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1. Introduction

As of mid August 2012, the Planck cosmic microwave background anisotropy probe1 [1,2] –
launched into space on 14 May 2009 at 13:12:02 UTC, by an Ariane 5 ECA launcher, from the
Guiana Space Centre, Kourou, French Guiana – is still successfully operating. The spacecraft
accumulated data with its two instruments, the High Frequency Instrument (HFI) [3], based
on bolometers working between 100 and 857 GHz, and the Low Frequency Instrument (LFI)
[4], based on radiometers working between 30 and 70 GHz, up to the consumption of the
cryogenic liquids on January 2012, achieving ≃ 29.5 months of integration, corresponding to
about five complete sky surveys. A further 12 months extension is on-going for observations
with LFI only, cooled down with the cryogenic system provided by HFI. Moreover, Planck is
sensitive to linear polarization up to 353 GHz.

Thanks to its great sensitivity and resolution on the whole sky and to its wide frequency
coverage that allows a substantial progress in foreground modeling and removal, Planck will
open a new era in our understanding of the Universe and of its astrophysical structures (see
[5] for a full description of the Planck Scientific programme). Planck will improve the accuracy
of current measures of a wide set of cosmological parameters by a factor from ∼ 3 to ∼ 10
and will characterize the geometry of the Universe with unprecedented accuracy. Planck will
shed light on many of the open issues in the connection between the early stages of the
Universe and the evolution of the cosmic structures, from the characterization of primordial
conditions and perturbations, to the late phases of cosmological reionization.

⋆ This paper is based largely on the Planck Early Release Compact Source Catalogue, a product of ESA and the Planck

Collaboration. Any material presented in this review that is not already described in Planck Collaboration papers
represents the views of the authors and not necessarily those of the Planck Collaboration.

1 Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided
by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with
contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific
Consortium led and funded by Denmark.

© 2012 Toffolatti et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



The Planck perspectives on some crucial selected topics linking cosmology to fundamental
physics (the neutrino masses and effective number of species, the primordial helium
abundance, various physics fundamental constants, the parity property of CMB maps and its
connection with CPT symmetry with emphasis to the Cosmic Birefringence, the detection of
the stochastic field of gravitational waves) will also show how Planck represents an extremely
powerful fundamental and particle physics laboratory. Some of these analyses will be carried
out mainly through a precise measure of CMB anisotropy angular power spectrum (APS)
in temperature, polarization and in their correlations, whereas others, in particular those
related to the geometry of the Universe and to the research of non-Gaussianity signatures,
are based on the exploitation of the anisotropy pattern. The most ambitious goal is the
possible detection of the so-called B-mode APS.

The first scientific results2, the so-called Planck Early Papers 3 have been released in January
2011 and published by Astronomy and Astrophysics (EDP sciences), in the dedicated Volume
536 (December 2011). A further set of astrophysical results has been presented on the
occasion of the Conference Astrophysics from radio to sub-millimeter wavelengths: the Planck view
and other experiments4 held in Bologna on 13-17 February 2012. Several articles have been
already submitted in 2012 and others are in preparation, constituting the set of so-called
Planck Intermediate Papers.

The outline of this Chapter is as follows: in Section 2 we briefly sketch the main
characteristics and the capabilities of the ESA Planck mission; in Section 3 we discuss the most
recent detection methods for compact source detection; in Section 4 the SZ effect, detected by
Planck in many cluster of galaxies and its importance for cosmological studies are analyzed;
Section 5 is dedicated to summarize current results obtained by Planck data on the properties
of EPS; finally, Section 6, discusses the very important results up to now achieved by the
analysis of CIB anisotropies detected by Planck.

2. The ESA Planck mission: Overview

CMB experimental data are affected by uncertainties due to instrumental noise (crucial at
high multipoles, ℓ, i.e. small angular scales), cosmic and sampling variance (crucial at low ℓ,
i.e. large angular scales) and from systematic effects. The uncertainty on the angular power
spectrum is given by the combination of three components, cosmic and sampling variance,
and instrumental noise, and it is approximately given by [9]:

δCℓ

Cℓ

=

√

2

fsky(2ℓ+ 1)

(

1 +
Aσ

2

NCℓWℓ

)

. (1)

Here fsky is the sky coverage, A is the surveyed area, σ is the instrumental rms noise per
pixel, N is the total pixel number, Wℓ is the beam window function that, in the case of

2 http://www.sciops.esa.int/index.php?project=PLANCK&page=Planck_Published_Papers
3 The Planck Early papers describe the instrument performance in flight including thermal behaviour (papers I–IV),

the LFI and HFI data analysis pipelines (papers V–VI), and the main astrophysical results (papers VII-XXVI). These
papers have complemented by a subsequent work, published in 2012, based on a combination of high energy and
Planck observations (see [8]).

4 http://www.iasfbo.inaf.it/events/planck-2012/
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LFI

Frequency (GHz) 30 44 70

FWHM 33.34 26.81 13.03
N of R (or feeds) 4 (2) 6 (3) 12 (6)
EB 6 8.8 14
NET 159 197 158
δT/T [µK/K] (in T) 2.04 3.14 5.17
δT/T [µK/K] (in P) 2.88 4.44 7.32

HFI

Frequency (GHz) 100 143

FWHM in T (P) 9.6 (9.6) 7.1 (6.9)
N of B in T (P) – (8) 4 (8)
EB in T (P) 33 (33) 43 (46)
NET in T (P) 100 (100) 62 (82)
δT/T [µK/K] (in T) 2.04 1.56
δT/T [µK/K] (in P) 3.31 2.83

HFI

Frequency (GHz) 217 353

FWHM in T (P) 4.6 (4.6) 4.7 (4.6)
N of B in T (P) 4 (8) 4 (8)
EB in T (P) 72 (63) 99 (102)
NET in T (P) 91 (132) 277 (404)
δT/T [µK/K] in T (P) 3.31 (6.24) 13.7 (26.2)

HFI

Frequency (GHz) 545 857

FWHM in T 4.7 4.3
N of B in T 4 4
EB in T 169 257
NET in T 2000 91000
δT/T [µK/K] in T 103 4134

Table 1. Planck performance. The average sensitivity, δT/T, per (FWHM)2 resolution element (FWHM: Full Width at Half
Maximum of the beam response function, is indicated in arcmin) is given in CMB temperature units (i.e., equivalent

thermodynamic temperature) for 29.5 (plus 12 for LFI) months of integration. The white noise (per frequency channel for LFI

and per detector for HFI) in 1 sec of integration (NET, in µK ·
√

s) is also given in CMB temperature units. The other acronyms
here used are: N of R (or B) = number of radiometers (or bolometers), EB = effective bandwidth (in GHz). Adapted from [6, 7]

and consistent with [3, 4]. Note that at 100 GHz all bolometers are polarized and the equivalent temperature value is obtained

by combining polarization measurements.

a Gaussian symmetric beam, is Wℓ = exp(−ℓ(ℓ + 1)σ2
B), with σB = FWHM/

√

8 ln 2 the
beamwidth which defines the angular resolution of the experiment. For fsky = 1 the first
term in parenthesis defines the “cosmic variance”, an intrinsic limit on the accuracy at which
the APS of a certain cosmological model defined by a suitable set of parameters can be

derived with CMB anisotropy measurements5. It typically dominates the uncertainty on
the APS at low ℓ because of the small, 2ℓ+ 1, number of modes m for each ℓ. The second
term in parenthesis characterizes the instrumental noise, that never vanishes in the case of
real experiments. Note also the coupling between experiment sensitivity and resolution,
the former defining the low ℓ experimental uncertainty, namely for Wℓ close to unit, the
latter determining the exponential loss in sensitivity at angular scales comparable with the
beamwidth. We computed an overall sensitivity value, weighted over the channels, defined

by 1/σ2
j = ∑i 1/σ2

j,i, where j = T and i indicates the sensitivity of each frequency channel,

listed in Table 1. FWHM values of 13 and 33 arcmin are used in Fig.1 to define the overall
combination of Planck sensitivity and resolution, i.e. the computation of the effective beam

window function6, relevant for the sensitivity at high ℓ. Finally, to improve the signal to noise
ratio in the APS sensitivity, especially at high multipoles, a multipole binning is usually
applied. Of course, the real sensitivity of the whole mission will have to also include the
potential residuals of systematic effects. The Planck mission has been designed to suppress

5 Note that the cosmic and sampling variance (74% sky coverage excluding the sky regions mostly affected by Galactic
emission) implies a dependence of the overall sensitivity on r at low multipoles, relevant to the parameter estimation;
instrumental noise only determines the capability of detecting the B mode.

6 In fact, it is possible to smooth maps acquired at higher frequencies with smaller beamwidths to the lowest resolution
corresponding to a given experiment. We adopt here FWHM values of 33 and 13 arcmin, which correspond to the
lowest resolution of all the Planck instruments (i.e., 30 GHz channel) and to the lowest resolution of the so called
cosmological channels (i.e., 70 GHz channel), respectively (see Table 1).
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Figure 1. CMB E polarization modes (black long dashes) compatible with WMAP data and CMB B polarization modes (black

solid lines) for different tensor-to-scalar ratios T/S = r of primordial perturbations are compared to the Planck overall sensitivity

to the APS assuming two different FWHM angular resolutions (33 and 13 arcmin) and the overall sensitivity corresponding to

the whole mission duration (and also to two surveys only: upper curve in black thick dots, labeled 13 arcmin). The expected

noise is assumed to be properly subtracted. The plots include cosmic and sampling variance plus instrumental noise (green

dots for B modes, green long dashes for E modes, labeled with cv+sv+n; black thick dots, noise only) assuming a multipole

binning of 30%.The B mode induced by lensing (blue dots) is also shown. Galactic synchrotron (purple dashes) and dust (purple

dot-dashes) polarized emissions produce the overall Galactic foreground (purple three dots-dashes). WMAP 3-yr power-law

fits for uncorrelated dust and synchrotron have been used. For comparison, WMAP 3-yr results (http://lambda.gsfc.nasa.gov/)

derived from the foreground maps using HEALPix tools (http://healpix.jpl.nasa.gov/) [12] are shown (red three dots-dashes

broken line): power-law fits provide (generous) upper limits to the power at low multipoles. Residual contamination levels by

Galactic foregrounds (purple three dot-dashes) are shown for 10%, 5%, and 3% of the map level, at increasing thickness. We

plot also as thick and thin green dashes realistic estimates of the residual contribution of un-subtracted extragalactic sources,

C
res,PS
ℓ

and the corresponding uncertainty, δC
res,PS
ℓ

.

potential systematic effects down to ∼ µK level or below. Fig.1 compares CMB polarization
modes with the ideal sensitivity of Planck (including also a 15% level of HFI data loss because
of cosmic rays; see [10]) and the signals coming from astrophysical foregrounds as discussed
below.

CMB anisotropy maps are contaminated by a significant level of foreground emission of both
Galactic and extragalactic origin. For polarization, the most critical Galactic foregrounds
are certainly synchrotron and thermal dust emission, whereas free-free emission gives
a negligible contribution. Other components, like spinning dust and “haze”, are still
poorly known, particularly in polarization. Synchrotron emission is the dominant Galactic
foreground signal at low frequencies, up to ∼60 GHz, where dust emission starts to
dominate. External galaxies are critical only at high ℓ, and extragalactic radio sources
are likely the most crucial in polarization up to frequencies ∼200 GHz, the most suitable
for CMB anisotropy experiments. We parameterize a potential residual from non perfect
cleaning of CMB maps from Galactic foregrounds simply assuming that a certain fraction

Open Questions in Cosmology60



Figure 2. CMB removed Planck full-sky maps. From left to right and from top to bottom: 30, 44, 70; 100, 143, 217; 353, 545,
and 857 GHz, respectively. Credits: Zacchei, et al., A&A, Vol. 536, A5, 2011; Planck HFI Core Team, A&A, Vol. 536, A6, 2011b,
reproduced with permission © ESO.

of the foreground signal at map level (or, equivalently, its square at power spectrum level)
contaminates CMB maps. Of course, one can easily rescale the following results to any
fraction of residual foreground contamination. The frequency of 70 GHz, i.e. the Planck
channel where Galactic foregrounds are expected to be at their minimum level, at least at
angular scales above ∼ one degree, is adopted as reference.

For what concerns CMB temperature fluctuations produced by undetected EPS [13], we
adopt the recent (conservative) estimate of their Poisson contribution to the (polarized) APS
[14] at 100 GHz7 by assuming a detection threshold of ≃ 0.1 Jy. We also assume a potential
residual coming from an uncertainty in the subtraction of this contribution computed by
assuming a relative uncertainty of ≃ 10% in the knowledge of their degree of polarization
and in the determination of the source detection threshold, implying a reduction to ≃ 30% of
the original level. Except at very high multipoles, their residual is likely significantly below
that coming from Galactic foregrounds.

The first publications of the main cosmological (i.e. properly based on Planck CMB maps)
implications are expected in early 2013, together with the delivery of a first set of Planck
maps and cosmological products coming from the first 15 months of data. They will be
mainly based on temperature data. Waiting for these products, a first multifrequency view
of the Planck astrophysical sky has been presented in the Early Papers: Fig. 2 reports
the first LFI and HFI frequency (CMB subtracted) maps. These maps are the basis of the
construction of the Planck Early Release Compact Source Catalog (ERCSC) (see [15] and The
Explanatory Supplement to the Planck Early Release Compact Source Catalogue), the first Planck
product delivered to the scientific community.

7 We adopt here a frequency slightly larger than that considered for Galactic foregrounds (70 GHz) because at small
angular scales, where point sources are more critical, the minimum of foreground contamination is likely shifted to
higher frequencies.
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Figure 3. The Planck ERCSC flux density limit quantified as the faintest ERCSC sources at |b| < 10◦ (dashed black line) and
at |b| > 30◦ (solid black line) is shown relative to other wide area surveys. See Fig. 5 of [15] for more details. Credit: Planck
Collaboration, A&A, vol. 536, A7, 2011, reproduced with permission © ESO.

Fig. 3 compares the sensitivity of Planck ERCSC with those of other surveys from radio to
far-infrared wavelengths. Of course, by accumulating sky surveys and refining data analysis,
the Planck sensitivity to point sources will significantly improve in the coming years. The
forthcoming Planck Legacy Catalog of Compact Sources (PCCS), to be released in early 2013
and to be updated in subsequent years, will represent one of the major Planck products
relevant for multi-frequency studies of compact or point–like sources.

2.1. Extragalactic point sources vs. non-Gaussianity

The cosmological evolution of extragalactic sources and its implications for the CMB and
the CIB will be discussed in the following Sections, 5 and 6. On the other hand, statistical
analyses of the extragalactic source distribution in the sky can be applied to test cosmological
models. In this context, the possibility of probing the Gaussianity of primordial perturbations
appears particularly promising. Primordial perturbations at the origin of the large scale
structure (LSS) may leave their imprint in the form of small deviations from a Gaussian
distribution, [16, 17] that can appear in different kinds of configurations, such as the so-called
local type, equilateral, enfolded, orthogonal. For example, the local type of deviation
from Gaussianity is parameterized by a constant dimensionless parameter fNL (see, e.g.,
[18–20]) Φ = φ + fNL(φ

2 −
〈

φ2
〉

), where Φ denotes Bardeen’s gauge-invariant potential
(evaluated deep in the matter era in the CMB convention) and φ is a Gaussian random
field. Extragalactic radio sources are particularly interesting as tracers of the LSS since
they span large volumes extending out to substantial redshifts. The radio sources from the
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NRAO VLA Sky Survey (NVSS), the quasar catalogue of Sloan Digital Sky Survey Release
Six (SDSS DR6 QSOs) and the MegaZ-LRG (DR7), the final SDSS II Luminous Red Galaxy
(LRG) photometric redshift survey, have been recently analysed by [21] (see this work and
references therein for a thorough analysis on the subject). Through a global analysis of the
constraints on the amplitude of primordial non-Gaussianity by the angular power spectra
obtained from extragalactic radio sources (mapped by these surveys) and, moreover, from
their cross-correlation power spectra with the WMAP CMB temperature map, [21] set limits
on fNL = 48 ± 20, fNL = 50 ± 265 and fNL = 183 ± 95 at 68% confidence level for local,
equilateral and enfolded templates, respectively. These results have been found to be stable
with respect to potential systematic errors: the source number density and the contamination
by Galactic emissions, for NVSS sources; the use of different CMB temperature fluctuation
templates and the contamination of stars in the SDSS and LRG samples. Such tests of
non–Gaussianity would have profound implications for inflationary mechanisms – such as
single-field slow roll, multifields, curvaton (local type) – and for models which have effects
on the halo clustering can be described by the equilateral template (related to higher-order
derivative type non-Gaussianity) and by the enfolded template (related to modified initial
state or higher-derivative interactions). Fundamental progress on this topic will be achieved
by combining forthcoming LSS surveys with the CMB maps provided by Planck.

3. Methods for compact source detection in CMB maps

Compact sources, in CMB literature, are defined as spatially bounded sources which subtend
very small angular scales in the images, such as galaxies and galaxy clusters. On the other
hand, diffuse components, such as the CMB itself and Galactic foregrounds, do not show
clear spatial boundaries and extend over large areas of the sky. Due to the fact that compact
sources are spatially localized, the techniques for detecting them differ from those applied for
the separation of the diffuse components. Most of the detection methods use scale diversity,
i.e. different power at different angular scales, to enhance compact sources against diffuse
components. Sources must be detected against a combination of CMB, instrumental noise
and Galactic foregrounds. From the point of view of signal processing, the source is the
signal and the other components are the noise.

Point sources are “compact” sources in the sense that their typical observed angular size
is much smaller than the beam resolution of the experiment. Therefore, they appear as
point-like objects convolved with the instrumental beam. Radio sources and far–IR sources
are usually seen as point-like sources. Galaxy clusters, which are detected through the
thermal SZ effect [22], have a shape that is obtained as the convolution of the instrumental
beam with the cluster profile. In contrast to point sources, the cluster profile has to be taken
into account for cluster detection. However, since the projected angular scale of clusters is
generally small, techniques that are useful for point sources can be adapted for clusters, too.

The thermal SZ effect has a general dependence with frequency, that makes the use of
multichannel images very convenient for cluster detection. On the contrary, the flux of each
individual point source has its own frequency dependence. Despite this fact, the combination
of several channels can also improve point source detection. We will review techniques
applied to single-frequency channels in a first subsection and then we will discuss more
recent methods, that use multichannel information.

Extragalactic Compact Sources in the Planck Sky and Their Cosmological Implications
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3.1. Single channel detection

We now focus on techniques for detecting point–like sources. Galaxy clusters can be detected
by similar methods, but taking into account the cluster profile (see, e.g., [23-25]). Since
multichannel methods for cluster detection improve significantly the performance of single
channel techniques, we leave a more detailed study of clusters for the next subsection.

As mentioned before, compact source detection techniques make use of scale diversity. For
example, SEXTRACTOR [26] – where maps are pre–filtered by a Gaussian kernel the same
size as the beam – approximates the image background by a low-order polynomial and
then subtracts the background from the image. The object is detected after connecting the
pixels above a given flux density threshold. SEXTRACTOR has been used for elaborating the
Planck ERCSC [15] in the highest frequency channels, from 217 to 857 GHz. However, CMB
emission and diffuse foregrounds are complex and cannot be modeled in a straightforward
way. Thus, apart from this important application, SEXTRACTOR has had a limited use in
CMB astronomy.

A standard method which has been used often for compact source detection is the common
matched filter (MF) [27]. The MF is just a linear filter with suitable characteristics for
amplifying the source against the background. The image y(~x) is convolved with a filter
ψ(~x):

ω(~x) =
∫

y(~u)ψ(~x − ~u) d~u (2)

The MF is defined as the linear filter that is an unbiased estimator of the source flux and
minimizes the variance of the filtered map. In order to satisfy these mathematical constraints,
if we assume that the beam is circularly symmetric and the background a homogeneous and
isotropic random field, the MF must be defined in Fourier space as

ψ(q) = k
τ(q)

P(q)
(3)

where τ(q) is the Fourier transform of the beam, P(q) the background power spectrum and
k the normalization constant. With this definition, the MF gives the maximum amplification
of the compact source with respect to the background. Once the source has been amplified,
point sources are detected in the filtered map as peaks above a given threshold, typically5σ,
with σ the r.m.s deviation of the filtered map. The MF has been used both with simulations
[28] and real data [29]. In this last paper, the WMAP team estimated the fluxes by fitting to a
Gaussian profile plus a planar baseline. In [24] the MF was also applied to the detection
of clusters. The use of wavelets for source detection is an interesting alternative to the
MF. Wavelets are compensated linear filters, i.e their integral is zero, that help to remove
the background contribution and yield a high source amplification. Since the beam is
approximately Gaussian, the Mexican Hat Wavelet (MHW), constructed as the Laplacian
of a Gaussian function, adapts itself very well to the detection problem. The MHW depends
on the scale R, a parameter that determines the width of the wavelet:

ψ(q) ∝ (qR)2 exp
(

−

(qR)2

2

)

(4)
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The MHW has been succesfully applied to simulated CMB data [30]. The scale R is fixed
in order to obtain the maximum amplification and the determination of the power spectrum
is not necessary. A family of wavelets that generalize the MHW, the Mexican Hat Wavelet
Family (MHWF) was presented in [31]. The performance of this family was compared with
the MF in [28] and it produced similar results when implemented on Planck simulations.
The MHWF was also applied to point source detection in WMAP images [32] by using a
non-blind method. This method yielded a larger number of detections than the MF used by
the WMAP group. The general expression of the MHWF is:

ψ(q) ∝ (qR)2n exp
(

−
(qR)2

2

)

(5)

n being a natural number. Further improvements can be obtained if we admit any real
exponent such as in the Bi-parametric Adaptive Filter (BAF) [33].

The MF and the diverse types of wavelets do not use any prior information about the
average number of sources in the surveyed patch, the flux distribution of the sources or other
properties. Therefore, useful information is being neglected by these methods. In contrast,
Bayesian methods provide a natural way to incorporate information about the statistical
properties of both the source and the noise. Several Bayesian methods have been proposed
in the literature for the detection problem [24, 34, 35]. These methods construct a posterior
probability Pr(θ|D, H) by using Bayes’ theorem

Pr(θ|D, H) =
Pr(D|θ, H)Pr(θ|H)

Pr(D|H)
(6)

where θ are the relevant parameters (positions, fluxes, sizes, etc.), D the data, and H the
underlying hypothesis. In Bayesian terminology Pr(D|θ, H) is the likelihood, Pr(θ|H) is the
prior and Pr(D|H) is the Bayesian evidence. Different Bayesian techniques can differ in the
priors or in the way of exploring the complicated posterior probability. PowellSnakes [34]
is an interesting method, which has been applied with success to the compilation of the
ERCSC for Planck frequencies between 30 and 143 GHz [15]. It uses Powell’s minimization
and physically motivated priors. This method can be also applied to cluster detection just by
introducing a suitable prior on the cluster size.

A simple Bayesian way of determining the position of the sources and estimating their
number and flux densities has been presented in [35]. Whereas by the MF, or by wavelets,
sources are detected above an arbitrary threshold, Bayesian methods select them in a more
natural way, for instance by comparing the posterior probability of two hypothesis: presence
or absence of the source. In the next subsection we will explore multichannel methods that
help improve the detection performance

3.2. Multi-channel detection

The flux density distribution, fν, of extragalactic radio sources as a function of frequency,
ν, is usually approximated by a power law, although this approximation is only valid in
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limited frequency intervals, i.e. fν ∝ (ν/ν0)
α, with ν0 being some frequency of reference.

Nevertheless, the so called “spectral index”, α, changes from source to source and this
formula is not reliable when the range of frequencies is wide enough. In [36] a scheme
for channel combination was proposed that makes the spectral behavior irrelevant. This
method is called matrix multifilters (MTXFs) and relies on the application of a set (N × N
matrix) of linear filters which combine the information of the N channels in such a way that:
1) an unbiased estimator of the source flux at each channel is obtained; and 2) the variance
of the estimator is minimum. Note that the method does not mix the images in a single
map, but it produces N maps in which the sources are conveniently amplified. The method
defaults to the MF when there is no cross-correlation among the channels. When there is a
non negligible correlation among the channels, as is the case for microwave images taken at
different frequencies where CMB and Galactic foregrounds are present in all the images, this
method gives a clear increase of the amplification when compared with the MF.

Now, we discuss a method tailored for cluster detection through the thermal SZ effect.
Matched Multifilters (MMF) [37] combine N channels in a single image, incorporating
the information about the spectral behavior (thermal SZ effect) and with the N filters
depending on a scale parameter S. The filters are constructed in the usual way, by imposing
unbiasedness and minimum variance. The MMF is given (in matrix notation) by

Υ(q) = αP−1F, α
−1 =

∫
dq FtP−1F, (7)

where F is the column vector [ fντν], which incorporates the spectral behavior fν and the
shape of the cluster at each frequency τν and P is the cross-power spectrum. Since the cluster
size is not known a priori, the images are convolved with a set of filters with different scales
Si, and it has been proven that the amplification is maximum when the chosen scale coincides
with the cluster size. A common pressure profile is assumed for the clusters. The detection
is performed by searching for the maxima of the filtered map above a given threshold. The
estimated amplitude of the thermal SZ effect is given by the amplitude at the maxima.

MMF can also be adapted to detect the fainter kinematic SZ effect. In this case an
orthogonality condition with respect to the spectral behavior of the thermal SZ effect is
imposed. Together with the usual unbiasedness and minimum variance conditions, this last
constraint helps cancel out the thermal SZ effect contamination [38]. A MMF can also be
designed for point source detection, by incorporating the (unknown) spectral behavior of the
sources as a set of parameters in the filter, it has also been proven that the amplification is
maximum when these parameters coincide with the real source spectrum. By changing the
parameters and selecting those which give the maximum amplification, in [39] the authors
were able to increase the number of point source detections in the WMAP 7-year maps.

Finally, a multi-channel Bayesian method has been developed recently, Powell-Snakes II [40].
This method constructs a posterior distribution by combining the likelihood and the prior
information of the different channels. It is an extension of Powell-Snakes I and uses prior
information on the positions, number of sources, intensities, sizes and spectral parameters.
The method is suitable both for point sources and for clusters. It is worth noting that
maximizing the likelihood when the sources are well separated, i.e. in the absence of source
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blending, amounts to using the MMF presented above. Here we have briefly summarized
the most important topics on the subject: a more detailed review can be found in [41].

4. Sunyaev-Zeldovich effect in clusters of galaxies

The Sunyaev-Zeldovich effect (SZ, [22]) accounts for the interaction between a hot plasma
(in a cluster environment) and the photons of the CMB. When CMB photons cross a galaxy
cluster, some of these photons interact with the free electrons in the hot plasma through
inverse Compton scattering. The temperature change observed in a given direction, θ, and
at the frequency ν, can be described as

∆T(θ, ν) = C0

∫
ne(l)T(l)dl (8)

where C0 contains all the relevant constants including the frequency dependence (gx =
x(ex + 1)/(ex

− 1) − 4, with x = hν/kT), ne is the electron density and T is the electron
temperature. The integral is performed along the line of sight.

The same electrons that interact with the CMB photons emit X-rays through the
bremstrahlung process:

Sx(θ, ν) = S0

∫
n2

e T1/2dl

Dℓ(z)2
(9)

where Dℓ(z) is the luminosity distance. The quantity S0 contains all the relevant constants
and frequency dependence. Combining X–ray and SZ observations it is thus possible to
reduce the degeneracy between different models due to their different dependency on T and
especially with ne.

Due to the nature of the microwave radiation, water vapour (and hence our atmosphere)
presents a challenge for studying this radiation from the ground. Observations have to
be carried out through several windows where the transmission of the microwave light
is maximized. In recent years, ground–based experiments have benefited from important
progress in the development of very sensitive bolometers. These bolometer arrays when
combined with superb atmospheric conditions – found in places like the South Pole and
the Atacama desert (with extremely low levels of water vapour) – have allowed, for the
first time at all, galaxy clusters to be mapped in great detail through the SZ effect. The
South Pole Telescope (or SPT; see, e.g., [42]) and the Atacama Cosmology Telescope (or ACT;
see, e.g., [43]) are today the most important ground–based experiments carrying out these
observations.

From space, the Planck satellite – even though it lacks the spatial resolution of ground–based
experiments – complements them by applying a full–sky coverage, a wider frequency range
and a better understanding of Galactic and extragalactic foregrounds. In particular, Planck
is better suited than ground–based experiments to detect large angular scale SZ signals
like nearby galaxy clusters or the diffuse SZ effect. In fact, ground–based experiments
can have their large angular scales affected by atmospheric fluctuations that need to be
removed, carefully. This removal process can distort the modes that include the large
angular scales signal. On the contrary, Planck data does not suffer from these limitations
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and its relatively poor angular resolution (if compared to some ground experiments) can
be used to its advantage. The wide frequency coverage and extremely high sensitivity of
Planck allows for detailed foreground (and CMB) removal that could overwhelm the weak
signal of the SZ effect. Planck data will help improve the understanding of the distribution
and the characteristics of the plasma in clusters. The conclusions derived on the internal
structure of clusters will ultimately have an impact on other works that focus on deriving
cosmological parameters. In fact, cosmological studies cannot by themselves disentangle
among the uncertainties in the physics inside galaxy clusters.

12:56:00.058:00.013:00:00.002:00.0

26:59:59.9
29:59.9

27:59:59.9

Figure 4. Fig. 1 from [44]. Coma cluster as seen by Planck. Contours show the the X-ray emission from Coma. Credit: Planck

Collaboration, A&A, Vol. 536, A8, 2011, reproduced with permission © ESO.

The Planck satellite is currently detecting hundreds of clusters of galaxies through the thermal
SZ effect. One of the peculiarities of the SZ effect is that the change in the CMB temperature
in the direction of a cluster is independent of the distance to that cluster. This makes the SZ
an ideal tool to explore the high redshift Universe. Planck is perfect for studying the most
massive clusters in the Universe and is expected to see clusters beyond z = 1. Earlier results
on galaxy clusters obtained by Planck have been presented in a subset of the Planck Early
results papers and, more specifically, can be found in [44–49] and also in [50], where new
results based on additional data are starting to be presented.

Among the first results published by the Planck collaboration on the SZ effect, the Coma
cluster (see Fig. 4) constitutes one of the most spectacular ones. Coma is a nearby massive
cluster that is well resolved by Planck. Fig. 4 shows the power of Planck to study the SZ
effect with unprecedented quality. In the near future, studies based on Planck data alone or
combined with X-ray data will reveal new details about the internal structure of this and
other clusters.

Planck’s earlier results include the detection of almost 200 clusters through their SZ signature
([44]). Planck is particularly sensitive to phenomena that increase the pressure, like mergers
or superclusters. One such supercluster was detected by Planck [45]. Most of the clusters
seen by Planck in the early analysis were known nearby objects but some of them were
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Figure 5. Fig. 3 from [44]. Distribution of Planck clusters that were already known (blue) and the new cluster candidates (green

and red). Credit: Planck Collaboration, A&A, Vol. 536, A8, 2011, reproduced with permission © ESO.

new clusters, that have been later confirmed by X-ray and/or optical follows up. Fig. 5
shows the distribution in the sky of clusters of galaxies as seen by Planck. This includes
the most massive clusters in the nearby and intermediate distance Universe. The redshift
independence of the SZ effect can be appreciated in Fig. 6 (next page), which shows the
relative flatness of the selection function of Planck as compared to cluster selections based
on X-ray luminosity. New analysis based on better data will improve the selection function
by reducing the limiting mass as a function of redshift. It is expected [5] that Planck will
increase the number of known clusters in a significant way and, in particular, it will explore
the high–redshift regime, detecting the most massive clusters at these high redshifts.

One of the most interesting conclusions derived by these earlier results comes from the
combination of X-ray and SZ data. Earlier studies based on X-ray data were able to conclude
that there exists a universal profile that accurately describes the gas pressure in galaxy
clusters [51]. The newly discovered (by Planck) SZ clusters seem to follow well this profile
but small deviations were observed when comparing the mean SZ profile with the average
profile derived from X-ray observations. Fig. 7 summarizes one of the main results of the
paper [45] where it can be appreciated how the average profile of the SZ observations (red
thick line) flattens towards the cluster center (R500 ≪ 1) when compared to the average of a
sample of cool, core relaxed X-ray clusters (thick blue line). This fact suggests that the new
clusters detected by Planck tend to be non–cool core, morphologically disturbed clusters. This
would explain why these clusters where not found by previous X-ray surveys but Planck, that
is sensitive to the total pressure rather than to the distribution of the gas, has no problem in
finding them.

Many other relevant results can be found in the first series of papers from the Planck ERCSC,
including studies of scaling relations between SZ quantities and optical or X-ray ones. More
recently, a new analysis based on 2.5 full sky surveys has studied the relationship between
the Compton parameter and weak lensing mass estimates [50]. As shown in Fig. 8, this work
is very promising and could allow – in the near future – the use of the Compton parameter
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Figure 6. Fig. 21 from [44]. Redshift distribution as a function of luminosity for the 158 clusters from the Planck Early SZ

sample (diamonds and triangles) identified with known X-ray clusters, compared with serendipitous and RASS clusters (crosses).

See [44] for more details. Credit: Planck Collaboration, A&A, Vol. 536, A8, 2011, reproduced with permission © ESO.

Figure 7. Fig. 10 from [45]. Scaled density profiles, derived from X-ray data, of the new Planck SZ clusters compared to those

of similar mass systems from representative X–ray samples. Thick lines show the mean profile of each sample. Credit: Planck

Collaboration, A&A, Vol. 536, A9, 2011, reproduced with permission © ESO.

as a mass proxy in cosmological studies, where a good mass estimator is crucial to derive
accurate cosmological parameters from the analysis of a cluster sample.

After Planck’s data release, science based on the SZ effect will change dramatically. Planck is
expected to release more than 2 full sky surveys of data early in 2013, thus opening the door
for multiple studies to be carried out by the scientific community. Cluster science based
on the SZ effect will motivate many of these studies. Of particular interest will be those
works that combine SZ effect and X-ray data. The different dependence of the SZ effect and
X-ray emission with electron density and temperature allows for deprojection techniques
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to reduce the uncertainties of the models. Also, the combination of X-ray and SZ data can
be particularly powerful to study the clumpiness of the gas and deviations from spherical
symmetry. An area where future Planck data will be used extensively will be the detection of
new cluster candidates. The legacy Planck cluster catalogue will contain the most significant
cluster signals. Hundreds of weaker SZ (and unknown) clusters will still be present in the
public data but not in the legacy catalogue. Many groups will dig into the Planck data
searching for these weaker signals. Among them there will be the most distant clusters at
z > 1 that will be crucial for future cosmological studies.

Figure 8. Fig. 1 from [50]. Correlation between the Compton parameter and the weak lensing mass. Credit: Planck

Collaboration, A&A, submitted (ms AA/2012/19398), 2012, reproduced with permission © ESO.

Another area where Planck data might contribute significantly is in the study of energetic
phenomena in galaxy clusters. The SZ effect is sensitive to the temperature of the Plasma (or
more generally, to the speed distribution of the electrons). Hot clusters have an SZ spectrum
that deviates from the standard shape. The shift (or relativistic correction) is more dramatic
at higher frequencies (ν > 100 GHz). Current X-ray missions like Chandra have some trouble
determining the temperature of the plasma for clusters with high temperatures. On the
contrary, the relativistic corrections to the SZ effect can dramatically boost the SZ signal
in Planck at frequencies ν > 500 GHz making, it easier to detect these clusters at these
frequencies and also to derive constraints on the physical state of the plasma. A strong
deviation in the spectrum could be an indication that very energetic phenomena (very high
temperatures, shock waves, etc.) are operating on the cluster at large scales.

5. Extragalactic radio and far–IR sources

The Planck ERCSC [15] provides positions and flux densities of compact sources found in
each of the nine Planck frequency maps. The flux densities are calculated using aperture
photometry, with careful modeling of Planck’s elliptical beams8. These data on sources
detected during the first 1.6 full-sky surveys offers, among other things, the opportunity
of studying the statistical and emission properties of extragalactic radio and far–IR sources
over a broad frequency range, never before fully explored by blind surveys.

8 Flux densities taken from the ERCSC should be divided by the appropriate colour correction to give the correct flux
values for an assumed narrow band measurement at the central frequency.
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As shown by [15], their Table 1, the full-sky surveys of the Planck satellite are – and will be,

for years to come – unique in the millimetre, at λ ≤ 3 mm, and submillimetre domains. The

lack of data in this frequency range represented the largest remaining gap in our knowledge

of bright extragalactic sources (i.e., normal and star–forming galaxies and Active Galactic

Nuclei, AGNs) across the electromagnetic spectrum. In the course of its planned surveys,

Planck has been able to measure the integrated flux of many hundreds of “radio” sources

– i.e., sources at intermediate to high–redshift, dominated by synchrotron emission due to

hot electrons in the inner jets of the Active Galactic Nucleus (AGN) of the source – and

of many thousands “‘far–IR” sources – i.e., low–redshift dusty galaxies or sources with

emission dominated by interstellar dust in thermal equilibrium with the radiation field –

thus providing the first complete full-sky catalogue (ERCSC) of bright submillimetre sources.

Thanks to this huge amount of new data it is thus possible to investigate the spectral energy

distributions (SEDs) of EPS in a spectral domain very poorly explored before and, at the

same time, their cosmological evolution, at least for some relevant source populations.

5.1. Synchrotron sources: “blazars”

The most recent estimates on source number counts of radio (synchrotron) sources up to

∼ 50 − 70 GHz, and the optical identifications of the corresponding point sources (see, e.g.,

[52]), show that these counts are dominated by radio sources whose average spectral index

is “flat”, i.e., α ≃ 0.0 (with the usual convention Sν ∝ ν
α). This result confirms that the

underlying source population is essentially made of Flat Spectrum Radio Quasars (FSRQ)

and BL Lac objects, collectively called “blazars”9, with minor contributions coming from

other source populations [13, 54]. At frequencies > 100 GHz, however, there is now new

information for sources with flux densities below about 1 Jy, coming from the South Pole

Telescope (SPT) collaboration [55], with surveys over 87 deg2 at 150 and 220 GHz, and from

the Atacama Cosmology Telescope (ACT) survey over 455 deg2 at 148 GHz [56].

The “flat” spectra of blazars are generally believed to result from the superposition of

different components in the inner part of AGN relativistic jets, each with a different

synchrotron self-absorption frequency [57]. At a given frequency, the observed flux density

is thus dominated by the synchrotron-emitting component which becomes self-absorbed,

and, in the equipartition regime, the resulting spectrum is approximately flat. Given their

sensitivity and full sky coverage, Planck surveys are uniquely able to shed light on this

transition from an almost “flat” to a “steep” regime in the spectra of blazar sources, which

can be very informative on the ages of sources and on the inner jet processes which determine

the acceleration of the electrons [58].

To study the spectral properties of the extragalactic radio sources in the Planck ERCSC
[59] used a reference 30 GHz sample above an estimated completeness limit Slim ≃ 1.0 Jy.
Not all of these sources were detected at the ≥ 5σ level in each of the Planck frequency
channels considered. Whenever a source was not detected in a given channel they replaced
its (unknown) flux density by a 5σ upper limit, where for σ they used the average r.m.s.

9 Blazars are jet-dominated extragalactic objects characterized by a strongly variable and polarized emission of the
non-thermal radiation, from low radio energies up to high energy gamma rays [53].
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error estimated at each Planck frequency. Finally, for estimating spectral index distributions,
these upper limits have been redistributed among the flux density bins by using a Survival
Analysis technique and, more specifically, by adopting the Kaplan-Meyer estimator10[59].

In the sample analyzed by [59], the 30–100 GHz median spectral index is very close to the
α ≃ −0.39 found by [60] between 20 and 95 GHz, for a sample with 20 GHz flux density S >

150 mJy. Moreover, the 30–143 GHz median spectral index is in very good agreement with
the one found by [56] for their bright (Sν > 50 mJy) 148 GHz-selected sample with complete
cross-identifications from the Australia Telescope 20 GHz survey, i.e α

148
20 = −0.39 ± 0.04.

Fig.9 presents the contour levels of the distribution of α
143
70 vs. α

70
30 (obtained using Survival

Analysis) in the form of a 2D probability field: the colour scale can be interpreted as the
probability of a given pair of spectral indices and a bending down, i.e. α < −0.5, at high
frequencies is displayed. In the whole, the results of [59] show that in their sample selected
at 30 GHz a moderate steepening of spectral indices of EPS at high radio frequencies, i.e.
& 70 − 100 GHz, is clearly apparent11.
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Figure 9. Fig. 7 from [59]. Contour levels of the distribution of α
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70 vs. α
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30 obtained by Survival Analysis, i.e., taking into

account the upper limits to flux densities at each frequency. The colour scale can be interpreted as the probability of having any

particular pair of values of the two spectral indices. The maximum probability corresponds to α
70
30 ≃ −0.18 and α

143
70 ≃ −0.5.

Credit: Planck Collaboration, A&A, Vol. 536, A13, 2011, reproduced with permission © ESO.

As already noted, at high radio frequencies (ν > 30 GHz) most of the bright extragalactic
radio-sources are blazars. From the contour plot of Fig. 9 it is possible to see that the
maximum probability of the spectral indices of blazars corresponds to α

70
30 ≃ −0.18 and

α
143
70 ≃ −0.5. A secondary maximum can also be seen at α

143
70 ≃ −1.2. In a companion paper,

i.e. [61], a detailed discussion on the modelling of the spectra of this source class is also
presented. In this paper, spectral energy distributions (SEDs) and radio continuum spectra
are presented for a northern sample of 104 extragalactic radio sources, based on the Planck

ERCSC and simultaneous multifrequency data12. The nine Planck frequencies, from 30 to 857
GHz, are complemented by a set of quasi–simultaneous observations ranging from radio to
gamma-rays. SED modelling methods are discussed, with an emphasis on proper, physical

10 Since the fraction of upper limits is found to be always small (it reaches approximately 30% only in the less sensitive
channel at 44GHz), the spectral index distributions are reliably reconstructed at each frequency.

11 Some hints in this direction were previously found by other works on the subject. Additional evidence of spectral
steepening is also presented in [61] by the analysis of a complete sample of blazars selected at 37 GHz.

12 The great amount of data present in the Planck ERCSC complemented with quasi-simultaneous ground–based
observations at mm wavelengths have also enabled the study of the very interesting spectral properties of the rare
peculiar and/or extreme radio sources detected by the Planck surveys [62].
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modelling of the synchrotron bump using multiple components, and a thorough discussion
on the original accelerated electron energy spectrum in blazar jets is presented. The main
conclusion is that, al least for a fraction of the observed mm/sub-mm blazar spectra, the
energy spectrum could be much harder than commonly thought, with a power-law index
∼ 1.5 and the implications of this hard value are discussed for the acceleration mechanisms
effective in blazar shocks.

It has also been shown by [59] that differential number counts at 30, 44, and 70 GHz are
in good agreement with those derived from WMAP [29] data at nearby frequencies. The
model proposed by [54] is consistent with the present counts at frequencies up to 70 GHz,
but over-predicts the counts at higher frequencies by a factor of about 2.0 at 143 GHz and
about 2.6 at 217 GHz13. As shown above, the analysis of the spectral index distribution over
different frequency intervals, within the uniquely broad range covered by Planck in the mm
and sub-mm domain, has highlighted an average steepening of source spectra above about
70 GHz. This steepening accounts for the discrepancy between the model predictions of [54]
and the observed differential number counts at HFI frequencies.

In the fall of 2011, a successful explanation of the change detected in the spectral behavior
of extragalactic radio sources (ERS) at frequencies above 70-80 GHz has been proposed by
[63]. This paper makes a first attempt at constraining the most relevant physical parameters
that characterize the emission of blazar sources by using the number counts and the spectral
properties of extragalactic radio sources estimated from high–frequency radio surveys14. As
noted before, a relevant steepening in blazar spectra with emerging spectral indices in the
interval between −0.5 and −1.2, is commonly observed at mm/sub-mm wavelengths. [63]
interpreted this spectral behavior as caused, at least partially, by the transition from the
optically–thick to the optically–thin regime in the observed synchrotron emission of AGN
jets [64]. Indeed, a “break” in the synchrotron spectrum of blazars, above which the spectrum
bends down, thus becoming “steep”, is predicted by models of synchrotron emission from
inhomogeneous unresolved relativistic jets [65, 66]. Based on these models, [63] estimated
the value of the frequency νM (and of the corresponding radius rM) at which the break occurs
on the basis of the flux densities of ERS measured at 5 GHz and of the most typical values
for the relevant physical parameters of AGNs.

As displayed in Fig. 10, high frequency (ν ≥ 100 GHz) data on source number counts are the
most powerful for distinguishing among different cosmological evolution models (see [63]
for more details on the models plotted in Fig. 10)15. As clearly shown, these most recent
data on number counts require spectral “breaks” in blazars’ spectra and clearly favor the

13 This implies that the contamination of the CMB APS by radio sources below the 1 Jy detection limit is lower than
previously estimated. No significant changes are found, however, if we consider fainter source detection limits, i.e.,
100 mJy, given the convergence between predicted and observed number counts.

14 The main goal of [63] was to present physically grounded models to extrapolate the number counts of ERS,
observationally determined over very large flux density intervals at cm wavelengths down to mm wavelengths,
where experiments aimed at accurately measuring CMB anisotropies are carried out.

15 The two most relevant models of [63], i.e. C2Co and C2Ex, assume different distributions of rM – i.e., the smallest
radius in the AGN jet from which optically-thin synchrotron emission can be observed – for BL Lacs and FSRQs, with
the former objects that generate, in general, the synchrotron emission from more compact regions, implying higher
values of νM (above 100 GHz for bright objects). These two models differ only in the rM distributions for FSRQs: in
the C2Co model the emitting regions are more compact, implying values of νM partially overlapping with those for
BL Lacs, whereas in the C2Ex model they are more extended, thus predicting very different values of νM for FSRQs
and BL Lacs.
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Figure 10. Comparison between predicted and observed differential number counts at 148GHz (left panel) and at 220GHz
(right panel). Filled circles: ACT data; open black circles: SPT data; open blue circles: Planck ERCSC counts [59] at 143GHz (left
panel) and 217GHz (right panel). The plotted lines indicate predictions of different models, as follows: C0(dotted lines), C1
(thick continuous lines), C2Ex (lower red long–dashed lines) and C2Co (upper red long–dashed lines) and the [54] model (blue
dash–dotted line). Credit: Tucci M., et al., A&A, Vol. 533, A57, 2011, reproduced with permission © ESO.

model C2Ex. According to this, most of the FSRQs (which are the dominant population at
low frequencies and at Jy flux densities), differently from BL Lacs, should bend their flat
spectrum before or around 100 GHz. The C2Ex model also predicts a substantial increase
of the BL Lac fraction at high frequencies and bright flux densities16. On the whole, the
results of [63] imply that the parameter rM should be of parsec–scales, at least for FSRQs, in
agreement with the theoretical predictions of [67], whereas values of rM ≪ 1 pc should be
only typical of BL Lac objects or of rare, and compact, quasar sources.

5.2. Far–IR sources: Local dusty galaxies

The full-sky coverage of the Planck ERCSC provides an unsurpassed survey of galaxies at
submillimetre (submm) wavelengths, representing a major improvement in the numbers of
galaxies detected, as well as the range of far-IR/submm wavelengths over which they have
been observed. The analysis done by [68] presented the first results on the properties of
nearby galaxies using these data. They matched the ERCSC catalogue to IRAS-detected
galaxies in the Imperial IRAS Faint Source Redshift Catalogue (IIFSCz) [69], so that they
could measure the SEDs of these objects from 60 to 850 µm. This produced a list of 1717
galaxies with reliable associations between Planck and IRAS, from which they selected a
subset of 468 for SED studies, namely those with strong detections in the three highest
frequency Planck bands and no evidence of cirrus contamination. This selection has thus
provided a first Planck sample of local, i.e. at redshift < 0.1, dusty galaxies, very important
for determining their emission properties and, in particular, the presence of different
dust components contributing to their submm SEDs. Moreover, the richness of data on

16 This is indeed observed: a clear dichotomy between FSRQs and BL Lac objects has been found in the Planck ERCSC.
Almost all radio sources show very flat spectral indices at LFI frequencies, i.e. αLFI ≥ −0.2, whereas at HFI
frequencies, BL Lacs keep flat spectra, i.e. αHFI ≥ −0.5, with a high fraction of FSRQs showing steeper spectra,
i.e. αHFI ≤ −0.5.
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extragalactic point sources gathered by Planck has allowed the measurement of the submm
number density of bright (S > 0.5 − 2 Jy) dusty galaxies (and of synchrotron-dominated
sources) for the first time.

Figure 11. Fig. 2 from [68]. Sky plot of ERCSC sources in Galactic coordinates. ERCSC point-sources (black filled hexagons) and

ERCSC sources flagged as extended (blue filled hexagons) are shown. Red hexagons are sources associated with IIFSCz IRAS

FSC galaxies. Green hexagons are ERCSC sources not associated with IIFSCz, but associated with bright galaxies in NED (only

for |b| > 60◦ for extended sources). Credit: Planck Collaboration, A&A, Vol. 536, A16, 2011, reproduced with permission ©
ESO.

Fig. 11 shows the sky distribution of ERCSC sources at |b| > 20◦, with sources flagged as
extended in the ERCSC shown as blue filled hexagons, and point-sources shown in black.
Associations with the IIFSCz are shown as red circles. The extended sources not associated
with IIFSCz sources have a strikingly clustered distribution, which matches the areas of our
Galaxy with strong cirrus emission, as evidenced by IRAS 100 µm maps. Therefore, the
majority of these are cirrus sources and not extragalactic (see [68] for more details).

The studies of nearby galaxies detected by Planck [68] confirm the presence of cold dust in
local galaxies and also largely in dwarf galaxies. The SEDs are fitted using parametric dust
models to determine the range of dust temperatures and emissivities. They found evidence
for colder dust than has previously been found in external galaxies, with temperatures T <

20 K. Such cold temperatures are found by using both the standard single temperature dust
model with variable emissivity β, or a two dust temperature model with β fixed at 2. In
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[68] it is also found that some local galaxies are both luminous and cool, with properties
similar to those of the distant submm galaxies uncovered in deep surveys. This suggests
that previous studies of dust in local galaxies have been biased away from such luminous
cool objects. In most galaxies the dust SEDs are found to be better described by parametric
models containing two dust components, one warm and one cold, with the cold component
reaching temperatures as low as 10 K17. The main conclusion of [68] is that cold (T < 20
K) dust is thus a significant and largely unexplored component of many nearby galaxies.
Furthermore, a new population of cool submm galaxies is detected, with presence of very
cold dust (T = 10 − 13 K) showing a more extended spatial distribution than generally
assumed for the gas and dust in galaxies.

Figure 12. Fig. 9 from [70]. Planck differential number counts, normalized to the Euclidean value (i.e. S2.5dN/dS), compared

with models and other data sets. Planck counts: total (black filled circles); dusty (red circles); synchrotron (blue circles). Four

models are also plotted: [54], dealing only with synchrotron sources – solid line; [63] dealing only with synchrotron sources –

dots; [71] dealing only with dusty sources – long dashes; [72] dealing only with local dusty sources – short dashes. Other data

sets: Planck early counts for 30GHz-selected radio galaxies [59] at 100, 143 and 217GHz (open diamonds); Herschel ATLAS and

HerMES counts at 350 and 500µm from [73] and [74]; BLAST at the same two wavelengths, from [75], all shown as triangles.

Left vertical axes are in units of Jy1.5 sr−1, and the right vertical axis in Jy1.5.deg−2. Credit: Planck Collaboration, A&A, submitted

(ms AA/2012/20053), 2012, reproduced with permission © ESO.

Very recently, using EPS samples selected from the first Planck 1.6 full-sky surveys, i.e. from
the Planck ERCSC, [70] have derived number counts of extragalactic sources from 100 to
857 GHz (3 mm to 350 µm). Three zones (deep, medium and shallow) of approximately

17 Fits to SEDs of selected objects using more sophisticated templates derived from radiative transfer models confirm
the presence of the colder dust found through parametric fitting.
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homogeneous coverage are used to ensure a clean completeness correction18. For the first
time, bright number counts of EPS at 353, 545 and 857 GHz (i.e., 850, 550 and 350 µm) have
been calculated19. Planck number counts are found to be in the Euclidean regime in this
frequency range, since the ERCSC comprises only bright sources (S > 0.3 Jy). The estimated
number counts appear generally in agreement with other data sets, when available (see [70]
for more details).

Using multi-frequency information to classify the sources as dusty- or
synchrotron-dominated (and measure their spectral indices), the most striking result
of [70] is the estimated contribution to the number counts by each population. These
new estimates of number counts of synchrotron and of dust–dominated EPS (displayed in
Fig. 12) have allowed new constraints to be placed on models which extend their predictions
to bright flux densities, i.e. S > 1 Jy. A very relevant result is that the model C2Ex of
[63] (see Section 5.1) is performing particularly well at reproducing the number counts
of synchrotron-dominated sources up to 545 GHz. On the contrary, [70] highlights the
failure of many models for number count predictions of dusty sources to reproduce all the
high-frequency counts. The model of [71] agrees marginally at 857 GHz but is too low at
545 GHz and also at lower frequencies, whereas the model of [72] is marginally lower at
857 GHz, fits the data well at 545 GHz, but is too low at 353 GHz. The likely origin of the
discrepancies is an inaccurate description of the galaxy SEDs used at low redshift in these
models. Indeed a cold dust component, detected by [68], is rarely included in the models of
galaxy SEDs at low redshift. On the whole, these results already obtained by the exploitation
of the Planck ERCSC data are providing valuable information about the ubiquity of cold dust
in the local Universe, at least in statistical terms, and are guiding to a better understanding
of the cosmological evolution of EPS at mm/sub-mm wavelengths.

6. Cosmic Infrared Background anisotropies

The Cosmic Infrared Background (CIB) is the relic emission, at wavelengths larger than a
few microns, of the formation and evolution of the galaxies of all types, including AGNs and
star-forming systems [76–78]20. The CIB accounts for roughly half of the total energy in the
optical/infrared Extragalactic Background Light (EBL) [77], although with some uncertainty,
and its SED peaks near 150 µm. Since local galaxies give rise to an integrated infrared
output that amounts to only about a third of the optical one [79], there must have been a
strong evolution of galaxy properties towards enhanced far–IR output in the past. Therefore,
the CIB, made up by high density, faint and distant galaxies21 is barely resolved into its
constituents. Indeed, less than 10% of the CIB is resolved by the Spitzer satellite at 160 µm

18 The sample, prior to the 80 % completeness cut, contains between 217 sources at 100 GHz and 1058 sources at 857 GHz
over about 12,800 to 16,550 deg2 (31 to 40 % of the sky). After the 80 % completeness cut, between 122 and 452 and
sources remain, with flux densities above 0.3 and 1.9 Jy, at 100 and 857 GHz, respectively.

19 More specifically, number counts have been provided of synchrotron-dominated sources at high frequency (353 to
857 GHz) and of dusty-dominated galaxies at lower frequencies (217 and 353 GHz).

20 An important goal of studies of galaxy formation has thus been the characterization of the statistical behavior of
galaxies responsible for the CIB - such as the number counts, redshift distribution, mean SED, luminosity function,
clustering – and their physical properties, such as the roles of star-forming vs. accreting systems, the density of star
formation, and the number density of very hot stars

21 The CIB records much of the radiant energy released by processes of structure formation occurred since the last
scattering epoch, four hundred thousand years after the Big Bang, when the CMB was produced.
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[75], about 10% by Herschel at 350 µm [73]. Thus, in the absence of foreground (Galactic dust)
and CMB emissions, and when the instrument noise is subdominant, maps of the diffuse
emission at the angular resolution probed by the current surveys reveal a web of structures,
characteristic of CIB anisotropies. With the advent of large area far-IR to millimeter surveys
(Herschel, Planck, SPT, and ACT), CIB anisotropies thus constitute a new tool for structure
formation and evolution studies.

CIB anisotropies are expected to trace large-scale structures and probe the clustering
properties of galaxies, which in turn are linked to those of their hosting dark matter halos.
Because the clustering of dark matter is well understood, observations of anisotropies in
the CIB constrain the relationship between dusty, star-forming galaxies at high redshift,
i.e. z ≥ 2, and the underlying dark matter distribution. The angular power spectrum
of CIB anisotropies has two contributions, a white-noise component caused by shot noise
and an additional component caused by spatial correlations between the sources of the CIB.
Correlated CIB anisotropies have already been measured by many space–borne as well as
ground–based experiments (see [80] for more details). Depending on the frequency, the
angular resolution and size of the survey, these measurements can probe two different
clustering regimes. On small angular scales (ℓ ≥ 2000), they measure the clustering within
a single dark matter halo and, accordingly, the physics governing how dusty, star–forming
galaxies form within a halo. On large angular scales, i.e. 200 ≤ ℓ ≤ 2000, CIB anisotropies
measure clustering between galaxies in different dark matter halos. These measurements
primarily constrain the large-scale, linear bias, b, of dusty galaxies, which is usually assumed
to be scale-independent over the relevant range.

Thanks to the exceptional quality of the Planck data, [80] were able to measure the clustering
of dusty, star-forming galaxies at 217, 353, 545, and 857 GHz with unprecedented precision.
The CIB maps were cleaned using templates: HI for Galactic cirrus; and the Planck 143 GHz
maps for CMB. Having HI data is necessary to cleanly separate CIB and cirrus fluctuations.
After careful cleaning, they obtained CIB anisotropy maps that reveal structures produced
by the cumulative emission of high-redshift, dusty, star–forming galaxies. The maps are
highly correlated at high Planck frequencies, whereas they decorrelate at lower Planck

HFI frequencies. [80] then computed the power spectra of the maps and their associated
errors using a dedicated pipeline and ended up with measurements of the APS of the CIB
anisotropy, Cℓ, at 217, 353, 545, and 857 GHz, with high signal-to-noise ratio over the range
200 < l < 2000. These measurements compare very well with previous measurements at
higher ℓ22.

Moreover, from Planck data alone [80] could exclude a model where galaxies trace the
(linear theory) matter power spectrum with a scale-independent bias: that model requires
an unrealistic high level of shot noise to match the small-scale power they observed.
Consequently, an alternative model that couples the dusty galaxy, parametric evolution
model of [71] with a halo model approach has been developed (see [80], again, for more
details). Characterized by only two parameters, this model provides an excellent fit to our
measured anisotropy angular power spectrum for each frequency treated independently. In
the near future, modelling and interpretation of the CIB anisotropy will be aided by the use

22 The SED of CIB anisotropies is not different from the CIB mean SED, even at 217 GHz. This is expected from the
model of [71] and reflects the fact that the CIB intensity and anisotropies are produced by the same population of
sources.

Extragalactic Compact Sources in the Planck Sky and Their Cosmological Implications
http://dx.doi.org/10.5772/52908

79



of cross-power spectra between bands, and by the combination of the Planck and Herschel

data at 857 and 545/600 GHz and Planck and SPT/ACT data at 220 GHz.
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