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1. Introduction

Within a traditional geographic information system, it is currently difficult to ask questions
about data that possess positions in both space and time. Information about objects that have
spatial position, spatial relationships with nearby objects, and the time of their existence needs
to be stored within a computer system, making them available for queries concerning spatial
locations, dates, and attributes.

In existing GIS software spatio-temporal queries cannot be answered easily; the absence of
a temporal component implies that analysis of past events and future trends is difficult or
impossible [37].

In traditional geographic information systems, the temporality of spatial data has been treated
separately from their spatial dimensions. The lack of mechanisms for recording incremental
changes poses a serious problem for the integration of temporal data inside a GIS. In current
GISs, the spatial changes affect the whole map. Therefore, the “snapshot model1” with global
changes of map states is considered to be a basis of any spatio-temporal model [6].

Nowadays, there is a growing demand from the user community for a new type of GIS that
will be able to support temporal data and spatio-temporal facilities such as: spatio-temporal
queries [41] and interactive spatial updates [45].

Spatio-temporal facilities would be useful in many GIS applications such as harvesting and
forest planning, cadastre, urban and regional planning as well as emergency planning.

In all these fields, there is a need for a GIS technology which can manage the history of
spatial objects and their evolution, and which can efficiently answer spatio-temporal queries.
In forest management, there is a need for GIS technology which can manage the history of
spatial objects, map versioning and spatio-temporal queries. An example is a forest inventory
map that is being frequently updated with the latest information about forest roads, cut areas,
fire, etc. It would be desirable to preserve all the previous states, and to be able to track the
evolution of the spatial objects.

1 The snapshot model is a map at a single moment in time.

©2012Mioc et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
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While in the past, most of the approaches concentrated on the extension of existent GIS models
with temporal data, recent research [8] shows that dealing with time as calendar time and
mapping it onto an integer domain is feasible, but does not capture the semantics of time
and leaves out most of its important properties. According to Frank [8], the understanding
of how time and temporal reasoning processes are conceptually structured is a prerequisite to
building support for temporal reasoning into current GISs. Frank [8] further emphasized the
need for formal models to determine the representation of temporal information and temporal
and spatio-temporal reasoning methods.

2. Previous research

Several authors [25], [40], [5] proposed spatio-temporal data models based on extending
existing GIS models, in order to include temporal information. The problem they faced is that
most commercial GISs are closed systems which cannot be extended nor modified in order
to include temporal information. Therefore, the solutions they propose are based on a “dual
architecture” [45], which is composed of two subsystems: a commercial GIS and a relational
DBMS. Van Oosterom [46] emphasized the problem of the complexity of the maintenance of
the proposed spatio-temporal data models.

There are several spatio-temporal functionalities such as retroactive map updates [20] and the
incorporation of temporal data without exact temporal information [7] that cannot be handled
with such hybrid models. Another problem with existing GISs, is that the semantics of map
topology construction [46] are lost. This problem is better known under the term of “long
transactions in GIS” [38]. This is due to complex models of spatial topology which need
to be processed globally after being updated. When a map is processed in batch mode, its
topology is built, and it is not possible to go back to previous states, nor to reuse the past map
states, because the information about spatio-temporal objects and the operations that have
been executed upon them is lost. Batch processing of spatial topology is managed through
“long transactions” which can be composed of nested transactions and could last for hours or
days, and system or user generated aborts will not be permitted during that time [29].

Newell and Batty [38] stated that current GISs differ from standard DBMS in that only “long
transactions” (and not short ones) are possible. This restricts access to intermediate map states,
which is a limitation when the concern is with local updates and temporal queries. They also
state that short transactions are required for problems such as emergency planning, vehicle
tracking, fault logging, and other real-time system problems.

The problem of long transactions is so acute (time consumption, database inconsistency
problems, etc.), that the underlying problem is not well defined. The problem lies in the
fact that “dynamic topology” [14] is not used: geometric algorithms cannot be executed
interactively upon spatial objects while maintaining topological relationships. Recently,
several GIS researchers (Van Oosterom [45], [46], Chrisman [6], Newel and Batty [38], Kraak
[23], [24]) tackled the same problem from several different perspectives.

2.1. A fundamental problem in GIS

Recently, the research of Newell and Batty [38], Gold [14], and independently Chrisman
[6] shows that “batch processing” of spatial data is a fundamental problem in commercial
GISs. The “batch processing” of static spatial topology used by line intersection based spatial
systems does not support mechanisms for recording incremental change and poses a serious
problem for the integration of temporal data inside GISs.
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The “batch processing” of spatial data cannot support incremental (local) addition and
deletion of spatial objects, and they cannot support the temporal evolution of spatial data.

Briefly, we will explain now what led to the batch processing of spatial data that imposed the
snapshot or time-slicing approach in GIS.

The snapshot model of map time [6] was always emphasized by cartographers, resulting
in current commercial GIS models. Current GISs can represent a space evolving in time
only through a series of map snapshots. The snapshot approach of traditional geographic
information systems, where independent coverages are generated for each time step, cannot
easily maintain the incremental changes of cartographic data evolving in space and time. The
limitations of this approach include high data redundancy, due to the inability of conventional
GIS models to support incremental changes, causing difficulties in the maintenance of long
series of cartographic snapshots [23].

The snapshot model misses the key nature of change [6], which can be seen as a composition
of events. The “time slicing” idea leading to the snapshot approach collapses many events,
each of which occurred separately [6], causing difficulties in determination of spatio-temporal
processes. Map snapshots tend to be created independently at specific intervals, rather
than incrementally, and thus there is no preservation of topological relationships between
map elements in different time slices, and no effective way of determining the continuity of
existence of map elements and their neighbours between snapshots. Although a snapshot
method is an important capability, this historical model represents only a single point in time,
and does not reveal the sequence of events, or history of the area.

For change detection, the snapshot method uses two distinct maps [6] which are measured
with some error. When the map overlay is used to compute differences between these two
maps [6], the errors are confounded with the actual changes, and it is difficult to distinguish
error from change when using snapshots.

2.2. Overview of recent research on spatio-temporal models

Van Oosterom proposed a new approach for handling spatio-temporal information [45], [46].
He proposed a data model in which both time and topology are consistently maintained
in the database updates. His topological data structure is based on the “CHAIN” method

[46], similar to the winged edge data structure2. He also addresses the problems of long
transactions in GIS, the loss of transactional semantics and possible database inconsistency
problems [45], [46]. In his approach, the history of complex map objects can be obtained

2 The winged edge data structure or a polygon data structure is a way of representing a geometric graph in the plane.
The winged edge data structure was proposed by Baumgart. It stores a record for each vertex, face and edge, with
the edge record being the most important. The record for a vertex v stores v’s coordinate position and a pointer to
one arbitrary edge that is incident upon v. Likewise the record for a face f stores the name of f and a pointer to one
arbitrary edge that lies on the boundary of f. The record for an edge e stores many fields including:
Pointers to the two vertex endpoints v1 and v2 of e.
Pointers to the two faces f1 and f2 on either side of e.
Pointers to the predecessor and the successor edges of e on the boundaries of f1 and f2 respectively. They are the so
called “wing edges”.
Thus, the total number of pointers needed is | V | + | F | +8 | E |.
Most importantly, just by following the appropriate pointers, one can traverse the boundary of a face in either
clockwise or counterclockwise order in time proportional to the number of edges on the boundary. Likewise one
can list all the edges incident upon a vertex v in clockwise or counterclockwise order in time proportional to their
number.
Source: http://www.ugrad.cs.ca/spider/cs414/winged-edge.html
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only by using spatial overlap queries, with respect to the given objects over time. Indeed,
the model he proposed can be queried for historic versions only for simple object changes: it
does not work for splits, joins nor more complicated spatial editing, unless spatial overlay is
performed. Within his data structure, retroactive map updates are not implemented, due to
possible consistency problems.

Frank [7] provides a theoretical framework for spatio-temporal reasoning based on the relative
order of events3 and he proposed the integration of ordered event structures in a GIS. In his
paper titled “Different Types of ‘times’ in GIS” [8], he made two very interesting points that
will be further explored in this section. The first point is related to the exploration of the
relations4 between temporal order relations and the order relation in the lattice of partitions
in geometric space [8], which he considered a challenging research question.

The second point is related to the different spatio-temporal models that he described, which
will now be mentioned briefly. Some of the models he describes are not explored (and
implemented) yet in current GISs. An example of such models is the movement along a
path5 , that is an interaction between temporal and spatial reasoning. Another example of
spatio-temporal model that cannot be implemented within current GISs is spatial data without
precise temporal information, which has been described by Frank [8]. This example occurs
often in history and geology related mapping, where some of the spatio-temporal sequences
of the data are missing and need to be interpolated. Further, he stated a “need for more
realistic GISs” that will unify different models presently used for spatio-temporal reasoning.
The “realistic GIS” [8] should be able to deal with error correction and other improvements
of existing data. In other words, there is a need for retroactive updates in spatio-temporal
models, and they are difficult to achieve. Gold [16] proposed another spatio-temporal model
based on event ordering, which responds instantly to map construction commands given by
the user, changing the state of map objects and their spatial topology, and storing all the
changes in topological states. In the past few years, his research efforts showed that the
Voronoi diagram offers “a more intelligent, more realistic, and semantically richer” model
for spatial representation. In his model, based on the Voronoi diagram for sets of points and
line segments, map topology states can be reconstructed at any time because all the operations
on his data structure are reversible. The Voronoi diagram for sets of points and line segments
is the generalization of the ordinary Voronoi diagram (for sets of points), where the set of sites
may contain not only points, but points and line segments as well (see Figure 1).

3. The dynamic spatial Voronoi data structure

Cartographic objects on maps are composed of points, curves and surfaces. The ordinary
point Voronoi diagram does not allow us to accurately model linear or areal objects (curves
and surfaces) needed in many GIS applications.

3 Orderings of events in which it is not known for every event if it is before or after another one are called partial
orderings [8]. Completely ordered sets of events are known as totally ordered [8] with a single viewpoint of all events.

4 “A set with a partial order relation is called a partially ordered set or poset. Subsets of a poset may be totally ordered; this is,
for example, the case for each sequence of events that apply to a single parcel (and all its predecessors). The elements in a poset can
be linearly ordered, but there is more than one possible solution (topological sorting). A special case of “a poset” is a lattice. The
intersection of the successors of two points have a single earlier point. The same concept can be applied to a family of partitions of
the plane, where the partitions of different levels of subdivisions form a lattice (ordered by a “refinement” relation).” from [8]

5 Movement along a path is one of the facilities needed in GIS, for applications related to emergency planing, robotics,
and marine GIS.
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Figure 1. A line Voronoi diagram, from [33]

Therefore, in order to represent the different kinds of cartographic objects, we need to use
the Voronoi diagram for sets of points and line segments instead of just the ordinary point
Voronoi diagram.

Gold [11], [18] developed a dynamic spatio-temporal data structure based on the Voronoi
diagram for a set of points and line segments (also known as a line Voronoi diagram, see
Figure 1). His data structure is dynamic: objects may be added to and removed from the data
structure. This data structure is also kinematic: objects are created by splitting the nearest
point into two and then moving the newly created object to its desired location, and deleted
by moving it to the nearest point location and merging it with the nearest point. In Section 3.1,
we present the properties of this data structure: the dynamic spatio-temporal Voronoi data
structure [33]. In Section 3.2, we develop a formalism for specifying the operations upon this
data structure and their changes in topology [33], [36],[35].

The Voronoi diagram for a set of map objects (points and line segments) is the tessellation of
space where each map object is assigned an influence zone (or Voronoi region), that is the set
of points closer to that object than to any other object (see [39] and Figure 1).

The algorithm used to construct the Voronoi vertices has been described in [4]. The boundaries
between the regions of this tessellation form a net (the Voronoi diagram), whose dual graph
(the Delaunay quasi-triangulation or Delaunay graph) stores the spatial adjacency (topology)
relationships among objects. Within such a dynamic Voronoi spatial data structure, as
developed by Gold [12], map objects (points and/or line segments) are stored as nodes of
the dual spatial adjacency (topology) graph: the Delaunay triangulation. The underlying data
structure used is the Quad-Edge data structure [19].

The Quad-Edge data structure was used for computing the line Voronoi diagram [17], which is
the basis of the dynamic Voronoi data structure for points and line segments. The Quad-Edge
data structure was introduced by Guibas and Stolfi [19] as a primitive topological structure for
the representation of any subdivision on a two-dimensional manifold. The Quad-Edge data
structure is the implementation of an edge algebra [19], which is the mathematical structure
that defines the topology of any pair of dual subdivisions on a two-dimensional manifold. In
the context of the application of the Quad-Edge data structure to the computation of Voronoi
diagrams, both a primal planar graph (the Voronoi diagram) and its dual graph (the Delaunay
triangulation) are stored in the Quad-Edge data structure - see [19].
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Figure 2. Left: a simple Voronoi diagram and its corresponding Quad-Edge; right: the PAN graph of the
Quad-Edge data structure on the left

Figure 3. Left: a Voronoi diagram; right: the corresponding Quad-Edge data structure

The PAN graph [10] of the Quad-Edge data structure gives a representation more suitable
within a GIS context (see Figure 2). The Quad-Edge data structure (see Figure 3) represents
a graph and its geometric dual. In the context of the application of the Quad-Edge data
structure to the computation of Voronoi diagrams, both a primal planar graph (the Voronoi
diagram) and its dual graph (the Delaunay quasi-triangulation) are stored in the Quad-Edge
data structure.

The definition of spatial adjacency relationships within the Voronoi model is the adjacency of
the Voronoi regions of two objects. In such a case, this spatial adjacency relationship is stored
in the dual representation of the Voronoi diagram: the Delaunay quasi-triangulation.

The main characteristic of the topology6 within the Voronoi spatial data model which
distinguishes it from other models such as the vector model, is that it does not need any
other computation than the incremental construction of the Voronoi data structure. Topology
in the Voronoi spatial data model is given by the fact that two objects have adjacent Voronoi
regions, which is stored in the dual representation of the data structure.

The dynamic Voronoi spatial data model is based on an event-condition-action paradigm
[16], which seems to provide many advantages over traditional GIS data models. The main

6 Topology is the branch of mathematics, that deals with the properties of points of some space that are invariant under
some continuous transformations. Topological relationships are spatial adjacency relationships.
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Figure 4. The topological changes due to the Split and Merge operations

advantage of the dynamic Voronoi data structure is its dynamic, incremental and explicit
topology, which allows one to automatically keep track of each event and change of map
state [16].

The changes in this data structure are therefore the changes in the spatial adjacency
relationships, that is to say the changes in the Delaunay triangulation [39]. Within this data
structure, the user’s commands are changing the map incrementally and locally, and the map
objects and their spatial adjacency relationships are all visualized at any point in time [2].

Furthermore, this approach allows real-time dynamic maintenance of the spatial data
structure, as well as dynamic sequential processing of events [16].

3.1. The atomic actions on the dynamic Voronoi data structure

These map state changes are produced by map commands [12], that are composed of atomic
actions. Each atomic action in the map command executes the geometric algorithm for
addition, deletion or change of map objects and corresponding Voronoi cells.

The atomic actions are:

• the Split action inserts a new point into the structure by splitting the nearest point from the
pointed location into two points (see Figure 4);

• the Merge action deletes the selected point by merging it with its nearest neighbour (see
Figure 4);

• the Switch action is performed when a point moves and a topological event occurs (i.e. the
moving point enters or exits a circle circumscribed to a Delaunay triangle, see Figure 7),

switching7 the common boundary of two adjacent triangles (see Figure 5). On Figure 7 we
can see the topological event caused by the ”Switch” atomic operation.

• the Link action adds a line segment8 between the points obtained after a Split action (see
Figure 6). A Link action must occur after a Split action, and adds a line segment between
the point selected for splitting and the newly created point.

7 The Switch action will be used in the construction of the Moveaction. The Move (topological event) action moves the
selected point from its current position to a new position or until the next topological event.

8 A line segment is composed of two half-line segments, whose Voronoi regions are on each side of the line segment,
having the line segment as a common boundary (see Figure 6).

43Map Updates in a Dynamic Voronoi Data Structure
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Figure 5. The topological changes due to the Switch operation

Figure 6. The topological changes due to the Link and Unlink operations

Figure 7. The topological event caused by a “swap” atomic operation

• the Unlink action removes the selected line segment. An Unlink action must occur before
a Merge action, and removes the line segment between the selected point and its nearest
object.

Figure 6 shows the succession of these atomic actions. These actions compose the set of atomic
actions of the dynamic spatial Voronoi data structure [32].

3.2. Topological changes in the Voronoi data structure induced by the atomic
actions

The map changes produced by the atomic actions on this data structure are the changes in
the spatial adjacency relationships among spatial objects. The spatial adjacency relationships
are defined as follows: two objects are Voronoi neighbours if, and only if, their Voronoi
regions have one portion of the Voronoi diagram (a Voronoi edge) in common (see Figure

44 Application of Geographic Information Systems
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Atomic Operation Symbol
Newly created
Voronoi regions

Inactivated Voronoi
regions

Split S 1 0
Merge M 0 1

Switch N 0 0

Link L 2 0

Unlink U 0 2

Table 1. The atomic actions and their associated changes in topology expressed in the numbers of newly
created and inactivated Voronoi regions

3). Therefore, the only map state changes of the dynamic Voronoi data structure produced
by events are the changes in the Delaunay triangulation/Voronoi diagram preserved in
the Quad-Edge structure. These events are ruled by the Delaunay triangulation empty
circumcircle criterion (see Figure 7).

When a point comes inside a circumcircle or exits from a circumcircle - a “topological event”
occurs - the boundary between the two triangles inscribed in the circumcircle “switches” [44].

Within the dynamic Voronoi spatio-temporal data model, all the operations are local and
“kinematic”: the addition of a new point is performed by splitting the nearest point into two
and moving the newly created point to its destination; and the deletion of an existing point is
performed by moving it to its nearest point and merging them. It is easy to see that the two
actions described previously are mutually reversible: the reverse of a split being a merge and
the reverse of a merge being a split (see Gold [12]). A Split action takes the Voronoi cell of a
“parent” point and splits it into two, generating a “child” point that may then be moved to
the desired destination. A Merge action reverses this process, combining two adjacent cells
into one.

Each atomic action produces different changes in spatial topology. The possible changes are:

• the triangle switches (topological events) changing the corresponding Voronoi edges (see
Figure 7),

• the creation of a new map object (point or line) and the corresponding appearance of its
Voronoi region,

• the inactivation of a map object and the corresponding disappearance of its Voronoi region.
Objects and spatial adjacency relationships are not removed, but inactivated, in order to be
able to record all the history information.

The atomic actions of the dynamic spatio-temporal Voronoi data structure, their reverse
actions, and their corresponding changes in topology are described in Tables 1 and 2. We
also introduce in Tables 1 and 2 the symbols for each atomic action (N, S, M, L and U) that will
be used latter for specifications of complex map operations. The topological changes for each
atomic action (see Table 2) in the map are represented by the numbers of newly created and
inactivated spatial adjacency links (i.e. Voronoi edges or Quad-Edges). Each atomic action is
uniquely characterized by the numbers of new Quad-Edge (or Voronoi) edges and inactivated
Quad-Edge (or Voronoi) edges (see Table 2). This means that from changes in topology we
can determine which atomic action was applied, and vice versa. In other words, the actions
on the data structure have a deterministic behaviour. More precisely, we can say that the set
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Atomic Operation Symbol New Edges Inactivated Edges

Split S 6
3

Merge M 3
6

Switch N 1
1

Link L 11
5

Unlink U 5
11

Table 2. The atomic actions and their associated changes in topology

of atomic actions is naturally isomorphic to the set of the number of new edges as well as to
the set of the number of inactivated edges.

3.3. The map construction commands

The atomic actions are the basis upon which map commands have been built. All the map
construction commands [12] of this dynamic Voronoi data structure are complex operations
composed of atomic actions (illustrated in Figures 5, 4 and 6). The composition of atomic
actions into map commands is provided by syntactic rules. The meaning of the word “syntax”
is based on the theory of formal languages and grammars [22]. In the theory of formal
languages, the semantics of the basic operations that can be applied on the set of objects is
described by a grammar. A grammar provides a set of rules, known as production rules,
specifying how the sequence of atomic actions will be applied to the elemental map object
(currently a point or a line segment).

Rewriting is a useful technique for defining complex objects by successively replacing parts
of elemental map objects using a set of rewrite rules or production rules [42]. Given a set of
productions we can generate an infinite number of map objects [1]. In the Voronoi spatial
data system there is more than one rule we can apply, and the user is given the freedom
of selecting the production rule appropriate to the map update needed. Rewriting context
is extended from topological context to include geometrical (spatial) context9 (position).
Therefore rewriting is done sequentially at the specific locations selected by the user or given
by coordinates. Thus, the update of the Voronoi data structure given by map commands can
be interpreted as the execution of production rules which constitute a map grammar [42].
Graph-grammars may be used as a natural and well-established syntax-definition formalism
[43] for languages of spatial relationships graphs. The map grammar shows the hierarchical
presentation of the production rules and spatial objects. For example, the move command is
a part of any other production rule described as a map command.

The map construction commands are illustrated in Figure 8. On the left side of Figure 8, we
can see the map objects on which the map command will be applied, and on the right side,
the map objects that have been rewritten. In the graphical illustration of map commands, the
topological part of the model is left out for better understanding of the general principle, and

9 In context sensitive systems the selection of the production rule is based on the context of the predecessor. A context
sensitive system is needed to model information exchange between neighboring elements [47].
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Figure 8. The map commands (S is the starting symbol in the production rule

also the line-line collisions and their effects are not shown. The detailed description together
with the graphical illustrations will be presented in Section 4.

The map commands (see Figure 8) are composed of atomic operations, and the exact
decomposition of map commands into sequences of atomic actions is given in Table 3. The
atomic operations are denoted by the symbols (N, S, M, L and U) from Table 2. For example,
the map command “Move a Point” corresponds to the sequence of movements of the point
from its initial position to its destination through all the intersections of its trajectory with
circumcircles, and the corresponding triangle switches (“N”) in the Voronoi data structure.

The map command “Move a Point” is possible in this Voronoi data structure because the
Voronoi data structure is kinematic: one point may move at a time, and this point is called the
“moving point” [14]. In fact, all the operations on this kinematic Voronoi data structure use this
concept of the moving point. For example, when a point is to be created at some location, the
nearest point from that location is split into two (S term in the decomposition of “Add a Point”
operation SNt), and then the newly created point is moved to its final destination (Nt term
in the decomposition of “Add a Point” operation SNt). In fact, the triangle switch operation
incorporates the movement of the moving point to the intersection of the trajectory of the
moving point with the circumcircle that induced the triangle switch. In Table 3, the exponents
denote how many times the operation is executed repeatedly, e.g. Nt denotes N executed t
times, where t denotes the number of topological events. Whenever more than one connected
sequence of topological events is executed in a map command, such as in the “Add a Line”
command (SNt1 SLNt2 (SLNt2i+1 MSLNt2i+2)), the total number of topological events is broken
down into the number of topological events in the first connected sequence (Nt1 ), the number

47Map Updates in a Dynamic Voronoi Data Structure
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Map construction
command

Decomposition (the terms in parentheses appear at each line-line
collision, i = collision index, i ∈ {1, ..., c} , c = number of
collisions; t, tx denote numbers of topological events

Move a Point Nt

Add a Point SNt

Delete a Point Nt M

Add a Line SNt1 SLNt2
(

SLNt2i+1 MSLNt2i+2
)

Delete a Line
(

Nt2i+2UMSNt2i+1UM
)

Nt2 UMNt1 M

Join 2 Points SLNt1
(

SLNt2i MSLNt2i+1
)

M

Unjoin 2 Points
(

Nt2i+1UMSNt2i UM
)

Nt1 UM

Join Pt & Line SLNt1
(

SLNt2i+1 MSLNt2i+2
)

SLNt2 M

Unjoin Pt & Line SNt2 UM
(

Nt2i+2UMSNt2i+1UM
)

Nt1 UM

Join 2 Lines SLNt1 SLNt2
(

SLNt2i+2 MSLNt2i+3
)

SLNt3 M

Unjoin 2 Lines SNt3 UM
(

Nt2i+3UMSNt2i+2UM
)

Nt2 UMNt1 UM

Table 3. The map commands and their decomposition into atomic actions

of topological events in the second connected sequence (Nt2 ), and so on. The parameter i
denotes the number of times the line segment being added has already intersected existing
line segments. This type of intersection with an existing line segment is called a collision, and
i is called the collision index. The terms in parentheses are repeated for each intersection with
an existing line (i.e. each collision).

We will now briefly explain the decomposition of each map command. We have already seen
the description of “Move a Point” and “Add a Point” map commands. Map command “Delete a
Point” is exactly the reverse of “Add a Point” map command: the point to be deleted is moved
to the location of the nearest point (Nt), and then they are merged with this nearest point (M).

The remaining map commands involve the addition or removal of one or more new line
segments. For all these map commands, the decomposition includes a fixed sequence of
atomic actions that is executed only once (the sequence outside the parenthesis), and a
sequence that is executed at each collision (replicating sequence).

In the case of “Add a Line” and all the join map commands, the replicating sequence has always
the same pattern in terms of atomic operations (

(

SLNt2i+1 MSLNt2i+2
)

, although the actual
indices may vary). This corresponds to the splitting of the existing line (SLNt2i+1), the merging
of the newly created point (by the S atomic action in this last sequence) with the extremity of
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the line segment being added (M), and the continuation of the new line segment after collision
(SLNt2i+2).

In the case of “Delete a Line” and all the unjoin map commands, the replicating sequence has
always the same pattern in terms of atomic operations (

(

Nt2i+2UMSNt2i+1UM
)

, although the
actual indices may vary). This is exactly the reverse of the previous replicating sequence.

Now, we will explain the fixed sequence for all these map commands. In order to “Add a
Line”, the nearest point to the starting extremity location has to be split into two (S), then it
has to be moved to the starting extremity location (Nt1). Then, the ending extremity has to be
created by splitting the starting extremity into two (S). At this point the two extremities must
be linked (L) in order to form a line segment. Finally, the ending extremity has to be moved
(Nt2 ) to its expected location. The sequence for “Delete a Line” is exactly the reverse of the
preceding sequence.

In order to join two points with the “Join two points” map command, the first point must
be split into two (S) in order to create the ending extremity of the line segment that starts
at the first point. Then, these two points must be linked (L) in order to form a line segment.
Then, the ending extremity must be moved (Nt1) to the location of the second point (including
eventually the replicating sequence in case of collisions). Finally, the ending extremity must
be merged with the second point (M).

The sequence for the “Unjoin two points” map command is exactly the reverse of the sequence
for “Join two points” map command. The sequences of the remaining map commands follow
immediately from the sequence of the “Join two points” map command. Indeed, the other join
map commands fixed sequence involve several sequences corresponding to the same atomic
actions as the SLNt1 sequence already encountered in the fixed sequence of “Join two points”
map command. The unjoin map commands are the exact reverse of their join counterpart.

3.4. Reversibility of the map commands in the dynamic spatio-temporal Voronoi
data structure

For each map command, the reverse map command is composed of reverse atomic actions
in exactly the reverse order [34]. Due to the local scope of its spatio-temporal topology, all
the atomic actions of the dynamic Voronoi spatio-temporal model are reversible. Indeed, each
atomic action has its reverse atomic action shown in the Table 4. The consequence of the
property of reversibility of the atomic actions inside the Voronoi dynamic data structure is that
a sequence of atomic actions applied in a map construction command can be reconstructed
from the predecessor and successor map states. This proves in another way that the atomic
actions are reversible: the input can be deduced from the output; or, in other words,
computation happens without any loss of information [9].

The resulting complex operations (map commands) are reversible (see Figure 8 and Table 5),
as long as their decomposition into atomic actions is exactly known (including the numbers
of topological events and the number of line-line collisions).

The reversibility of the addition and deletion of intersecting line segments has been studied
in [3]. This strictly showed that in order to perform backwards visualization through reverse
execution, we need to access the sequences of atomic actions stored in a log file. This can
become cumbersome due to the potentially large number of line-line collisions and of their
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Atomic action Reverse atomic action

Split Merge

Switch Switch is self-reversible

Link Unlink

Table 4. The reversibility of the atomic actions

Map construction command Reverse map construction command

Move a Point Self-reversible

Add a Point Delete a Point

Add a Line Delete a Line

Join 2 Points Unjoin 2 Points

Join Pt & Line Unjoin Pt & Line

Join 2 Lines Unjoin 2 Lines

Table 5. The reversibility of the map commands

associated replicating sequence (see terms in parenthesis in Table 3 and [32]). Moreover, if
we want to perform spatio-temporal queries or spatio-temporal analysis, we need to access
the previous map states. However, the undoing and redoing of atomic actions consume
large amounts of time and storage and are not spatially localized. This is the consequence
of the total ordering of the map construction events, that does not allow spatially local
redoing or undoing map commands. Therefore, in order to avoid these problems, we
keep a spatio-temporal structure which captures the execution traces of map commands
in the dynamic Voronoi data structure [32]. This spatio-temporal structure, along with
the reversibility property of the atomic actions, guarantees exact reverse execution of map
construction.

3.5. Logging the transactions

The incremental updates (given by the user) are recorded in the log file. Transactions are
logged at two levels: the log file that stores map command transactions, and the history of the
map (the hierarchical Voronoi data structure) that is logging the changes in topology as newly
created, deleted and modified Voronoi regions. The operations recorded in a log file have a
direct translation into the spatio-temporal topology as the hierarchical Voronoi data structure.
Temporal (parent-child, or modification) links between two update levels correspond to the
applied (executed) map commands (see Figure 9).

In the next subsection we will briefly introduce a theoretical approach needed for the
execution of map commands or transaction processing.
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3.6. Trace systems

Execution traces [28] give us a formalism to represent map history at a more abstract level.
The theory of traces established by Mazurkiewicz [28] deals with the transaction processing in
concurrent systems. Trace systems are special in that they enable both very detailed modelling
and also offer opportunities for abstraction. In order to specify a trace system one has to
specify an underlying spatial language and a dependency relation [28].

The trace system that represents the history of the map is maintained as a hierarchy of
map objects and their ancestral dependency relationships [27]. Hence for the corresponding
topological changes in the Quad-Edge data structure, a dependency relationship occurs when
one atomic action uses the results of another: e.g. a Link action always follows a Split action,
and it uses both the point that has been split and the point from which it occurred [32].

4. Map updates and map history

The user incrementally constructs or updates a map by giving map commands. A typical
example could be updating a forest map to show the previous year’s clear-cuts. Each map
command is a sequence of atomic actions which will be executed on the Voronoi diagram,
producing changes in spatial topology. All the state changes produced by map commands
(induced by past map events) are permanently stored in the spatio-temporal data structure as
levels of map updates [32].

The left side of Figure 9 shows the effects of a map update “Add a Point P6” on a small
portion of a map consisting of several line segments and points, illustrating the growth of
the Voronoi diagram and of the Delaunay triangulation. The right side of Figure 9 shows
the corresponding history structure for the map update shown in the left side, as described
in detail below. The parent-child links (represented in Figure 9 by thick solid straight lines)
allow us to know from which point a point has been split, or with which point a point has
been merged. The connectivity links (represented in Figure 9 by solid curved lines) allow us
to know if a given point has been linked to another point, and if it is the case, with which point,
and through which half-line segments. The parent-child links associated with the creation of
the two endpoints allow us to know the direction in which the digitizing of the line has been
done between the two endpoints. The modification links (represented in Figure 9 by light
solid straight lines) allow us to know if the Voronoi cell of a given object has been changed
during a given map update (map command). The spatial adjacency links (corresponding to
edges in the Delaunay quasi-triangulation) are drawn in dashed lines on both sides of Figure
9.

The map construction commands have a direct translation into a spatio-temporal topology,
as the hierarchy of map objects and their corresponding Voronoi cells that have been added,
moved, or inactivated over time.

Thus, the data structure encodes the history of map construction at two different levels: as
spatial topology (or neighbouring relations), and as temporal topology (temporal adjacency
relationships; see [32] also shown on the Figure 9 as the vertical links). Temporal topology is
maintained through temporal or history links, which are the parent-child relationship links
for the objects that have been split or merged, and modification links for the objects whose
Voronoi regions have been changed. In Figure 9 the execution of the map command “Add
a Point” is shown. We can see the addition of the Point P6 to the Voronoi diagram. The
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Figure 9. A sequence of map construction commands and the history of the map

Predecessor and the Successor map state are shown (as two update levels) together with the
changes in the spatio-temporal topology. Each application of map commands is time-stamped
and represented as an update level in our spatio-temporal structure. The hierarchical
Quad-Edge data structure stores all the states of the Quad-Edge data structure (spatial
topology states) and the connections between the update levels (the temporal topology in
the Quad-Edge data structure). These connections between update levels correspond to the
temporal topology, while the relationships in an update level correspond to spatial topology.
These connections between update levels are the vertical component of the hierarchical
Quad-Edge data structure.

5. Hierarchical Voronoi data structure

Ancestral dependency relationships are defined as timed division hierarchies of elemental
map objects and their corresponding Voronoi regions, which are ordered by the dependency
of one atomic action upon another.

In event-driven systems, such dependency relationships are isomorphic to event structures
[48]. Event structures may be seen as a generalization of such structures [48]. We can say that
the hierarchical Voronoi data structure is equivalent to an event structure. In event-driven
systems the ordering of event occurrences is partial: there is no means to decide which of
several independent events occurs first [28]. The only way to establish objective ordering of
event occurrences is to find their mutual causal dependencies and to agree that a cause must
always occur earlier than its effect [28]. Therefore, the dependency (or independency) of event
occurrences should be a basis for the behaviour description of the event driven system [28].
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Dependency graphs are a way of visualizing complex relationships [26]. In the following
example, we can see update levels corresponding to the map updates shown in Figure 9, and
their dependency links. Real-time sequencing of user-invoked events produces a temporal
ordering of spatial objects inside the dynamic Voronoi data structure. Inside each map update
level, the numerical order of the IDs of the objects corresponds to the temporal order of
the commands that generated them. The temporal ordering in the hierarchical Voronoi data
structure is maintained through history links (see Figure 9: parent-child links corresponding
to the origin/destination of a Split/Merge or Link/Unlink action, and modification links
representing a change in the Voronoi region of an object).

This temporal order has direct implications for the reversibility of the Voronoi data structure.
Inside each map update level, it is possible to perform reverse execution without accessing
a log file following the correspondence between the temporal ordering (maintained through
the temporal topology links in Figure 9 ) of the atomic actions and the numerical ordering of
the objects IDs (resulted from the decomposition sequences of Table 3).

Thus, the spatio-temporal model combines events and corresponding state changes
in topology. Event structures together with “semantics of change” are essential for
spatio-temporal reasoning and answering spatio-temporal queries.

This formal model for spatio-temporal change representation is used to develop
the hierarchical Voronoi data structure (hierarchy of map objects ordered by their
ancestral dependency relationships) suited for imprecise temporal data representation and
spatio-temporal reasoning in the ordered event structures10.

6. Spatio-temporal change representation

The lack of theory and formalisms for spatio-temporal change representation is a serious
problem in research in spatio-temporal GIS [21]. One of the problems is related to the lack
of the incremental map updates in current GISs [6]. In the Voronoi spatial data structures the
clear specification of map updates (presented in the previous chapter) leads to a method for
spatio-temporal change representation.

The formalism for representation of spatio-temporal changes in a dynamic Voronoi data
structure and the method for map updates is based on the topological (or structural) properties
of the line Voronoi diagram (see [16] and Figure 1). The map updates produce changes in
spatio-temporal topology that are different for each map command and can be expressed
using the theory of numbers as the structural topology changes.

The corresponding changes in topology are described in Tables 6 and 7. In Table 6, the
corresponding “state changes” for each map command are represented as the number of
newly created and inactivated Voronoi cells. We can observe that except for the “Move a
Point” map command, the formulas for the numbers of inactivated Voronoi regions and newly
created Voronoi regions generate couples of numbers, which pertain to different couples
of residual classes modulo the prime number 5. The corresponding couple of numbers of

10 There are significant implications of the temporal ordering of map construction events in the Voronoi data structure.
The model has an implicit time ordering of events, visible through changes in topology. The dynamic Voronoi spatial
data structure can support temporal data without precise temporal information. The changes in the spatio-temporal
data structure capture the temporal and spatial semantics.
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Figure 10. Predecessor and successor map states for a “Move a point” map command

inactivated Voronoi regions and newly created ones for the “Move a point” map command is
(0, 0), which does not pertain to any other corresponding couple of numbers for other map
commands. Therefore, we have an isomorphism between the set of map commands and the
set of couples of numbers of inactivated Voronoi regions and of newly created ones. In the
following figures the predecessor and successor map topology states for each map command
are presented, together with the spatio-temporal changes that occurred, the appearance or
disappearance of the Voronoi regions, as well as the modification of the neighbouring Voronoi
cells. The newly inserted regions are displayed in dark gray, and the modified Voronoi regions
in light gray. In Figure 10, the result of the map command “Move a Point” is shown. Figure
11 shows the effect of a map command “Add a Point”. Figure 12 shows the addition of a line
segment to the Voronoi diagram, by an “Add a Line” map command. The last three sets of
map commands show all possible combinations of the joining of different objects, points and
line segments. Firstly, we can see the result of a map command “Join two Points” in Figure 13.
Then, Figure 14 shows the effects of a map command “Join Point and Line”. Finally, Figure 15
shows the result of a map command “Join two Lines”.

Moreover, this isomorphism gives rise to a discrimination of map commands, that allows one
to determine the number of line-line collisions that occurred in a given map update. The
discrimination just described allows us to determine which map commands were applied just
by knowing the predecessor and successor map topology states expressed in the number of
newly created Voronoi regions and of inactivated ones (see Table 6). In formal terms, the
connections between update levels are formally described by the surjective homomorphism
from the Cartesian product (D) of the set of the numbers of new Voronoi regions by the set of
the numbers of inactivated Voronoi regions, to the set of map commands.

In Table 7, the corresponding “state changes” for each map command are represented as the
difference between the predecessor state and the successor state, expressed as the difference
between the numbers of inactivated and newly created Voronoi edges. These state changes
take into account the number c of intersections (between the newly created line segment and
any existing objects) that occurred in the execution of the map command. When a moving
point of a newly added line segment enters the last circumcircle of the line segment - this
situation is named “the insertion context” after [31] and [30] the mutual splitting of the line
segments occurs. The mutual splitting of line segments operation is visible as a replicating
sequence in Table 3. Terms in parentheses are repeated for each line intersection (see Figure 16)
detected in drawing the new line specified in the map command. When the first intersection
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Map construction command
Inactivated Voronoi
regions

Newly created Voronoi
regions

c = number of line intersections

Move a Point 0 0

Add a Point 0 1

Delete a Point 1 0

Add a Line 0 4 + 5c

Delete a Line 4 + 5c 0

Join 2 Points 0 2 + 5c

Unjoin 2 Points 2 + 5c 0

Join Point & Line 0 5 + 5c

Unjoin Point & Line 5 + 5c 0

Join 2 Lines 0 8 + 5c

Unjoin 2 Lines 8 + 5c 0

Table 6. The changes induced by map commands in Voronoi regions

Figure 11. Predecessor and successor map states for an “Add a point” map command
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Figure 12. Predecessor and successor map states for an “Add a line” map command

Figure 13. Predecessor and successor map states for a “Join two points” map command

Figure 14. Predecessor and successor map states for a “Join point and line” map command
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Figure 15. Predecessor and successor map states for “Join two lines” map command

(also called a collision) happens, the collision index is 1. Each time an intersection happens, the
collision index is incremented. The intersections are computed incrementally, following the
trajectory of the “moving point”. In the “Add a Line” command, when the first intersection

happens the sequence (SLNt2i+1
MSLNt2i+2

)=(SLNt3
MSLNt4

) is added. Then, at the next

intersection, the sequence (SLNt5
MSLNt6

) is added.

The language theoretic aspects of replicating sequences can be found in [31]. Longer and
longer sequences [30] are produced by new map updates, only rearranging and replicating
already existing information. Here, we can see that replication results in a growth of the
sequences of the atomic actions. The sequence length is growing linearly. The replication
mode is deterministic, therefore we have a growth function associated with a replicating
system.

The map commands can be recognized by the changes between the predecessor and successor
map topology states, expressed by the difference between the numbers of newly created
Voronoi edges and of inactivated Voronoi edges (see Table 7), and vice versa. Indeed, the
numbers generated by the formulas of differences (in the third column) pertain to sets (in
the fourth column) which are mutually exclusive. Moreover, this discrimination allows us to
determine the number of line-line collisions, and then the number of topological events that
occurred in a map update (see example treated below). Mathematically speaking, there is an
isomorphism between the set of map commands and the set of sets (in the fourth column) of
possible corresponding changes between the predecessor and successor map topology states.

In the following example illustrated on the Figure 16, we will see the changes in topology
induced by the map update. On the left Figure 16 the one line segment is shown and on the
right Figure 16 the execution of the new map command is displayed. We can clearly see that
the nine new Voronoi regions appeared in this map update level. From that result, we can
determine (from Table 6) the number of line-line collisions that occurred in the map update:
9 ≡ 4 mod (5) . This implies that the update was “Add a line” and therefore we get the final
result: 4 + 5c = 9 ⇒ c = 1. We can see that the difference in the numbers of newly created
and of inactivated Voronoi edges is 27. From this result (27 ≡ 12 (15) , 12+ 15c = 27 ⇒ c = 1),
we arrive (see Table 7) at the same conclusion: the map update corresponds to the addition of
a new line segment intersecting one existing line segment.

Knowing the numbers of new Voronoi edges and of inactivated Voronoi edges, we can
determine the exact number of topological events: t + 23 + 37 equals the number of new
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Map
construction
command

New Voronoi
Edges

Inactivated
Voronoi
Edges

Difference
New -
Inactiv.

Discrimination (set of the
numbers corresponding to
the difference New - Inac-

t = total number of topological events tivated Voronoi Edges)

Move a
Point

t t 0 {0}

Add a Point t + 6 t + 3 3 {3}

Delete a
Point

t + 3 t + 6 −3 {−3}

Add a Line t + 23 + 37c t + 11 + 22c 12 + 15c
{

z ∈ Z, z ≡ 12 mod 15
∧z ≥ 12

}

Delete a
Line

t + 11 + 22c t + 23 + 37c −12 − 15c
{

z ∈ Z, z ≡ 3 mod 15
∧z < −12

}

Join 2 Points t + 20 + 37c t + 14 + 22c 6 + 15c
{

z ∈ Z, z ≡ 6 mod 15
∧z ≥ 6

}

Unjoin 2
Points

t + 14 + 22c t + 20 + 37c −6 − 15c
{

z ∈ Z, z ≡ 9 mod 15
∧z < −6

}

Join Pt &
Line

t + 37 + 37c t + 22 + 22c 15 + 15c
{

z ∈ Z, z ≡ 0 mod 15
∧z ≥ 15

}

Unjoin Pt &
Line

t + 22 + 22c t + 37 + 37c −15 − 15c
{

z ∈ Z, z ≡ 0 mod 15
∧z < −15

}

Join 2 Lines t + 54 + 37c t + 30 + 22c 24 + 15c
{

z ∈ Z, z ≡ 9 mod 15
∧z ≥ 24

}

Unjoin 2
Lines

t + 30 + 22c t + 54 + 37c −24 − 15c
{

z ∈ Z, z ≡ 6 mod 15
∧z < −24

}

Table 7. The discrimination of map commands by means of their changes in topology, from [32]

Voronoi or Quad-Edge edges, (see Table 7). Therefore we know that the decomposition of the
map command in atomic actions has the following form: SNt1 SLNt2

(

SLNt3 MSLNt4
)

where
t1 + t2 + t3 + t4 is the known total number of topological events.
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Figure 16. Mutual splitting of line segments

6.1. Retroactive map updates

For some cartographic applications users need to be able to access and update not only the
current map, but also the past map states. In the case of retroactive map updates, all the map
commands that happened after the date of the beginning of the retroactive map update are
undone using reverse execution, returning to the corresponding starting state of the map.

Indeed, in the case of retroactive map updates, all the changes that occurred after the
beginning of the retroactive map update are undone, and then the retroactive map update
is performed, and the spatio-temporal data structure is updated. This is of particular interest
in the cadastre due to the fact that land marking and division operations are rarely inserted
in a cadastre information system at the same time as they are officially registered. In most
cases the update time ordering does not match the official time ordering [7]. Moreover, the
semantics of such operations (especially land marking) cannot be retrieved by comparing the
cadastre maps before and after they occurred. Often, the documents and/or the landmarks
disappear, making any operation much harder and more subjective. In this particular case of
land marking, in order to retrieve the semantics we need to be able to reconstruct the sequence
of operations that were performed together with their spatial adjacency relationships. In other
words, we need to retrieve their spatio-temporal topology. The parent-child links and the
modification links described above (see Figure 9) allow us to retrieve the temporal topology
links between these operations, while the spatial adjacency links allow us to retrieve the
spatial topology links between these operations.

Further benefits of the formal model for spatio-temporal change representation presented
in the previous chapter include retroactive map updates. Even though there are some other
methods, such as transaction logging, to keep track of the operations that have been applied,
these methods have several drawbacks in the case of retroactive map updates. For example,
for map updates in the past, an additional “audit file” needs to be maintained and updated
with the exact sequence of atomic actions, while in our approach the “semantics of change”
is simply maintained as the difference in the number of Voronoi edges between two update
levels.

The theoretical work on the formalization of map update operations and the hierarchical
Voronoi based spatio-temporal data structure has led to the three different methods for
retroactive map updates presented here:

• Recomputation for a portion of the hierarchical data structure with retroactive updates.
This method seems to be complex to implement, because it involves maintaining a large
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number of history links during the update operation. It could demand very complex
algorithms for structure maintenance during the updates as well, due to the necessity for
resolving potential spatio-temporal inconsistencies or conflicts11

• The second method for retroactive map updates is based on reversibility. The reversibility
of map commands gives us a unique tool for another method for retroactive map updates.
By exploiting reversibility the structure can be first undone until the moment in the past
where the retroactive update has to take a place, and then redone up to the present. Here
the efficiency of such retroactive update depends on how far in the past the user has to
make the changes. Therefore for updates that need to access deep in the past this approach
is not efficient enough. This gives rise to the third model for map updates that is based on
the recomputation from the “log file”.

• Within this kinematic, geometrical Voronoi structure [15], the map history is difficult to
update locally. Indeed, for many updates, it could be a complex and time consuming task,
because addition or removal of each point has to be recomputed up to the surface of the
map. Therefore, for complex updates, the sequence (log file) could be updated, and the
whole map with history recomputed! Therefore, the better solution is to rebuild the whole
structure. Complete rebuild is also needed in the case of multiple updates and retroactive
map updates from multiple sources.

The last method for retroactive map updates is the one that is most frequently applied in data
structures. It is based on rebuilding the data structure from the list of entries.

7. Conclusions

In this research, a new spatio-temporal model based on a dynamic Voronoi data structure for
points and line segments is presented. The approach is based on local changes in topology
induced by spatio-temporal map updates. These map updates are performed through map
construction commands that are composed of atomic actions on the dynamic Voronoi data
structure. Even though previous research [13] on the dynamic Voronoi data structure for
points and line segments describes the set of atomic actions and map commands used for
the construction of the map based on the Voronoi diagram, those atomic actions and map
commands were not formalized in a proper way. They were not deterministic and as a
consequence not reversible.

This research succeeded in the formalization of the operations needed for constructing a
Voronoi diagram for points and line segments, and of the corresponding topological changes.
These operations are formalized at the lowest level, as the basic algorithms for addition,
deletion and moving of spatial objects in the Quad-Edge data structure; defined as the atomic
actions. Furthermore the map commands that are composed of these atomic actions are
defined as well.

11 Spatio-temporal conflicts and inconsistencies caused by updates
One of the problems arising from spatio-temporal updates in the Voronoi data model is that if we are deleting, creating
or moving an object in the past, we are creating spatio-temporal inconsistencies in the present. This changed object
is now inconsistent with the part of the map history which was previously rolled back, and now needs to be rolled
forward to modify the present state accordingly.
The fact that the chronology of the events could be different after the change may produce spatio-temporal conflicts.
Deletion of an object in the past do not remove its activities - there are a lot of links and interactions with other objects
which have been recorded in the map history, and they should be resolved and recomputed up to the present state of
map history and the log file.
The same conflict arises with the creation of a new spatial object - changes will affect its neighbours.
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This research shows that the result of the formalization of the operations on the dynamic
Voronoi data structure is a spatial language or a map grammar that is deterministic and
reversible.

It was shown that the behaviour of the basic map operations is deterministic, and well defined
in terms of topology changes.

Furthermore, a formal model for spatio-temporal change representation has been defined,
where each map update is uniquely characterized by the number of newly created Voronoi
regions. The recognition of map commands from the corresponding changes in spatial
topology allows us to extend our data structure towards the hierarchical Voronoi data
structure (hierarchy of map objects ordered by their ancestral dependency relationships).
The hierarchical Voronoi data structure is well suited for spatio-temporal data representation
even in the case of imprecise temporal data, and spatio-temporal reasoning in ordered event
structures. The model has an implicit time ordering of events, visible through changes in
topology. The changes in the spatio-temporal data structure capture the temporal and spatial
semantics.

This research has shown that the hierarchical Voronoi data structure is equivalent to an event
structure. The temporal ordering of past map events as well as states in a hierarchical Voronoi
data structure provide a suitable model for the integration of Allen’s temporal algebra, that is
needed for reasoning about spatial objects and their temporal relationships [7]. Furthermore,
a spatio-temporal structure that combines events and past map states is essential to answer
queries about map changes over space and time.

This research has presented several applications of the hierarchical Voronoi data structure that
are difficult to implement within the traditional GIS. The formal model of spatio-temporal
change representation is currently applied to retroactive spatio-temporal map updates and
visualization of map evolution.

The benefits of this approach reside in the possibility of reverting to previous states in order to
visualize the evolution of the map or to perform spatio-temporal queries and analysis, as well
as in performing reverse execution of the map commands previously applied to the Voronoi
spatial data structure, to achieve retroactive map updates. The visualization of map changes
enables fast comprehension of the events and processes that occurred in space and time.
Visualization of map changes offers a powerful tool for spatio-temporal reasoning, which is
needed in many GIS applications.

The map grammar described here allows us to build the deterministic spatio-temporal
representations in which all the rules used in their construction are preserved. This is one of
the main contribution of this paper, where for the first time in GIS research, a map grammar
has been proposed as a method for handling map updates and building spatio-temporal
representations.
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