We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

5,100
Open access books available

126,000
International authors and editors

145M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential 'steroid-sparing agent' in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate:
Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine:
Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine:
The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine:
There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin:
There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma. (Evans, 2001).

Gold:
Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended. (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential 'steroid-sparing agent' in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid-sparing agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold: Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating...
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential 'steroid-sparing agent' in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold: Gold has limited clinically significant benefits as a steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential 'steroid-sparing agent' in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998)

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid-sparing agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004)

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001)

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003)

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma. (Evans, 2001)

Gold: Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001)

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential ‘steroid-sparing agent’ in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate:
Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine:
Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine:
The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine:
There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin:
There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold:
Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion
Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating...
subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential ‘steroid-sparing agent’ in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold: Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential ‘steroid-sparing agent’ in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma. (Evans, 2001).

Gold: Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended. (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential ‘steroid-sparing agent’ in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold: Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential 'steroid-sparing agent' in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold: Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
Steroids in Asthma: Friend or Foe

587

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential 'steroid-sparing agent' in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold: Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential 'steroid-sparing agent' in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold: Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential 'steroid-sparing agent' in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold: Gold has limited clinically significant benefits as a steroid sparing agent & given the side effects of gold and the necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating...
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid-sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential 'steroid-sparing agent' in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid-sparing agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold: Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating...
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential 'steroid-sparing agent' in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate:
Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine:
Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine:
The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine:
There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin:
There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold:
Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential 'steroid-sparing agent' in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold: Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential ‘steroid-sparing agent’ in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate:
Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine:
Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid-sparing agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine:
The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine:
There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin:
There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold:
Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential ‘steroid-sparing agent’ in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate:

Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine:

Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine:

The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine:

There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin:

There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold:

Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
Steroids in Asthma: Friend or Foe

Subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential 'steroid-sparing agent' in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998).

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid-sparing agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004).

Cyclosporine: The improvement in asthma with cyclosporine are small and of questionable clinical significance. Given the side effects of cyclosporine, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001).

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003).

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma (Evans, 2001).

Gold: Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001).

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
subjects on maintenance ICS without deterioration in asthma control. They are most effective when combined with ICS, and this combination therapy is the preferred treatment when a medium dose of ICS alone fails to achieve control of asthma (Gibson, 2005). The addition of a LABA to a daily regimen of ICS improves symptom scores, decreases nocturnal symptoms, improves lung function, decreases the use of relief medication, reduces the number of exacerbations and achieves clinical control of asthma in more patients, more rapidly, and at a lower dose of ICS, than ICS given alone (Greening, 1994, Pauwel, 1997).

Certain case reports have documented tiotropium as a useful steroid sparing agent however future clinical trials are warranted that explore the use of tiotropium as a potential ‘steroid-sparing agent’ in severe refractory asthma (Kapoor, 2009).

9. Immunomodulator therapy as steroid sparing

Methotrexate: Methotrexate may have a small steroid sparing effect in adults with asthma who are dependent on oral corticosteroids. However, the overall reduction in daily steroid use is probably not large enough to reduce steroid-induced adverse effects. This small potential to reduce the impact of steroid side-effects is probably insufficient to offset the adverse effects of methotrexate (Davies, 1998)

Azathioprine: Currently there is a clear lack of evidence to support the use of azathioprine in the treatment of chronic asthma as a steroid sparing-agent. Large, long-term studies with pre-defined steroid reducing protocols are required before recommendations for clinical practice can be made (Dean, 2004)

Cyclosporine: The improvement in asthma with cyclosporin are small and of questionable clinical significance. Given the side effects of cyclosporin, the evidence available does not recommend routine use of this drug in the treatment of oral corticosteroid dependent asthma (Evans, 2001)

Chloroquine: There is insufficient evidence to support the use of chloroquine as an oral steroid-sparing agent in chronic asthma. Further trials should optimise oral steroid dosage before addition of the steroid-sparing agent (Dewey, 2003)

Troleandomycin: There is insufficient evidence to support the use of troleandomycin in the treatment of steroid dependent asthma. (Evans, 2001)

Gold: Gold has limited clinically significant benefits as steroid sparing agent & given the side effects of gold and necessity for monitoring the use of gold as a steroid sparing agent in asthma cannot be recommended (Evans, 2001)

10. Conclusion

Inhaled Corticosteroids are the most effective first line of therapeutic intervention to control the primary immunologic mechanism of the disease and to avoid the devastating
consequences of this disease with resultant cost-effectiveness and risk benefits analysis leading to best control of asthma. As far as steroids are concerned, there is over fear of its side effects in the patients as well as physicians which has to be removed. It should be make clear that steroids are friends of asthma pts if optimally used but if overused it may turned out to be foe, hence emphasis should be given on the optimized and appropriate use of steroids based on the asthma severity. Hence physicians should try to use the both edges of this “double edged sword” for the benefit of patients.

In addition to pharmacological intervention, emphasis should always be given on the patient’s education about asthma including its pathogenesis, medications, inhalation technique and strict environmental control on every visit of the patient. Definitely the safety issues of the use of steroids in asthma has to be taken in to consideration in order to address the instructions of Hippocrates, “first do no harm” in relation to the steroids, however steroids continue to be the most potent and the most effective controller medication for asthma, and their use in the appropriate clinical setting remains invaluable for the control & management of asthma in clinical practice.

Author details

Mahboub Bassam and Vats Mayank

Department of Pulmonology and Allergy & Sleep Medicine, Rashid Hospital, Dubai

11. References

