We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

5,700 Open access books available
140,000 International authors and editors
175M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

Consider a situation in which we have a number of sources emitting signals which are interfering with one another. Familiar situations in which this occurs are a crowded room with many people speaking at the same time, interfering electromagnetic waves from mobile phones or crosstalk from brain waves originating from different areas of the brain. In each of these situations the mixed signals are often incomprehensible and it is of interest to separate the individual signals. This is the goal of Blind Source Separation (BSS). A classic problem in BSS is the cocktail party problem. The objective is to sample a mixture of spoken voices, with a given number of microphones - the observations, and then separate each voice into a separate speaker channel - the sources. The BSS is unsupervised and thought of as a black box method. In this we encounter many problems, e.g. time delay between microphones, echo, amplitude difference, voice order in speaker and underdetermined mixture signal.

Herault and Jutten Herault, J. & Jutten, C. (1987) proposed that, in a artificial neural network like architecture the separation could be done by reducing redundancy between signals. This approach initially lead to what is known as independent component analysis today. The fundamental research involved only a handful of researchers up until 1995. It was not until then, when Bell and Sejnowski Bell & Sejnowski (1995) published a relatively simple approach to the problem named infomax, that many became aware of the potential of Independent component analysis (ICA). Since then a whole community has evolved around ICA, centralized around some large research groups and its own ongoing conference, International Conference on independent component analysis and blind signal separation.

ICA is used today in many different applications, e.g. medical signal analysis, sound separation, image processing, dimension reduction, coding and text analysis Azzerboni et al. (2004); Bingham et al. (2002); Cichocki & Amari (2002); De Martino et al. (2007); Enderle et al. (2005); James & Hesse (2005); Kolenda (2000); Kumagai & Utsugi (2004); Pu & Yang (2006); Zhang et al. (2007); Zhu et al. (2006).

ICA is one of the most widely used BSS techniques for revealing hidden factors that underlie sets of random variables, measurements, or signals. ICA is essentially a method for extracting individual signals from mixtures. Its power resides in the physical assumptions that the different physical processes generate unrelated signals. The simple and generic nature of this assumption allows ICA to be successfully applied in diverse range of research fields. In ICA the general idea is to separate the signals, assuming that the original underlying source signals are mutually independently distributed. Due to the field’s relatively young
age, the distinction between BSS and ICA is not fully clear. When regarding ICA, the basic framework for most researchers has been to assume that the mixing is instantaneous and linear, as in infomax. ICA is often described as an extension to PCA, that uncorrelates the signals for higher order moments and produces a non-orthogonal basis. More complex models assume for example, noisy mixtures, Hansen (2000); Mackay (1996), nontrivial source distributions, Kab’an (2000); Sorenson (2002), convolutive mixtures Attias & Schreiner (1998); Lee (1997; 1998), time dependency, underdetermined sources Hyvarinen et al. (1999); Lewicki & Sejnowski (2000), mixture and classification of independent component Kolenda (2000); Lee et al. (1999). A general introduction and overview can be found in Hyvarinen et al. (2001).

1.1 ICA model

ICA is a statistical technique, perhaps the most widely used, for solving the blind source separation problem Hyvarinen et al. (2001); Stone (2004). In this section, we present the basic Independent Component Analysis model and show under which conditions its parameters can be estimated. The general model for ICA is that the sources are generated through a linear basis transformation, where additive noise can be present. Suppose we have N statistically independent signals, $s_i(t), i = 1, \ldots, N$. We assume that the sources themselves cannot be directly observed and that each signal, $s_i(t)$, is a realization of some fixed probability distribution at each time point t. Also, suppose we observe these signals using N sensors, then we obtain a set of N observation signals $x_i(t), i = 1, \ldots, N$ that are mixtures of the sources. A fundamental aspect of the mixing process is that the sensors must be spatially separated (e.g. microphones that are spatially distributed around a room) so that each sensor records a different mixture of the sources. With this spatial separation assumption in mind, we can model the mixing process with matrix multiplication as follows:

$$x(t) = As(t) \quad (1)$$

where A is an unknown matrix called the mixing matrix and $x(t)$, $s(t)$ are the two vectors representing the observed signals and source signals respectively. Incidentally, the justification for the description of this signal processing technique as blind is that we have no information on the mixing matrix, or even on the sources themselves.

The objective is to recover the original signals, $s_i(t)$, from only the observed vector $x_i(t)$. We obtain estimates for the sources by first obtaining the unmixing matrix W, where $W = A^{-1}$. This enables an estimate, $\hat{s}(t)$, of the independent sources to be obtained:

$$\hat{s}(t) = Wx(t) \quad (2)$$

The diagram in Figure 1 illustrates both the mixing and unmixing process involved in BSS. The independent sources are mixed by the matrix A (which is unknown in this case). We seek to obtain a vector y that approximates s by estimating the unmixing matrix W. If the estimate of the unmixing matrix is accurate, we obtain a good approximation of the sources.

The above described ICA model is the simple model since it ignores all noise components and any time delay in the recordings.
Introduction: Independent Component Analysis

Fig. 1. Blind source separation (BSS) block diagram. \(s(t) \) are the sources. \(x(t) \) are the recordings, \(\hat{s}(t) \) are the estimated sources \(A \) is mixing matrix and \(W \) is un-mixing matrix.

1.2 Independence

A key concept that constitutes the foundation of independent component analysis is statistical independence. To simplify the above discussion consider the case of two different random variables \(s_1 \) and \(s_2 \). The random variable \(s_1 \) is independent of \(s_2 \), if the information about the value of \(s_1 \) does not provide any information about the value of \(s_2 \), and vice versa. Here \(s_1 \) and \(s_2 \) could be random signals originating from two different physical processes that are not related to each other.

1.2.1 Independence definition

Mathematically, statistical independence is defined in terms of probability density of the signals. Consider the joint probability density function (pdf) of \(s_1 \) and \(s_2 \) be \(p(s_1, s_2) \). Let the marginal pdf of \(s_1 \) and \(s_2 \) be denoted by \(p_1(s_1) \) and \(p_2(s_2) \) respectively. \(s_1 \) and \(s_2 \) are said to be independent if and only if the joint pdf can be expressed as:

\[
p_{s_1,s_2}(s_1, s_2) = p_1(s_1)p_2(s_2) \tag{3}
\]

Similarly, independence could be defined by replacing the pdf by the respective cumulative distributive functions as:

\[
E\{p(s_1)p(s_2)\} = E\{g_1(s_1)\}E\{g_2(s_2)\} \tag{4}
\]

where \(E[.] \) is the expectation operator. In the following section we use the above properties to explain the relationship between uncorrelated and independence.

1.2.2 Uncorrelatedness and Independence

Two random variables \(s_1 \) and \(s_2 \) are said to be uncorrelated if their covariance \(C(s_1, s_2) \) is zero.

\[
C(s_1, s_2) = E\{(s_1 - m_{s_1})(s_2 - m_{s_2})\}
= E\{s_1s_2 - s_1m_{s_2} - s_2m_{s_1} + m_{s_1}m_{s_2}\}
= E\{s_1s_2\} - E\{s_1\}E\{s_2\}
= 0 \tag{5}
\]
where m_{s1} is the mean of the signal. Equation 4 and 5 are identical for independent variables taking $g_1(s_1) = s_1$. Hence independent variables are always uncorrelated. However the opposite is not always true. The above discussion proves that independence is stronger than uncorrelatedness and hence independence is used as the basic principle for ICA source estimation process. However uncorrelatedness is also important for computing the mixing matrix in ICA.

1.2.3 Non-Gaussianity and independence

According to central limit theorem the distribution of a sum of independent signals with arbitrary distributions tends toward a Gaussian distribution under certain conditions. The sum of two independent signals usually has a distribution that is closer to Gaussian than distribution of the two original signals. Thus a gaussian signal can be considered as a linear combination of many independent signals. This furthermore elucidate that separation of independent signals from their mixtures can be accomplished by making the linear signal transformation as non-Gaussian as possible.

Non-Gaussianity is an important and essential principle in ICA estimation. To use non-Gaussianity in ICA estimation, there needs to be quantitative measure of non-Gaussianity of a signal. Before using any measures of non-Gaussianity, the signals should be normalised. Some of the commonly used measures are kurtosis and entropy measures, which are explained next.

- Kurtosis

Kurtosis is the classical method of measuring Non-Gaussianity. When data is preprocessed to have unit variance, kurtosis is equal to the fourth moment of the data.

The Kurtosis of signal (s), denoted by $kurt(s)$, is defined by

$$kurt(s) = E\{s^4\} - 3(E\{s^4\})^2$$ (6)

This is a basic definition of kurtosis using higher order (fourth order) cumulant, this simplification is based on the assumption that the signal has zero mean. To simplify things, we can further assume that (s) has been normalised so that its variance is equal to one: $E\{s^2\} = 1$.

Hence equation 6 can be further simplified to

$$kurt(s) = E\{s^4\} - 3$$ (7)

Equation 7 illustrates that kurtosis is a normalised form of the fourth moment $E\{s^4\} = 1$. For Gaussian signal, $E\{s^4\} = 3(E\{s^4\})^2$ and hence its kurtosis is zero. For most non-Gaussian signals, the kurtosis is nonzero. Kurtosis can be both positive or negative. Random variables that have positive kurtosis are called as super Gaussian or platykurtotic, and those with negative kurtosis are called as sub Gaussian or leptokurtotic. Non-Gaussianity is measured using the absolute value of kurtosis or the square of kurtosis.

Kurtosis has been widely used as measure of Non-Gaussianity in ICA and related fields because of its computational and theoretical and simplicity. Theoretically, it has a linearity property such that

$$kurt(s_1 \pm s_2) = kurt(s_1) \pm kurt(s_2)$$ (8)
Introduction: Independent Component Analysis

and

\[kurt(a s_1) = a^4 kurt(s_1) \] (9)

where \(a \) is a constant. Computationally kurtosis can be calculated using the fourth moment of the sample data, by keeping the variance of the signal constant.

In an intuitive sense, kurtosis measured how "spikiness" of a distribution or the size of the tails. Kurtosis is extremely simple to calculate, however, it is very sensitive to outliers in the data set. It values may be based on only a few values in the tails which means that its statistical significance is poor. Kurtosis is not robust enough for ICA. Hence a better measure of non-Gaussianity than kurtosis is required.

- **Entropy**

Entropy is a measure of the uniformity of the distribution of a bounded set of values, such that a complete uniformity corresponds to maximum entropy. From the information theory concept, entropy is considered as the measure of randomness of a signal. Entropy \(H \) of discrete-valued signal \(S \) is defined as

\[H(S) = - \sum P(S = a_i) \log P(S = a_i) \] (10)

This definition of entropy can be generalised for a continuous-valued signal \(s \), called differential entropy, and is defined as

\[H(S) = - \int p(s) \log p(s) ds \] (11)

One fundamental result of information theory is that Gaussian signal has the largest entropy among the other signal distributions of unit variance. entropy will be small for signals that have distribution concerned on certain values or have pdf that is very "spiky". Hence, entropy can be used as a measure of non-Gaussianity.

In ICA estimation, it is often desired to have a measure of non-Gaussianity which is zero for Gaussian signal and nonzero for non-Gaussian signal for computational simplicity. Entropy is closely related to the code length of the random vector. A normalised version of entropy is given by a new measure called Negentropy \(J \) which is defined as

\[J(S) = H(s_{gauss}) - H(s) \] (12)

where \(s_{gauss} \) is the Gaussian signal of the same covariance matrix as \(s \). Equation 12 shows that Negentropy is always positive and is zero only if the signal is a pure gaussian signal. It is stable but difficult to calculate. Hence approximation must be used to estimate entropy values.

1.2.4 ICA assumptions

- **The sources being considered are statistically independent**

The first assumption is fundamental to ICA. As discussed in previous section, statistical independence is the key feature that enables estimation of the independent components \(\hat{s}_i(t) \) from the observations \(x_i(t) \).
The independent components have non-Gaussian distribution

The second assumption is necessary because of the close link between Gaussianity and independence. It is impossible to separate Gaussian sources using the ICA framework because the sum of two or more Gaussian random variables is itself Gaussian. That is, the sum of Gaussian sources is indistinguishable from a single Gaussian source in the ICA framework, and for this reason Gaussian sources are forbidden. This is not an overly restrictive assumption as in practice most sources of interest are non-Gaussian.

The mixing matrix is invertible

The third assumption is straightforward. If the mixing matrix is not invertible then clearly the unmixing matrix we seek to estimate does not even exist.

If these three assumptions are satisfied, then it is possible to estimate the independent components modulo some trivial ambiguities. It is clear that these assumptions are not particularly restrictive and as a result we need only very little information about the mixing process and about the sources themselves.

1.2.5 ICA ambiguity

There are two inherent ambiguities in the ICA framework. These are (i) magnitude and scaling ambiguity and (ii) permutation ambiguity.

Magnitude and scaling ambiguity

The true variance of the independent components cannot be determined. To explain, we can rewrite the mixing in equation 1 in the form

\[x = \alpha s \]
\[= \sum_{j=1}^{N} a_j s_j \]

(13)

where \(a_j \) denotes the \(j \)th column of the mixing matrix \(A \). Since both the coefficients \(a_j \) of the mixing matrix and the independent components \(s_j \) are unknown, we can transform Equation 13.

\[x = \sum_{j=1}^{N} (1/\alpha_j a_j)(\alpha_j s_j) \]

(14)

Fortunately, in most of the applications this ambiguity is insignificant. The natural solution for this is to use assumption that each source has unit variance: \(E\{s_j^2\} = 1 \). Furthermore, the signs of the of the sources cannot be determined too. This is generally not a serious problem because the sources can be multiplied by -1 without affecting the model and the estimation.

Permutation ambiguity

The order of the estimated independent components is unspecified. Formally, introducing a permutation matrix \(P \) and its inverse into the mixing process in Equation 1.

\[x = AP^{-1}Ps \]
\[= A's' \]

(15)
Here the elements of P_s are the original sources, except in a different order, and $A' = AP^{-1}$ is another unknown mixing matrix. Equation 15 is indistinguishable from Equation 1 within the ICA framework, demonstrating that the permutation ambiguity is inherent to Blind Source Separation. This ambiguity is to be expected in separating the sources we do not seek to impose any restrictions on the order of the separated signals. Thus all permutations of the sources are equally valid.

1.3 Preprocessing

Before examining specific ICA algorithms, it is instructive to discuss preprocessing steps that are generally carried out before ICA.

1.3.1 Centering

A simple preprocessing step that is commonly performed is to center the observation vector x by subtracting its mean vector $m = E\{x\}$. That is then we obtain the centered observation vector, x_c, as follows:

$$x_c = x - m \quad (16)$$

This step simplifies ICA algorithms by allowing us to assume a zero mean. Once the unmixing matrix has been estimated using the centered data, we can obtain the actual estimates of the independent components as follows:

$$\hat{s}(t) = A^{-1}(x_c + m) \quad (17)$$

From this point on, all observation vectors will be assumed centered. The mixing matrix, on the other hand, remains the same after this preprocessing, so we can always do this without affecting the estimation of the mixing matrix.

1.3.2 Whitening

Another step which is very useful in practice is to pre-whiten the observation vector x. Whitening involves linearly transforming the observation vector such that its components are uncorrelated and have unit variance [27]. Let x_w denote the whitened vector, then it satisfies the following equation:

$$E\{x_w x_w^T\} = I \quad (18)$$

where $E\{x_w x_w^T\}$ is the covariance matrix of x_w. Also, since the ICA framework is insensitive to the variances of the independent components, we can assume without loss of generality that the source vector, s, is white, i.e. $E\{ss^T\} = I$

A simple method to perform the whitening transformation is to use the eigenvalue decomposition (EVD) [27] of x. That is, we decompose the covariance matrix of x as follows:

$$E\{xx^T\} = VDV^T \quad (19)$$

where V is the matrix of eigenvectors of $E\{xx^T\}$, and D is the diagonal matrix of eigenvalues, i.e. $D = diag\{\lambda_1, \lambda_2, ..., \lambda_n\}$. The observation vector can be whitened by the following transformation:

$$x_w = VD^{-1/2}v^T x \quad (20)$$
where the matrix $D^{-1/2}$ is obtained by a simple component wise operation as $D^{-1/2} = \text{diag}\{\lambda_1^{-1/2}, \lambda_2^{-1/2}, ..., \lambda_n^{-1/2}\}$. Whitening transforms the mixing matrix into a new one, which is orthogonal

$$x_w = VD^{-1/2}V^T A = A_w s$$

hence,

$$E \{x_w x_w^T\} = A_w E \{s s^T\} A_w^T = \tilde{A}_w A_w^T = I$$

Whitening thus reduces the number of parameters to be estimated. Instead of having to estimate the n^2 elements of the original matrix A, we only need to estimate the new orthogonal mixing matrix, where an orthogonal matrix has $n(n-1)/2$ degrees of freedom. One can say that whitening solves half of the ICA problem. This is a very useful step as whitening is a simple and efficient process that significantly reduces the computational complexity of ICA. An illustration of the whitening process with simple ICA source separation process is explained in the following section.

1.4 Simple illustrations of ICA

To clarify the concepts discussed in the preceding sections two simple illustrations of ICA are presented here. The results presented below were obtained using the FastICA algorithm, but could equally well have been obtained from any of the numerous ICA algorithms that have been published in the literature (including the Bell and Sejnowsiki algorithm).

1.4.1 Separation of two signals

This section explains the simple ICA source separation process. In this illustration two independent signals, s_1 and s_2, are generated. These signals are shown in Figure 2. The independent components are then mixed according to equation 1 using an arbitrarily chosen mixing matrix A, where

Fig. 2. Independent sources s_1 and s_2
The resulting signals from this mixing are shown in Figure 3. Finally, the mixtures x_1 and x_2 are separated using ICA to obtain s_1 and s_2, shown in Figure 4. By comparing Figure 4 to Figure 2 it is clear that the independent components have been estimated accurately and that the independent components have been estimated without any knowledge of the components themselves or the mixing process.

This example also provides a clear illustration of the scaling and permutation ambiguities discussed previously. The amplitudes of the corresponding waveforms in Figures 2 and 4 are different. Thus the estimates of the independent components are some multiple of the independent components of Figure 3, and in the case of s_1, the scaling factor is negative. The permutation ambiguity is also demonstrated as the order of the independent components has been reversed between Figure 2 and Figure 4.
1.4.2 Illustration of statistical independence in ICA

The previous example was a simple illustration of how ICA is used; we start with mixtures of signals and use ICA to separate them. However, this gives no insight into the mechanics of ICA and the close link with statistical independence. We assume that the independent components can be modeled as realizations of some underlying statistical distribution at each time instant (e.g., a speech signal can be accurately modeled as having a Laplacian
The statistical basis of ICA is illustrated more clearly in this example. Consider two random signals which are mixed using the following mixing process:

\[
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} = \begin{pmatrix}
 1 & 2 \\
 1 & 1
\end{pmatrix} \begin{pmatrix}
 s_1 \\
 s_2
\end{pmatrix}
\]

Fig. 7. Joint density of whitened signals obtained from whitening the mixed sources

Fig. 8. ICA solution (Estimated sources)
Figure 5 shows the scatter-plot for original sources s_1 and s_2. Figure 6 shows the scatter-plot of the mixtures. The distribution along the axis x_1 and x_2 are now dependent and the form of the density is stretched according to the mixing matrix. From the Figure 6 it is clear that the two signals are not statistically independent because, for example, if $x_1 = -3$ or 3 then x_2 is totally determined. Whitening is an intermediate step before ICA is applied. The joint distribution that results from whitening the signals of Figure 6 is shown in Figure 7. By applying ICA, we seek to transform the data such that we obtain two independent components.

The joint distribution resulting from applying ICA to x_1 and x_2 is shown in Figure 7. This is clearly the joint distribution of two independent, uniformly distributed random variables. Independence can be intuitively confirmed as each random variable is unconstrained regardless of the value of the other random variable (this is not the case for x_1 and x_2. The uniformly distributed random variables in Figure 8 take values between 3 and -3, but due to the scaling ambiguity, we do not know the range of the original independent components. By comparing the whitened data of Figure 7 with Figure 8, we can see that, in this case, pre-whitening reduces ICA to finding an appropriate rotation to yield independence. This is a simplification as a rotation is an orthogonal transformation which requires only one parameter.

The two examples in this section are simple but they illustrate both how ICA is used and the statistical underpinnings of the process. The power of ICA is that an identical approach can be used to address problems of much greater complexity.

2. ICA for different conditions

One of the important conditions of ICA is that the number of sensors should be equal to the number of sources. Unfortunately, the real source separation problem does not always satisfy this constraint. This section focusses on ICA source separation problem under different conditions where the number of sources are not equal to the number of recordings.

2.1 Overcomplete ICA

Overcomplete ICA is one of the ICA source separation problem where the number of sources are greater than the number of sensors, i.e ($n > m$). The ideas used for overcomplete ICA originally stem from coding theory, where the task is to find a representation of some signals in a given set of generators which often are more numerous than the signals, hence the term overcomplete basis. Sometimes this representation is advantageous as it uses as few ‘basis’ elements as possible, referred to as sparse coding. Olshausen and Field (1995) first put these ideas into an information theoretic context by decomposing natural images into an overcomplete basis. Later, Harpur and Prager (1996) and, independently, Olshausen (1996) presented a connection between sparse coding and ICA in the square case. Lewicki and Sejnowski (2000) then were the first to apply these terms to overcomplete ICA, which was further studied and applied by Lee et al. (2000). De Lathauwer et al. (1999) provided an interesting algebraic approach to overcomplete ICA of three sources and two mixtures by solving a system of linear equations in the third and fourth-order cumulants, and Bofill and Zibulevsky (2000) treated a special case (‘delta-like’ source distributions) of source signals after Fourier transformation. Overcomplete ICA has major applications in bio signal processing,
due to the limited number of electrodes (recordings) compared to the number active muscles (sources) involved (in certain cases unlimited).

In overcomplete ICA, the number of sources exceed number of recordings. To analyse this, consider two recordings $x_1(t)$ and $x_2(t)$ from three independent sources $s_1(t)$, $s_2(t)$ and $s_3(t)$. The $x_i(t)$ are then weighted sums of the $s_j(t)$, where the coefficients depend on the distances between the sources and the sensors (refer Figure 9):

$$
x_1(t) = a_{11}s_1(t) + a_{12}s_2(t) + a_{13}s_3(t) \tag{23}
$$

$$
x_2(t) = a_{21}s_1(t) + a_{22}s_2(t) + a_{23}s_3(t)
$$

The a_{ij} are constant coefficients that give the mixing weights. The mixing process of these vectors can be represented in the matrix form as (refer Equation 1):

$$
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} =
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
 s_1 \\
 s_2 \\
 s_3
\end{pmatrix}
$$

The unmixing process and estimation of sources can be written as (refer Equation 2):

$$
\begin{pmatrix}
 s_1 \\
 s_2 \\
 s_3
\end{pmatrix} =
\begin{pmatrix}
 w_{11} & w_{12} \\
 w_{21} & w_{22} \\
 w_{31} & w_{32}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
$$

In this example matrix A of size 2×3 matrix and unmixing matrix W is of size 3×2. Hence in overcomplete ICA it always results in pseudoinverse. Hence computation of sources in overcomplete ICA requires some estimation processes.

2.2 Undercomplete ICA

The mixture of unknown sources is referred to as under-complete when the numbers of recordings m, more than the number of sources n. In some applications, it is desired to have more recordings than sources to achieve better separation performance. It is generally believed that with more recordings than the sources, it is always possible to get better estimate of the sources. This is not correct unless prior to separation using ICA, dimensional reduction
is conducted. This can be achieved by choosing the same number of principal recordings as the number of sources discarding the rest. To analyse this, consider three recordings $x_1(t)$, $x_2(t)$ and $x_3(t)$ from two independent sources $s_1(t)$ and $s_2(t)$. The $x_i(t)$ are then weighted sums of the $s_i(t)$, where the coefficients depend on the distances between the sources and the sensors (refer Figure 10):

$$
\begin{align*}
 x_1(t) &= a_{11} s_1(t) + a_{12} s_2(t) \\
 x_2(t) &= a_{21} s_1(t) + a_{22} s_2(t) \\
 x_3(t) &= a_{31} s_1(t) + a_{32} s_2(t)
\end{align*}
$$

The a_{ij} are constant coefficients that gives the mixing weights. The mixing process of these vectors can be represented in the matrix form as:

$$
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} =
\begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22} \\
 a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
 s_1 \\
 s_2
\end{pmatrix}
$$

The unmixing process using the standard ICA requires a dimensional reduction approach so that, if one of the recordings is reduced then the square mixing matrix is obtained, which can use any standard ICA for the source estimation. For instance one of the recordings say x_3 is redundant then the above mixing process can be written as:

$$
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} =
\begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
 s_1 \\
 s_2
\end{pmatrix}
$$

Hence unmixing process can use any standard ICA algorithm using the following:

$$
\begin{pmatrix}
 s_1 \\
 s_2
\end{pmatrix} =
\begin{pmatrix}
 \hat{w}_{11} & \hat{w}_{12} \\
 \hat{w}_{21} & \hat{w}_{22}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
$$

The above process illustrates that, prior to source signal separation using undercomplete ICA, it is important to reduce the dimensionality of the mixing matrix and identify the required and discard the redundant recordings. Principal Component Analysis (PCA) is one of the powerful dimensional reduction method used in signal processing applications, which is explained next.
3. Applications of ICA

The success of ICA in source separation has resulted in a number of practical applications. Some of these includes,

- Machine fault detection Kano et al. (2003); Li et al. (2006); Ypma et al. (1999); Zhonghai et al. (2009)
- Seismic monitoring Acernese et al. (2004); de La et al. (2004)
- Reflection canceling Farid & Adelson (1999); Yamazaki et al. (2006)
- Finding hidden factors in financial data Cha & Chan (2000); Coli et al. (2005); Wu & Yu (2005)
- Text document analysis Bingham et al. (2002); Kolenda (2000); Pu & Yang (2006)
- Radio communications Cristescu et al. (2000); Huang & Mar (2004)
- Audio signal processing Cichocki & Amari (2002); Lee (1998)
- Image processing Cichocki & Amari (2002); Déniz et al. (2003); Fiori (2003); Karoui et al. (2009); Wang et al. (2008); Xiaochnun & Jing (2004); Zhang et al. (2007)
- Data mining Lee et al. (2009)
- Time series forecasting Lu et al. (2009)
- Defect detection in patterned display surfaces Lu1 & Tsai (2008); Tsai et al. (2006)
- Bio medical signal processing Azzerboni et al. (2004); Castells et al. (2005); De Martino et al. (2007); Enderle et al. (2005); James & Hesse (2005); Kumagai & Utsugi (2004); Llinares & Igual (2009); Safavi et al. (2008); Zhu et al. (2006).

3.1 Audio and biomedical applications of ICA

Exemplary ICA applications in biomedical problems include the following:

- Fetal Electrocardiogram extraction, i.e removing/filtering maternal electrocardiogram signals and noise from fetal electrocardiogram signals Niedermeyer & Da Silva (1999); Rajapakse et al. (2002).
- Enhancement of low level Electrocardiogram components Niedermeyer & Da Silva (1999); Rajapakse et al. (2002)
- Separation of transplanted heart signals from residual original heart signals Wisbeck et al. (1998)
- Separation of low level myoelectric muscle activities to identify various gestures Calinon & Billard (2005); Kato et al. (2006); Naik et al. (2006; 2007)

One successful and promising application domain of blind signal processing includes those biomedical signals acquired using multi-electrode devices: Electrocardiography (ECG), Llinares & Igual (2009); Niedermeyer & Da Silva (1999); Oster et al. (2009); Phlypo et al. (2007); Rajapakse et al. (2002); Scherg & Von Cramon (1985); Wisbeck et al. (1998), Electroencephalography (EEG) Jervis et al. (2007); Niedermeyer & Da Silva (1999); Onton et al. (2006); Rajapakse et al. (2002); Vigário et al. (2000); Wisbeck et al. (1998), Magnetoencephalography (MEG) Hämäläinen et al. (1993); Mosher et al. (1992); Parra et al. (2004); Petersen et al. (2000); Tang & Pearlmutter (2003); Vigário et al. (2000).

One of the most practical uses for BSS is in the audio world. It has been used for noise removal without the need of filters or Fourier transforms, which leads to simpler processing methods.
There are various problems associated with noise removal in this way, but these can most likely be attributed to the relative infancy of the BSS field and such limitations will be reduced as research increases in this field Bell & Sejnowski (1997); Hyvarinen et al. (2001).

Audio source separation is the problem of automated separation of audio sources present in a room, using a set of differently placed microphones, capturing the auditory scene. The whole problem resembles the task a human listener can solve in a cocktail party situation, where using two sensors (ears), the brain can focus on a specific source of interest, suppressing all other sources present (also known as cocktail party problem) Hyvarinen et al. (2001); Lee (1998).

4. Conclusions

This chapter has introduced the fundamentals of BSS and ICA. The mathematical framework of the source mixing problem that BSS/ICA addresses was examined in some detail, as was the general approach to solving BSS/ICA. As part of this discussion, some inherent ambiguities of the BSS/ICA framework were examined as well as the two important preprocessing steps of centering and whitening. The application domains of this novel technique are presented. The material covered in this chapter is important not only to understand the algorithms used to perform BSS/ICA, but it also provides the necessary background to understand extensions to the framework of ICA for future researchers.

The other novel and recent advances of ICA, especially on Audio and Biosignal topics are covered in rest of the chapters in this book.

5. References

