×7-16 in case of 4000 parallel solutions (200 

colonies), depending on the ligand structure. For protein-protein complexes with higher 

arithmetic intensity the speedup was ×10-20 and ×40-50 for 100 and 4000 parallel ants, 

respectively. The speedup of the whole GPU-based application with typically 400-500 

parallel solutions proved to be about ×4 over the original PLANTS. This is an average value 

for a large set of protein-ligand complexes; in case of large and highly flexible ligands 

speedups over ×7 were observed.  

5.6. Other approaches 

As we mentioned, it is not possible to introduce every GPU-based docking solution 

reported; instead we try to give a general overview of the diverse methods applied in this 

field. In this subsection some further GPU-based implementations are mentioned, which in 

a way are different from the solutions described above. Instead of introducing these in 

details, we focus on the differences.  

5.6.1. Hex on GPU 

Reference [36] describes the GPU-based acceleration of the Hex [37] program. Hex uses the 

FFT-correlation technique for docking. Instead of the ordinary Cartesian grids and 

translational correlation, however, Hex applies the spherical polar Fourier method based on 

rotational correlations, which allows to traverse not just the translational but also the 

orientational search space with FFT. The docking can be executed both with multiple 3D 

and with multiple 1D FFTs. Using 1D FFTs turned out to be much more advantageous on 
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the GPU, since it has a better memory read pattern than 3D FFT. The measured speedup on 

an NVIDIA GeForce GTX 285 was about ×45 compared to running Hex with 1D FFTs on a 

single CPU core.  

5.6.2. Calculating pairwise potentials  

Reference [38] focuses on the acceleration of calculating the pairwise potentials between the 

protein-ligand atoms. In many docking applications this is performed with pre-calculated 

grids which reduces the O(Nprot*Nlig) complexity to O(Nlig) during docking (where N 

denotes the number of atoms of the molecule). This implementation, however, calculates the 

double sum directly; one protein atom is assigned to each CUDA thread, which iterates over 

the ligand atoms and calculates the corresponding potential values. Although the 

effectiveness of the approach is uncertain due to the increased complexity, it is interesting 

since it fits the GPU architecture perfectly. The number of protein atoms is usually high 

enough to keep the multiprocessors of the GPU busy; it is not necessary to evaluate multiple 

ligand positions simultaneously. In addition, the amount of input data is smaller (the 

number of protein atoms is usually lower than that of the grid points), making this approach 

less memory-intensive. Depending on the molecule sizes, speedups between ×10-260 were 

observed on an NVIDIA Tesla C1060 GPU, compared to the same algorithm running on an 

Intel Xeon E5530 CPU.  

5.6.3. Using multiple GPUs 

Similarly to the previous section, reference [39] deals with accelerating only the pairwise 

potential calculation on GPU. The scoring function consists of two usual terms representing 

the van der Waals and electrostatic interaction. However, in this implementation two 

separate GPU devices are used; one of them calculates the van der Waals, the other one the 

electrostatic term. In a real docking application this approach would be probably impractical 

due to the required CPU-GPU memory transfer operations. Still, the applicability of 

multiple GPUs to the docking problem is intriguing; the most trivial way of utilizing them is 

to perform independent runs on the different devices. In case of this implementation overall 

speedup factors between ×118-193 were achieved; the test platform consisted of a 2.4 GHz 

Intel Core 2 Quad CPU and an NVIDIA GeForce 8800 GTX GPU.  

6. Conclusion 

Three FPGA-based and several GPU-based molecular docking implementations were 

surveyed in the previous sections. Although molecular docking algorithms are quite diverse 

in general, the methods introduced in this chapter actually fall into two categories. Both 

categories represent a docking approach which is easily parallelizable and thus suits well 

the architecture of accelerator platforms.  

The first group includes the correlation-based methods (Section 4.1, 4.2, 5.1, 5.2 and 5.6.1). 

As it was shown, correlation is a massively parallel operation and can be implemented 
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effectively in FPGA; on GPU in turn it can be performed with optimized FFT kernels. This 

makes correlation-based docking algorithms ideal for hardware acceleration; the limitation 

is that they support only rigid-body docking. 

The second group includes docking algorithms based on a global optimization algorithm 

which is inherently parallel (Section 4.3, 5.3-5.5). Both the evolutionary algorithms used by 

AutoDock and MolDock, and the ant colony optimization method of PLANTS operate on 

sets of potential solutions, which allows members of the set to be processed in parallel. The 

usual pairwise scoring functions applied by these programs offer further parallelization at 

the level of atoms or atom pairs. In addition, these methods support modeling of molecular 

flexibility, too.  

Many of the introduced, accelerator-based docking implementations achieved significant 

speedup over single or even multi-core CPUs. The actual speedup value is always a matter 

of reference platform, of course; still, the results prove that molecular docking can 

effectively accelerated by hardware and often a performance improvement of 1-2 orders of 

magnitude can be obtained. However, this improvement is usually not constant; in many 

cases it was shown that it strongly depends on input parameters (number of atoms, size of 

search space, search exhaustiveness, etc.), making accelerators usually more suitable for 

larger problem sizes. 

It should also be noted that performance improvement may come at a price: in some cases 

(4.3, 5.3.2, 5.5) the original algorithm had to be altered to make it more suitable for 

parallelization. Typically these changes were related to the local search in these cases, which 

is essentially a sequential algorithm. Such modifications are often necessary, however, they 

change the behavior and accuracy of the algorithm, which is sometimes unacceptable. 

Another typical necessity is that in addition to the computationally intensive but 

parallelizable steps that suit well the accelerator architecture, other parts must also be 

mapped to the accelerator in order to avoid that the host-accelerator bandwidth becomes a 

bottleneck. This, however may greatly increase the required programming effort.  

Another interesting point is the applicability and performance of FPGAs vs. GPUs. In case of 

the PIPER implementations (Section 4.2, 5.1) the FPGA outperformed the GPU when both 

executed correlation directly; but due to the effective FFT-based approach the GPU 

implementation seemed to be more suitable since its performance scaled well with the 

problem size. In case of AutoDock (Section 4.3, 5.3.3) the GPU outperformed the FPGA in 

practical cases, although the latter exploited the low-level parallelism of the docking 

algorithm more effectively and thus was faster than the GPU if the number of parallel runs 

was low. All these results confirm that GPU devices represent a real competitor of FPGAs 

even when considering only performance. In addition, as it was mentioned in Section 3, 

FPGA programming usually requires hardware skills while GPUs can be programmed in C-

like languages (although there are high-level C-based HDLs they are usually not as effective 

as VHDL or Verilog). GPU cards are cheaper by far than high-performance FPGA 

accelerators, and often they are already available in the desktop PC. All these facts suggest 

that GPUs are a better choice as accelerator platform than FPGAs in case of floating point-
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intensive applications like the majority of the docking algorithms, although clearly there are 

problem domains where FPGAs remain superior.  
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