
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

188,000 205M

TOP 1%154

7,000

Chapter 5

Video Encoder Implementation on
Tilera's TILEPro64™ Multicore Processor

José Parera-Bermúdez, Javier Casajús-Quirós and
Igor Arambasic

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53429

1. Introduction

The Moore's law states that the transistor number on integrated circuits approximately
doubles every two years. This trend has been met since its description in 1965. But this ex‐
ponential growth in transistor count does not always translate into similar growth of CPU
performance; some issues such as power density, total power and intra-chip distances are
preventing clock speeds above 4.5 GHz. During the past decades advances in semiconduc‐
tor technology and architecture have overcome the obstacles, but at present there is no al‐
ternative technology and all the possibilities of micro-parallelism seem to have been
explored. Another major issue is that the speed of dynamic memory has not grown with
the same strength as the CPU's speed, while static memory is prohibitively expensive for
widespread use.

The solution being put into practice is the use of the so called multicore CPU, i.e. the integra‐
tion of multiple cores on a single chip. Today nearly all computers, including desktops and
laptops, are equipped with CPUs with at least 2 cores and it is not uncommon to see servers
with 8 or 16 cores.

The evolution and the steady decrease in the price of technology have enabled the digital
video to be a media component included on any device from small pocket players to profes‐
sional projection equipment on movie theaters. Today the de facto standard for video coding
is ITU-T/ISO H.264 /MPEG-4 Part 10 or AVC (Advanced Video Coding) [1]. Since its first
publication, back in 2003, it has become one of the most commonly used formats due to its
flexibility to be applied to a wide variety of applications on a wide variety of networks and
systems, including low and high bit rates, low and high resolution video, broadcast, DVD

© 2013 Parera-Bermúdez et al.; licensee InTech. This is an open access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

storage, RTP/IP packet networks, multimedia telephony systems, etc. In 2004 the standard
was extended to enable higher quality video coding by adding several new features (in‐
creased sample bit depth precision, higher-resolution color information, adaptive switching
between 4x4 and 8x integer transforms...) required by professional applications.

H.264 performs significantly better than any prior standard under a wide variety of circum‐
stances in a wide variety of application environments, and outperforms MPEG-2 video, the
DVD standard for movies, typically obtaining the same quality at half the bit rate or less,
especially on high bit rate and high resolution situations.

Like other ITU-T standards, H.264 only specifies the syntax of the bitstream and the decod‐
ing procedures for reconstructing the video images; the encoding process is not specified at
all allowing the use of different approaches, algorithms and optimizations as long as the bit‐
stream is syntactically correct. Unlike previous standards, it is designed bearing in mind its
implementation avoiding complex calculations and favoring the use of just adders and shift‐
ers; nevertheless encoding is far more involved than decoding.

It is easy to find lots of papers and books dealing with almost every aspect of H.264; there
are also countless proprietary and open source software libraries and custom hardware im‐
plementations particularly for the consumer market. Therefore, what is special about the im‐
plementation described in the following paragraphs? In brief, the remarkable aspects are:

• It is targeted to very high quality with very low latency,

• It is a software-only solution, and

• The hardware is based on a commercial off-the-shelf multicore processor: the
TILEPro64™ from Tilera Corporation.

The performance achieved allows encoding 4K (DLP Cinema Technology, 4096x1716 pixels, 24
frames per second) video, the current standard for digital cinema, in real time with just one
frame latency.

The study has been undertaken as part of a project that develops optimized hardware for
those applications in which real time analysis-synthesis of high definition image streams is
needed. The project was led by Datatech (www.datatech-sda.com) and it focused on a par‐
ticular case of search & track applications for the aerospace segment, namely automatic re-
fueling of flying military aircrafts.

2. System architecture

Figure 1 shows the hardware building blocks of the system. As can be seen the TILE pro‐
cessor is the very heart of the system and only some adapting logic is required to deal with
the camera output; the I/O capabilities of the processor, including the Gigabyte Ethernet in‐
terface, make the rest.

Design and Architectures for Digital Signal Processing114

From a logical point of view, the system behaves as a standalone RTSP (Real-Time Streaming
Protocol) server [2] that packetizes the video encoded data for RTP delivering [3] over an IP
network.

Figure 1. Hardware System Architecture

2.1. The TILEPro64™ processor

The TILEPro64™ [4], the second generation of Tilera’s processors, is a fully programmable
64-core processor organized as a two-dimensional array (8x8) of processing elements (each
referred to as a tile), connected through the iMesh™, a bunch of two-dimensional mesh net‐
works. The processor also integrates external memory and I/O interfaces connected to the
tiles via the iMesh™ interconnect fabric.

Each tile contains a Processor Engine, a Cache Engine, and a Switch Engine, which combine
components to make a powerful, full-featured compute engine.

• The Processor Engine is a conventional 32 bit VLIW (Very Long Instruction Word) pro‐
cessor with three instructions per bundle and full memory management, protection, and
OS support configuring a powerful, full-featured computing system that can independ‐
ently run a Linux operating system. The Tile Processor includes special instructions to
support commonly-used embedded operations in DSP, video and network packet proc‐
essing, including: hashing and checksums, instructions to accelerate encryption, SIMD
(Single Instruction Multiple Data) instructions for sub-word parallelism, saturating arith‐
metic, multiply-accumulate (MAC) instructions, sum of absolute differences (SAD), and
unaligned access acceleration. All arithmetic instructions are of integer type because there
is not a floating point unit.

Video Encoder Implementation on Tilera's TILEPro64™ Multicore Processor
http://dx.doi.org/10.5772/53429

115

• The Cache Engine contains the tile’s Translation Lookaside Buffers (TLBs), caches, and
cache sequencers. Each tile has 16KB L1 instruction cache; 8KB L1 data cache, and a 64KB
unified L2 cache. This delivers a total of 5.5 MB of on chip memory. The cache can be con‐
figured as coherent or incoherent; in the first case, the hardware automatically maintains
the consistency of data between processors, converting all on chip memory in a sort of L3
unified cache. Each tile also contains a DMA engine that works together with the cache
engine for orchestrating memory data streaming between tiles and external memory, and
among the tiles.

• The Switch Engine implements six independent networks. The Switch Engine switches
scalar data between tiles through the Static Network (STN) with very low latency. Five
dynamic networks (UDN, TDN, MDN, CDN and IDN) aid the Switch Engine by routing
packet-based data among tiles, tile caches, external memory, and I/O controllers. Of the
five dynamic networks, only the User Dynamic Network (UDN) is user-visible; the others
are used to satisfy cache misses from external memory and other tiles, and for various
system-related functions. The Static Network in addition to the five Dynamic Networks
comprise the interconnect fabric of the Tilera iMesh™. The user does not explicitly need
to manage these networks; rather they are used by the system software to efficiently im‐
plement the application-level API abstractions, such as user-generated inter-process sock‐
et-like streams.

It is noteworthy that all the cores are identical forming a homogeneous architecture that con‐
trasts with other notable multicore processors such as the Cell Broadband Engine (from So‐
ny, Toshiba and IBM) or the DaVinci from Texas Instruments. As a result, programming is
easier, more portable and more easily scalable. Furthermore, the combination of cores and
interconnecting network enable different kinds of parallelism: fine or coarse grain, shared-
memory multithreading, message passing multitasking, etc. making the architecture suita‐
ble for a broad range of parallel problems.

The TILEPro64™ supports the following primary external interfaces:

• Memory: four memory interface channels, each supporting 64-bit DDR2 DRAM up to 800
Mbps, for a peak total bandwidth of 25.6 GB/s. The memory controllers are on-chip.

• 10Gb Ethernet: Two full-duplex XAUI-based 10Gb ports with integrated MACs.

• PCIe: Two 4-lane PCI Express ports configurable as 4-lane, 2-lane or 1-lane (4x, 2x, 1x)
with integrated MACs, supporting both root complex and endpoint modes.

• 10/100/1000 Ethernet: Two on-board RGMII 10/100/1000 Ethernet MACs.

• HPI: 16-bit host port interface.

• Flexible I/O: 64 bits of dedicated Flexible I/O for programmable I/O and interrupt sup‐
port, with frequency up to 150 MHz and streaming capability.

• UART, I2C and SPI ROM.

Design and Architectures for Digital Signal Processing116

Figure 2 shows a block diagram of the processor:

Figure 2. TILEPro64™ Block Diagram

There are two versions of the processor that differ only in the operating frequency: 700 or
866 MHz. A few performance metrics at 866 MHz are listed in the next table:

Operations Per Second 8-bit 443 BOPs

16-bit 222 BOPs

32-bit 166 BOPs

Data I/O 40+ Gbps

Memory I/O 205 Gbps

Bisection Bandwidth 2660 Gbps

On-chip Cache Memory Bandwidth 1774 Gbps

Table 1. TILEPro64™ Performance Metrics

Video Encoder Implementation on Tilera's TILEPro64™ Multicore Processor
http://dx.doi.org/10.5772/53429

117

2.2. The multicore development environment

The Tilera MDE [5] provides a complete software environment, including the system soft‐
ware stack, a variety of helpful software libraries, and standard Linux command-line utilit‐
ies. The execution environment includes three layers: the hypervisor, the client operating
system (Linux), and user space:

• The hypervisor is the lowest layer of the software stack. It abstracts hardware details of
the processor, manages communication between tiles, from tiles to I/O controllers, and
provides a low-level virtual-memory. This layer also provides I/O drivers that run on
dedicated tiles and, therefore, do not run Linux or user space applications. The running
drivers, the tiles on which they run and their parameters can be configured at boot time.

• The supervisor layer, composed of SMP Linux, provides system calls and I/O devices for
user-space applications and libraries. This layer enables multi-process applications and
multi-threaded processes to exploit multiple tiles for increased performance. The OS soft‐
ware manages hardware resources and provides higher-level services, such as processes
and virtual memory allocation.

• The application layer runs user space programs that can invoke Linux system calls and
link against standard libraries just as on any other Linux platform. Tilera provides the
standard C/C++ run-time and other processor specific libraries.

The MDE also provides a complete suite of tools for all phases of program development,
starting with authoring or porting an application, through debugging, and into performance
evaluation. These tools include:

• C/C++ compiler, assembler and linker, and other standard Unix tools. This tool chain is
compatible with that of GNU; specifically, the compiler supports ANSI C99 standard as
well as GNU extensions. The tools enable the use of portable source code, easy to pro‐
gram and with the same concurrency support as that available for Intel x86 processors in
a Linux box.

• A standard, open-source gdb debugger with support for the Tile Processor architecture.

• A software simulator that provides cycle-accurate profiling and tracing.

• A custom version of the open-source Eclipse IDE providing a GUI interface for all stages
of program development: authoring, building, running, debugging and profiling.

3. Encoder parallelization

Programming a parallel application is not an easy job. The design space is enormous: differ‐
ent kinds of parallelism, data granularity, tools… The algorithm being implemented, the
performance objectives and the computing platform impose some constraints but do not de‐
termine the design choices. Fortunately, the Tilera’s platform supports a broad range of pos‐
sibilities. See, for example [6], which explores several alternatives for the H.264 encoder.

Design and Architectures for Digital Signal Processing118

The design of the application has completed all four typical stages established by best practi‐
ces: task decomposition, assignment, orchestration and distribution [7]. The following para‐
graphs detail the course of action.

3.1. Task decomposition

3.1.1. H.264 encoder procedures

An H.264 encoder [8] [9] [10] consists of a few basic procedures; besides these, the standard
defines a wide range of ancillary techniques, many of them optional, designed to provide
enough flexibility to be applied to multiple scenarios. The encoder structure (see figure 3)
does not differ substantially from that of other encoders but its many details and subtleties
allow for a much more efficient compression.

Figure 3. Block Diagram of Basic Encoder Procedures in H.264

Video Encoder Implementation on Tilera's TILEPro64™ Multicore Processor
http://dx.doi.org/10.5772/53429

119

The upper part of the figure (yellow) shows the encoding process. The frame being encoded,
in YCbCr color space format, is divided into macroblocks, i.e. chunks of 16x16 luminance (Y)
pixels and their corresponding chrominance (Cb, Cr) pixels, whose size varies according to
the subsampling method (8x8 if 4:2:0, 8x16 if 4:2:2 or 16x16 if 4:4:4). The luminance and chro‐
minance channels are processed separately using the same techniques.

In the prediction phase the encoder builds a macroblock using previously encoded data, ei‐
ther from the current frame (spatial or intra prediction) or from other frames (temporal or
inter prediction). Intra prediction can be carried out for the whole macroblock in 4 modes or
dividing it into 8x8 or 4x4 blocks in 9 modes. Each mode, related to a spatial direction, is just
an extrapolation computed as averages of the neighboring pixels. Inter prediction is more
involved since it tries to find a description of the macroblock by estimating its motion with
respect to similar regions of previous frames. The search is performed on a variable number
of reference frames, in several rectangular section sizes and with increased pixel accuracy to
allow for sub pixel motion. Finally, the predicted macroblock can be expressed in terms of
motions vectors from regions of the reference frames.

Once a macroblock is predicted the encoder subtracts the predicted pixel values from the in‐
put macroblock to form a residual. The prediction methods supported by H.264 make it pos‐
sible to accurately predict the input macroblock, thus resulting in an outstanding video
compression because, being a differential encoder, the residual values are small and very of‐
ten nulls. Unfortunately, the computational complexity is too high, which poses a severe
trouble for a real-time implementation.

The residual data is transformed using an approximate 4x4 or 8x8 2D DCT (Discrete Cosine
Transform). This transform has the particular feature of compacting the energy of the input
in the low frequency coefficients and thus the transformed residual usually contains a few
non-zero values close to the matrix’s upper left corner. H.264 does not use standard DCTs
but modified so that their kernels consist solely of integer numbers eliminating the need for
floating point calculations.

The modified DCT output should be quantized by dividing the coefficients by an integer,
but the derivation of the transform left pending a scaling factor. Both numbers are combined
to avoid division and, incidentally, to accommodate the quality parameter QP. The overall
computation reduces the precision of the coefficients according to the desired quality gov‐
erned by the value of QP: the larger the value, the poorer the quality but the higher the com‐
pression and vice versa. The rate-distortion control procedure can update the value of QP
for each frame or macroblock in order to balance the opposing goals of high quality and low
bit rate. Usually, the rate-distortion control procedure aims a maximum or constant bit rate
but it is also possible to encode aiming constant quality in which case this procedure does
nothing.

The quantized DCT coefficients are scanned in zigzag to sort them according to increasing
spatial frequency; then they are converted into binary codes along with other signaling in‐
formation (macroblock partitioning, prediction modes or motion vectors…) and inserted in‐
to the output bitstream. The binary codes are computed by the entropy coder procedure

Design and Architectures for Digital Signal Processing120

using variable length or arithmetic coding, both adapted to the context to further reduce the
number of bits. Hence, their names are context-adaptive variable length coding (CAVLC)
and context-adaptive binary arithmetic coding (CABAC).

The quantization output also feeds the decoding process (the purple box in figure 3). This
process is needed at the encoder because it reconstructs the macroblocks and frames to be
used for prediction. The first procedure is the inverse quantization; actually it is a rescaling
as quantization cannot be inverted. Afterwards the coefficients are inverse transformed to
form a residual which is added to the prediction to get the reconstructed macroblock. If us‐
ing inter prediction, the result could be optionally filtered for reducing blocking distortion
by smoothing the macroblock edges. Note that typically the reconstructed macroblock will
differ from the original due to the loss of precision caused by quantization. Ultimately, H.
264 is a lossy compressor.

3.1.2. Implementation tradeoffs

In order to fulfill the requirements of real-time, low-latency and high quality the encoder
implements only a subset of the standard features and techniques available in the standard.
This selection does not prevent the encoder to comply with the standard because H.264 al‐
lows a high degree of flexibility in the techniques used. Specifically, the implemented encod‐
er has undergone the two following main tradeoffs:

• Intra only prediction, i.e. all predicted pixels are computed using only the current frame;
otherwise, the very low latency requirement couldn’t be achieved.

• CAVLC entropy coding; the alternative method, CABAC, is much more efficient from the
standpoint of the bit rate but it cannot be parallelized due to its recursive nature.

These tradeoffs, and some others discussed below, adversely affect the compression ratio of
the encoder resulting in an increased bit rate. Fortunately, neither the best compression ratio
nor constant bit rate are requirements of the implementation. These goals are distinct from
those required for consumer applications for which there are lot of solutions, but they are
essential in many professional applications: remote monitoring, remote assistance, content
generation, broadcast, video surveillance. The H.264 standard dedicates some specific pro‐
files for this kind of applications (High, High10 and High10 Intra), that in some cases the
industry has adopted, such as Panasonic's AVC-Intra.

Undoubtedly the temporal prediction improves the bit rate but not for free; in order to ob‐
tain a high quality a large number of reference frames are needed, scene changes can lead to
devastating effects, especially if a constant bit rate is desired, and latency, measured from
end to end, i.e. camera to monitor, increases linearly with the number of reference frames,
and can reach 1 second, only for decoding.

In our implementation, the encoding of a frame begins as soon as the first 16 lines of pixels
are available and once the row is encoded it is sent so that the decoding can start even be‐
fore the whole frame is encoded. Such an extremely low latency is only possible using spa‐
tial prediction. Additional advantages of the intra-only prediction are: 1) ease of frame by

Video Encoder Implementation on Tilera's TILEPro64™ Multicore Processor
http://dx.doi.org/10.5772/53429

121

frame video editing, 2) the resilience against transmission errors, since an error affects only
one frame, and 3) a significant saving of memory, which is especially important for very
large resolutions.

3.1.3. Amdahl’s law

The very first step in parallelizing an application is to determine if it is worth. Regardless of
costs, running platform, software architecture and any other constraint a parallel application
can run faster only a limited amount compared to its sequential version. Amdahl's law
states that if P is the fraction of code that can be made parallel and S = (1 - P) is the fraction
not parallelizable then the maximum speed up that can be achieved by using N processors is

speedup(N)= 1

S +
P
N

(1)

The results of applying Amdahl’s law to a given problem are just a rough approximation to
reality but serve to get an estimate of the maximum parallel performance and to focus atten‐
tion on potential bottlenecks and hot spots that can be found in the algorithm under devel‐
opment. So, the essential starting point in parallelization is to get an optimized sequential
code, in order to determine the value of S.

The available literature dealing with H.264 encoding focuses on algorithmic description or
performance improvement but usually forget to emphasize the inherently non-parallelizable
part: the composition of the bitstream. Once the input raw video is encoded the resulting
data must be packaged into NAL (Network Abstraction Layer) units which are byte aligned
structures with header and trailing data. The data, known as RBSP (Raw Byte Sequence Pay‐
load), is written into the NAL units using a strict syntax in which the macroblock raster or‐
der must be preserved. The number of bits generated depends on the image, making it
impossible to compose the NAL units without complying with the order. Furthermore, the
Annex B of the standard states that RBSP data must be checked against patterns of bytes
that can confuse the framing alignment while decoding. Those patterns must be disambigu‐
ated by byte stuffing the RBSP, i.e. inserting a fixed 0x03 byte each time they occur. Again,
this procedure is neither predictable nor parallelizable.

The execution of the optimized sequential code on a Linux box equipped with an Intel Core2
Duo (T7700) CPU @ 2.40 GHz reveals that the fraction of time spent handling the composi‐
tion of NAL units is 0.45%, yielding the value of S = 0.0045. The encoded frames per second
(fps) for a 4096x1716 video are 0.75. These figures have been obtained without taking into
account the input or output in order to accurately measure the time spent in the algorithm.
Solving equation (1) for N = 60 processors results in a speed up of 47.4x that applied to the
throughput gives 35.56 fps, enough for the digital cinema format (24 fps). A similar run on
the Tilera platform @ 866 MHz yields S = 0.015 (1.5%) and a throughput of 0.67 fps. Solving
again for N = 60 processors results in a speed up of 31.8x and a final throughput of 21.33 fps,
less than the requirement for the above mentioned format. The different values of S are
mainly due to the unequal facilities fitted in the CPUs for handling bytes and bit fields. The

Design and Architectures for Digital Signal Processing122

result of this analysis indicates that the NAL unit management is clearly a hot spot in the
code that could ruin the overall performance. Obviously, an optimization is needed in the
Tilera side to fulfill the goal.

3.1.4. Data dependencies

No parallel program can be built without knowing the data dependencies that the algorithm
imposes. As previously stated, the basic procedures of the encoder are the pixels prediction
and the entropy encoding of the residuals; in our case, intra prediction and CAVLC. It is
clear that the second procedure must follow the first one, since it's not feasible to encode any
data without having calculated it. Aside from this obvious fact, an analysis of the H.264 en‐
coder algorithm from the data flow standpoint shows:

• The input image is partitioned for processing into so called macroblocks, square chunks
of 16x16 pixels.

• The macroblocks are processed in raster scan order, i.e. from left to right and from top to
bottom.

• Each macroblock is predicted using some data from previously encoded macroblocks,
specifically the boundary pixels of the upper, upper right and left macroblocks. The only
exception to this rule is when the neighbouring macroblocks are not available; for exam‐
ple, the first macroblock of an image does not use any additional information because
their neighbours do not exist.

• In order to compute the entropy encoding each macroblock needs a quantization parame‐
ter, QP. There is no provision to determine how a macroblock selects this parameter, but
usually this job is entrusted to the block labelled as “Rate Distortion Control” in figure 3,
because it affects the number of bits generated in the entropy encoder and ultimately the
bit rate of the whole encoder. The quantization parameter can be seen as a quality param‐
eter: the lower the value the better the quality but also the higher the bit rate. Our imple‐
mentation allows to select between constant quality (fixed QP) and constant bit rate
(adaptable QP), but for the ease of parallelizing the latter option is applied in a frame by
frame basis.

In summary, the data dependencies at this algorithm level are the boundary pixels from
neighboring macroblocks and a frame constant quantization parameter.

3.1.5. Tasks

After analyzing the extent of parallelization and data dependencies it is the time to analyze
the tasks that make up the algorithm. Here we mean by task not the usual computing term
but any procedure of the algorithm that could be accomplished in parallel.

The core encoding algorithm assuming the above mentioned tradeoffs could be described as
a kind of streaming with frames as elements and macroblocks as the units of computation.
At the system level there must be a single task that implements the RTSP service, waiting for

Video Encoder Implementation on Tilera's TILEPro64™ Multicore Processor
http://dx.doi.org/10.5772/53429

123

a client connection and then delivering the RTP packets. At the frame level the following
tasks can be identified:

• Compute the Rate-Distortion procedure (usually known as RDO with the O meaning Op‐
timization). The result is the quantization parameter to be applied to the frame.

• Open and initialize a Network Abstraction Layer (NAL) unit

• Read the raw input pixels of the frame.

• Encode the frame in macroblock chunks in raster scan order.

• Write the encoded data to the NAL unit.

• Close the NAL unit.

• Update RDO with the frame information.

• Deliver the NAL unit.

At the macroblock level, the task list is as follows:

• Read the macroblock raw input pixels.

• Get the boundary pixels from neighbouring macroblocks.

• Select the best prediction.

• Compute the residual error.

• Transform and quantize the residual error.

• Inverse transform and quantize the transformed data.

• Encode the residual transformed data using CAVLC.

Note that some tasks at macroblock level can be interspersed with those at the frame level,
e.g. once a macroblock is CAVLC encoded the resulting data could be written to the NAL
unit, and therefore there is no need of collecting the data from all macroblocks and writing it
afterwards. The rearrangement of task order and the intermixing at the described or even
finer levels broaden the parallelization options as long as the data dependencies are met.

Two potential hot spots can be found at the input and output of data. A digital cinema cam‐
era with a chroma sampling of 4:2:0 produces 10,543,104 bytes of raw video data per frame
totaling more than 240 Mbytes/s. If we assume a compression ratio of 10, the total output bit
rate will exceed 24 Mbytes/s. These figures are not unmanageable, but indicate that the in‐
put and output procedures should be treated with special care and, as far as possible, run
them overlapped with the rest of tasks in the algorithm.

Another hot spot is concerned with prediction. The luminance part of each macroblock can
be predicted in three pixel sizes: 16x16, the full macroblock, four 8x8 blocks or sixteen 4x4
blocks; the chrominance is always predicted in full size blocks (8x8 if using 4:2:0 chroma for‐
mat) for each component. Each block is explored in several modes related to different spatial

Design and Architectures for Digital Signal Processing124

directions: four modes for 16x16 luminance and chrominance and nine modes for the rest.
Summing up all modes by iterating all the luminance prediction modes for each possible
chrominance prediction mode yields a total search space of 736 combinations, each with its
associated metric. The standard says nothing about how to compute these metrics and,
therefore, how to select the best prediction mode for each block. There are two main ap‐
proaches to assess this measure: 1) in the spatial domain, calculating the cumulative sum of
absolute differences between actual and predicted pixels and (SAD); and 2) calculating the
same sum but using the data in the DCT transformed domain (SATD). The latter provides,
in general, better results but the quality or bit rate difference is not significant when the vid‐
eo resolution is high. By means of a test suite we have determined that using SAD instead of
SATD on high-definition (HD) and above formats, the bit rate increases by only 1% whereas
the computational load is 30% lower. Needless to say, the approach chosen is the use of
SAD. Luckily, it also allows taking advantage of some of the more specific and powerful in‐
structions of the TILEPro64™ processor: the “sum of absolute difference” SIMD group.

In whatever case, these computations are very time consuming; note that the prediction of
4x4 and 8x8 blocks requires the reconstructed neighboring blocks since this will be the infor‐
mation available at the decoder. Therefore, once a mode is selected as best for a given block,
it must be reconstructed emulating the decoder procedure in order for the neighbors to use
its boundaries. This circumstance has promoted a lot of research over the last years [11]
aimed to diminish the search space making available fast methods to “predict” the best pre‐
dictor from among a substantially reduced set modes without compromising too much the
bit rate. We have chosen for our implementation a simple yet effective fast mode decision
algorithm called “Selective Intra Prediction” [12]. The key idea of this algorithm stems from
the fact that the dominating direction of a bigger block is similar to that of a smaller block
and therefore it is feasible to avoid the computation of the unlikely modes after the determi‐
nation of the best 16x16 mode. The algorithm has been combined with the usual early-termi‐
nation technique, but in spite of this the fraction of time dedicated to the selection of the
predictor exceeds 60% after manually optimizing the code.

3.2. Task assignment

3.2.1. Parallel pattern

Previous sections have explored the opportunities for parallelism highlighting the hot spots
of the encoder. Now it is time to choose the most appropriate type of parallelism and to logi‐
cally organize the tasks.

The best parallelization pattern for achieving high throughput is the pipeline; if in addition
its number of stages is not large latency can be low enough. However, a video encoder is not
a good candidate for pipelining because, among other considerations, the computational
burden of tasks is very dissimilar, the flow of control is not regular as it depends on data,
data must be shared or copied and, specifically for the TILE processor, the number of stages
should be no less than 60.

Video Encoder Implementation on Tilera's TILEPro64™ Multicore Processor
http://dx.doi.org/10.5772/53429

125

If we reject the pipeline approach, the remaining choices to consider are multiprocessing,
multithreading or a mix of both. The main difference concerns virtual memory space; a
process has its own non shared virtual space while a thread shares it with all other threads.
Multithreading demands a more elaborated synchronization among threads but facilitates
the inter-thread communications because it is accomplished simply by sharing data in mem‐
ory. Furthermore, the TILE processor implements inter e intra-core cache coherence techni‐
ques that leverage the user of worrying about correctness of data. Based on these
considerations the multithreading approach was chosen for the encoder.

3.2.2. Data decomposition

Another issue has to do with the decomposition of data, i.e. how to partition and distribute
the data space among the cores. The encoding problem has not a recursive nature and so it is
clearly preferable a geometric decomposition ideally suited to the data dependencies of the
algorithm. It seems that macroblock decomposition of data is the right choice. Additionally,
this decomposition enables the use of a single-program multiple-data (SPMD) model that
eases programming by means of parametrizing the input to the code.

3.2.3. Core processing threads

So far we have decided to use threads to process macroblocks; the question now is how to
organize those threads. A digital cinema video frame is composed of 27456 macroblocks; if
any single thread is responsible for a single macroblock we would need the same amount of
threads. Even if spread into 60 cores the number far exceeds the Linux threading facilities. A
better choice is to partition the data not into macroblocks but into rows of macroblocks; this
yields just 108 threads, a more manageable figure that not compromises the SPMD model.

Such a thread assignment can be still improved. Programs typically let the threads die once
they have finished their work, but thread creation and termination has some overhead that
can be obviated by recycling them. This is a simple technique, usually seen in digital signal
processing, in which a thread created at startup runs forever until explicitly killed. For this
technique to be useful it requires two synchronization points, the first to ensure that data is
available while the second to signal that the work is finished. The exchange between thread
management overhead and synchronization is worthwhile.

Further improvement arises if we avoid thread scheduling and time sharing in any single
core as it eliminates the operating system kernel overhead devoted to task switching. In
such a scenario each thread dynamically selects the next row to be processed as soon it has
finished with the current. This technique, known as thread pooling, is especially well suited
to the TILE architecture since the pool can be spread among the cores, each one running a
single thread. The MDE has a provision for exploiting this setting: the so called dataplanes
in which the standard Linux kernel is substituted by a zero overhead kernel. A nice result of
using a thread pool is a fair load balancing, which is not always easy to get.

It remains to determine the scope of the row processing, i.e. which algorithm tasks the row
threads perform. Referring to the above list of macroblock level tasks it is worthwhile that

Design and Architectures for Digital Signal Processing126

the row threads be in charge of reading all the row input pixels, select the predictor, and so
on, including the entropy encoding; the last task would be impossible if CABAC were used
instead of CAVLC because CABAC, being recursive, needs data from the last macroblock of
the previous row. In such a case the row threads could not proceed in parallel or, if they did,
they should store all the information of the macroblocks and afterwards apply the entropy
encoding. This would represent a severe waste of memory and an unmanageable hot spot.
However, the CAVLC encoding so partitioned also has a drawback: since the bit alignment
of the row data in the NAL unit is unknown, the whole unit must be realigned. Anyway, the
entropy encoding in parallel is advantageous.

The preceding paragraphs have focused on analyzing the processing of macroblock rows but we
have said anything about the issue described in Section 3.1.2 concerning Amdahl's Law: the re‐
alignment and byte stuffing of CAVLC encoded data are limiting factors of parallel performance
that may saturate the speed up. The implementation dedicates a core, known as framer, running
a single thread of manually optimized assembler code to address this problem.

Figure 4 shows a simplified time line of 12 row threads working in parallel. It can be seen
that the whole process resembles a macroblock pipeline, although technically speaking it is
not. Some details are worth being described:

• All time intervals are sketched alike; actually, times depend on input data.

• Each row, except the first, must start with a delay at least twice the handling time of a
single macroblock to ensure that the boundary pixels are available.

• The total time spent at any frame is much greater than the time required for packetizing
its encoded data into a NAL unit, as expected for a pipelined structure.

• The video input is not sorted in a natural way, e.g. row 0 at frame N (the green one) needs
data before row 11 at frame N–1 (the blue one). The input procedure must take this fact
into account and allow for a non ordered access to the data.

• At any moment in time multiple frames may be simultaneously being processed; the
worst case arises at the frame boundaries (T0 in the figure). It is not difficult to prove that
if we assume a constant, say mean, macroblock processing time value the number of si‐
multaneous frames can be as great as:

n = 2(C - 1) + R
R (2)

being C the number of macroblocks in a row and R the number of rows. Furthermore, the
row threads could start working with the frame N+1 before the framing thread has had an
opportunity to evict the row data of frame N. A simple n-buffer strategy at the row thread
output is enough to solve this trouble.

• The framing proceeds in bursts at the beginning of a frame because the encoded data is availa‐
ble but afterwards it must wait for the rows to terminate. This drawback puts the framer
thread even more under pressure as there may be time intervals during which it cannot per‐
form any work.

Video Encoder Implementation on Tilera's TILEPro64™ Multicore Processor
http://dx.doi.org/10.5772/53429

127

Figure 4. Time Line of Row Processing

3.2.4. Auxiliary threads

There are two tasks that still remain to be assigned to threads: the RTSP service and the
RDO. The RTSP service can advantageously be implemented using two threads: the first one
devoted to the service itself while the second in charge of the subsidiary real-time control
protocol (RTCP). No one of these threads requires a great amount of CPU resources but the
logical division facilitates software coding.

With regard to RDO, it could be as complex as desired in order to obtain accurate estimates
of the bit rate and so select the best quantization parameter QP. But we have said repeatedly
that optimizing the bit rate is not a priority of our implementation and a simple and fast PID
(proportional integral derivative) controller algorithm is enough for our purposes. The only
remarkable question is that adjusting the algorithm parameters should be made taking into
account that input data are delayed due to the pipelined behavior of the processing. This
RDO computation could be performed by the framer thread but we preferred to do it in a
separate thread for the system to be more flexible in case of need.

3.2.5. Input and output

The best solution for input and output is that their functionality runs into two separate hy‐
pervisor drivers. Doing so, all I/O data could flow over the I/O Dynamic Network (IDN) that
connects all tiles with the on-chip devices alleviating the burden of memory sharing at the
user level. In addition, this schema obviates the intermediate level of buffering needed be‐
tween the program and the Linux kernel drivers.

The output driver is just a packet based service tailored to the handling of the RTP payload
over IP. A notable optimization feature is that the driver uses only fixed size buffers that fit
into the Ethernet jumbo packets with two objectives: to reduce overhead and to avoid IP
fragmentation.

Design and Architectures for Digital Signal Processing128

On the other hand, the input driver is programmed as a server that handles the necessary
buffering for extracting and reordering the camera data and delivers it at the pace enforced
by the row threads requests.

3.3. Orchestration

The aim of the orchestration phase is to design the mechanisms that will ensure the proper
synchronization among threads; i.e. that all control and data dependencies are met. Section
3.1.3 dealt with data dependencies; the control dependencies arise from the task assignment
to threads, specifically to take advantage of the always live thread pattern.

The synchronization primitives used are those provided by the POSIX 1b and 1c extensions,
available in any Linux box and in the Tilera’s software stack. The use of these primitives is
easier than programming custom ones, although its performance is not always the best; but
having selected a coarse data grain for the implementation their impact is very limited.

In essence, we use semaphores for synchronizing threads and read-write locks to protect the
macroblock boundary data. The use of the latter instead of the usual mutexes allows a high‐
er degree of parallelism as it does not blocks any reading thread if the writer has not ac‐
quired the lock. Bearing in mind that we have designed the assignment of tasks to threads
so that there is only one thread on each core, the read-write locks can have spin flavor to
avoid putting the threads to sleep while waiting for the lock.

3.4. Distribution

So far we have always used 60 as the number of cores dedicated to encoding but the Tilera
processor has 64; let see why. On the one hand, the framer thread, being the major potential
bottleneck of the system, claims a core for itself; on the other hand, for the input and output
hypervisor drivers to do their work overlapped with the algorithmic computation they each
need a dedicated core. The remaining core hosts all the other auxiliary threads: RTSP server,
RTCP, RDO and the C main thread that just waits for the program to exit.

The last issue to be addressed is how to distribute the threads, i.e. to determine in which
physical cores they will run. The best way to make the distribution is keeping as far as possi‐
ble the data locality since the latency for accessing an adjacent core’s cache memory is much
cheaper than accessing any other core’s cache. This arrangement is easily attained for the
row processing cores; unfortunately, there is no way for the framer core to be adjacent to all
row processing cores. The selected distribution is shown in figure 5, in which row cores are
shown in blue with the closed adjacency path in light blue. The framer core is shown in dark
blue, input and output cores in orange and the auxiliary core in green. The position of input
and output deserves a comment; they are physically very close to their corresponding hard‐
ware as Tilera recommends.

This distribution scales almost linearly for any video resolution with at least 60 rows of mac‐
roblocks, i.e. 960 pixels high, including high-definition (1080 pixels, 68 rows) and above.
With lower resolutions the row cores will not all be active so there will be a degradation of
performance.

Video Encoder Implementation on Tilera's TILEPro64™ Multicore Processor
http://dx.doi.org/10.5772/53429

129

Figure 5. Distribution of Threads into Processor Cores

4. Results

In order to evaluate the results the freely distributable test video sequences Park-Joy has
been encoded in different sizes using a constant quantization parameter QP = 18. This figure
allows an encoding without noticeable visual degradation. Park-Joy contains small figures
of running people; sometimes large objects - unfocused trees near the camera - move to the
left as a result of a strictly horizontal camera movement, overlapping the entire scene. At the
end of the sequence the camera slows the motion.

In sequential runs the mean time spent in macroblock encoding is 40.27 µs in Linux and
79.54 µs on the TILE processor @ 866 MHz. The differences are due to the operating clock
and the architectural dissimilarities. It is easy to see that the optimizations undertaken in the
Tilera side have been successful since the clock speed is reduced by a factor of 2.77 while the
time ratio is only 1.98. Note that the Linux code has been optimized only at the C level and
thus not using the SIMD instructions provided by the MMX or SSE instruction extensions.

The same run on the Tilera’s simulator in functional mode in, which the cache hazards are
not fully considered, yields 57.07 µs. It is apparent that the TILE core cache memory is not
large enough to hold all code and data and thus incurring in a high rate of capacity misses.

Design and Architectures for Digital Signal Processing130

In parallel runs the cache problem becomes more evident, as shows the following table:

Image Size Simulator Hardware

1280x720 239,82 fps 181,65 fps

1920x1080 155,98 fps 99,44 fps

3840x2160 37,37 fps 25,66 fps

Table 2. Encoded Frames per Second

It is worth to mention that the performance boosts around 32.5% in mean by avoiding the
8x8 block encoding of luma. This figure puts a little more spice to the controversy over the
inclusion of this technique in the standard.

The following graph shows the throughput measured as time per macroblock (blue) and
number of macroblocks per second (green) versus resolution.

Figure 6. Throughput

It can be seen that the throughput degrades abruptly when the number of used row cores is
less than available; the 1280x720 uses 45 cores, while the other uses all 60.

The next graph shows the speed up as a function of the number of row cores. The shape of
the graph is quite linear but the slope is less than 1 as predicted by Amdahl’s Law.

Video Encoder Implementation on Tilera's TILEPro64™ Multicore Processor
http://dx.doi.org/10.5772/53429

131

Figure 7. Speed Up

4.1. Some TILEPro64™ troubles

Despite the enormous amount of silicon and functionality provided by the TILEPro64™ pro‐
cessor, some flaws have been detected:

• It is quite hard to optimize the code using intrinsics or assembler; it would be nice if the
documentation [13] contain examples, tips and tricks.

• The processor instruction set architecture contains basic instructions for bit and byte rear‐
rangement at the register level; these include the “byte exchange”, “byte/word inter‐
leave”, and “masked merge word” instructions. However, it lacks bit-field extract and
insert and byte/word shuffle instructions. These capabilities are incorporated in the new
generation of Tilera processors, the TILE-Gx series.

• Correct use of branches is difficult, even for the compiler; branch mispredictions result in
pipeline hazards that increase instruction latency. Fortunately, the feedback based optimi‐
zation technique [14] alleviates this issue but it is cumbersome when optimizing source
code.

• Finally, the most important limitation for video encoding is the amount of cache per core;
64 Kbytes of L2 is not enough for code and data, leading to many cache-capacity misses
and therefore many stalled cycles. The TILE-Gx series has 256 Kbytes of L2 cache per
core, without any doubt a must for achieving better video encoding performance.

5. The future of video coding

Video coding technology will not stop at H.264. A new draft standard known as HEVC (aka
H.265 and MPEG-H Part 2) is still under development. It features important improvements
over H.264 centered on achieving bit rate reductions of about 50% and supports a wider

Design and Architectures for Digital Signal Processing132

range of high definition resolutions. Computational complexity consequently increases by
an estimated factor of two to ten, and maybe more.

The techniques by which those enhancements are realized should be analyzed from the
point of view of our implementation.

As we mentioned before, the CABAC procedure as defined in H.264 is not amenable to par‐
allelization. In HEVC special care has been taken to reduce data dependencies in the partic‐
ular version of CABAC it implements. However, data dependencies have not disappeared,
and this poses severe problems – albeit less so – for implementation on parallel processors.

In order to ameliorate spatial prediction, new modes have been defined in HEVC. In partic‐
ular the number of modes is 35 versus 9 in H.264. We have already said that 60% computa‐
tion time is taken by analysis and selection of the optimal encoding mode. Therefore one
must expect a considerable increase in computation needs due simply to the number of pre‐
diction modes that must be explored; more even so, given the fact that the image is divided
not in uniform macroblocks but in coding tree blocks (or coding units CU) with an inner
structure of variable sizes of their own (64x64, 32x32, 16x16).

6. Conclusion

The overall performance of Tilera’s TILEPro64™ can be said to be outstanding for video
coding applications. In the particular case of low-latency H.264 encoding the largest difficul‐
ties arises for the highest resolution values of the video stream. For these, large amounts of
memory are required, exceeding what is readily available within the processor; the main
limitation resulting from the relatively small cache memory. Notwithstanding this fact, we
have been able to find memory management schemes and workarounds that make real time
encoding possible even at the highest resolutions (4096x1716, 24 fps) contemplated in this
work.

For other video codec applications, expectations are high. Inter frame prediction can proba‐
bly be traded off by lower resolution values. The main conclusion being that the processor
architecture is adequate for established coders, whose bases were laid a few years ago and
which are still the subject of implementation research.

New developments such as HVEC hold enormous promise, but the difficulties surrounding
real-time implementation are challenging, to say the least. It is likely that several years of
research are needed to significantly advance in that direction. Of course this raises the ques‐
tion whether the architecture will be up to the coding schemes under development and/or
what enhancements will be necessary.

The results of this work do not stop at video coding. Applications to novel fields such as
virtual advertising and augmented reality in medicine are under study for current and fu‐
ture projects.

Video Encoder Implementation on Tilera's TILEPro64™ Multicore Processor
http://dx.doi.org/10.5772/53429

133

Acknowledgements

The. authors gratefully acknowledge the support provided by project IDI-20100823 of Span‐
ish Government’s Ministerio de Economía y Competitividad, under the leadership of Datatech
SDA who also acknowledges that support. Project TEC2009-14219-C03-01 also provided
support for this work.

The authors also acknowledge the continuing support and cooperation of Datatech SDA for
ongoing developments of Tilera’s processor capabilities: real-time video analysis, virtual ad‐
vertising and augmented reality in medicine.

Author details

José Parera-Bermúdez, Javier Casajús-Quirós and Igor Arambasic

*Address all correspondence to: jose.parera@upm.es

Department of Signals, Systems and Radiocommunications, Polytechnic University of Ma‐
drid, Spain

References

[1] ITU-T Rec. H.264 | ISO/IEC 14496-10 version 16, Advanced video coding for generic au‐
diovisual services, January 2012. http://www.itu.int/rec/dologin_pub.asp?
lang=e&id=T-REC-H.264-201201-I!!PDF-E&type=items (accessed 9 September 2012)

[2] RFC2326, Real Time Streaming Protocol (RTSP), IETF, 1998. http://
datatracker.ietf.org/doc/rfc2326/ (accessed 9 September 2012)

[3] RFC6184, RTP Payload Format for H.264 Video, IETF, 2011. http://
datatracker.ietf.org/doc/rfc6184/ (accessed 9 September 2012)

[4] Tilera Corporation, TILE Processor Architecture Overview for the TILEPro Series, 2009.

[5] Tilera Corporation, Multicore Development Environment: Programming the TILE Process‐
or, 2009.

[6] Takeuchi, Y., Nakata, Y., Kawaguchi, H. & Yoshimoto, M. Scalable parallel processing
for H.264 encoding application to multi/many-core processor. International Conference on
Intelligent Control and Information Processing (ICICIP), August 13-15, 2010, Dalian,
China. doi: 10.1109/ICICIP.2010.5565292

[7] Gove D. Multicore Application Programming: for Windows, Linux and Oracle Solaris, Ad‐
dison-Wesley, 2011.

Design and Architectures for Digital Signal Processing134

[8] Richardson I. The H.264 Advanced Video Compression Standard, Second Edition, John Wi‐
ley & Sons, 2010.

[9] Wiegand T. & Sullivan G.J. Overview of the H.264/AVC Video Coding Standard, IEEE
Transactions on Circuits and Systems for Video Technology 2003;13(7):560-576. doi:
10.1109/TCSVT.2003.815165

[10] Sullivan G.J., Topiwala P. & Luthra A. The H.264/AVC Advanced Video Coding Stand‐
ard: Overview and Introduction to the Fidelity Range Extensions, SPIE Conference on Ap‐
plications of Digital Image Processing XXVII, Special Session on Advances in the
New Emerging Standard: H.264/AVC, 2004. doi: 10.1117/12.564457

[11] Milani S. Spatial prediction in the H.264/AVC FRExt coder and its optimization, In: Miron
S. (ed.) Signal Processing, Rijeka: InTech; 2010. http://www.intechopen.com/books/
signal-processing/spatial-prediction-in-the-h-264-avc-frext-coder-and-its-optimiza‐
tion (accessed 9 September 2012)

[12] Park J.S. & Song, H.J. Selective Intra Prediction Mode Decision for H.264/AVC Encoders,
World Academy of Science, Engineering and Technology 13, 2008. http://
www.waset.org/journals/waset/v13/v13-104.pdf (accessed 9 September 2012)

[13] Tilera Corporation, User Architecture Manual, 2010.

[14] Tilera Corporation, Optimization Guide, 2010.

Video Encoder Implementation on Tilera's TILEPro64™ Multicore Processor
http://dx.doi.org/10.5772/53429

135

