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1. Introduction

The principle challenge of MRI brain scan classi“cation is the capture of the features of interest
in such a way that relative spatial information is retained while at the same time ensuring
tractability. Some popular feature representations are directed at colour, texture and/or shape.
Little work has been done on techniques that maintain the relative structure of the features
of interest. This chapter describes a number of mechanisms whereby this may be achieved.
More speci“cally, the work is directed at medical image classi“cation according to a particular
feature of interest that may appears across a given image set. There are many medical studies
[1, 8, 10, 12, 15, 24, 26, 32, 38, 40, 49] that demonstrate that the shape and size of speci“c
regions of interest plays an important role in medical image classi“cation. One example (and
the application focus of the work described) is that the shape and size of the corpus callosum,
a prominent feature located in brain MRI scans, is in”uenced by neurological diseases such as
epilepsy and autism, and by special abilities (such as mathematical or musical ability) [35, 43,
47].

Given the above, the work described in this chapter is motivated by a need for techniques
that can classify images according to the shape and relative size of features of interest that
occur across some medical image sets. The main issue to be addressed is how best to process
image collections so an ef“cient and effective representation can be generated suited to the
classi“cation of such images, according to some Region of Interest (ROI) contained across
the image set. Given that the proposed techniques assume that some appropriate ROI exists
across the image set, the techniques will not be applicable to all image classi“cation problems,
but the techniques will be applicable to the subset of problems where classi“cation according
to a ROI makes sense. The resolution of the ROI classi“cation problem, as formulated above,
requires that the following issues be addressed:

1. Any derived solution should serve to maximise classi“cation accuracy while at the same
time allowing for ef“cient processing (although in the medical context ef“cient processing
can be viewed as a secondary requirement to accuracy).

©2012 Coenen et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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2 Will-be-set-by-IN-TECH

2. So as to achieve the desired classi“cation accuracy any proposed feature extraction
(representation) method needs to capture the salient elements of the ROI without knowing
in advance what those salient elements might be. In other words any proposed
feature extraction method, whatever form this might take, must retain as much relevant
information as possible.

3. Not withstanding point 2 it is also desirable to conduct the classi“cation in reasonable time,
although there tends to be a trade off between accuracy and ef“ciency that must also be
addressed.

4. Not all potential representations are compatible with all available classi“cation paradigms,
thus different representations may require the application of different classi“cation
techniques.

The rest of this chapter is organised as follows. Section 2 provides an overview of the
application domain. An essential precursor to the techniques described, although not the
focus f this paper, is the registration and segmentation of the region of interest; a note on
the registration and segmentation process adopted is therefore given in Section 3. The four
proposed techniques for classifying MRI brain scan data according to a single object that
occurs across the data, are founded on weighted graph mining, time series analysis, the
Hough transform and Zernike Moments respectively. Each is described in the following four
sections; Sections 4, 5, 6 and 7. Section 8 then reports on the comparative evaluation of the
proposed techniques. Some conclusions are then presented in Section 9.

2. Application domain

Magnetic Resonance Imaging (MRI) came into prominence in the 1970s. MRI is similar to
Computerized Topography (CT) in that cross-sectional images are produced of some object. A
special kind of MRI, called Magnetic Resonance Angiography (MRA) can be used to examine
blood vessels. MRI is also used for brain diagnosis, for example to detect abnormal changes
in different parts of the brain. A MRI scan of the brain produces a very detailed picture.
An example brain scan image is given in Figure 1. MRI brain scans underpin the diagnosis
and management of patients suffering from various neurological and psychiatric conditions.
Analysis of MRI data relies on the expertise of specialists (radiologists) and is therefore
subjective. Automated classi“cation of MRI image data can this provide useful support for
the categorisation process and potentially free up resources.

As noted in the introduction to this chapter the focus of the work described is the classi“cation
of MRI brain scan data according to a feature called the corpus callosum. Figure 2 gives an
example midsagittal slice of a MRI scan1, the corpus callosum is located in the centre of the
brain (highlighted in the lefthand image, an associated structure, the fornix, is also shown).
The size and shape of the corpus callosum has been shown to be correlated to sex, age,
neurodegenerative diseases (e.g. epilepsy, multiple sclerosis and schizophrenia) and various
lateralised behaviour in people (such as handedness). It is also conjectured that the size and
shape of the corpus callosum re”ects certain human characteristics (such as a mathematical
or musical ability). Within neuro-imaging research considerable effort has been directed at
quantifying parameters such as length, surface area and volume of structures in living adult
brains, and investigating differences in these parameters between sample groups. As noted

1 The midsagittal slice is the middle slice of a sequence of MRI slices.
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Figure 1. An example brain scan image. The three images show (from left to right) sagittal, coronal and
axial planes. A common point is marked in each image.

Figure 2. Midsagital MRI brain scan slice showing the corpus callosum (high-lighted in the right-hand
image), the Fornix is a related feature [18].

in [33] a number of reported studies have demonstrated that the size and shape of the human
corpus callosum, in humans, is related to gender[1, 12, 40], age [40, 49], handedness [10],
brain development and degeneration [24, 32], conditions such as epilepsy [8, 38, 47] and brain
disfunction [15, 26]. It is worth noting that although the work described in this thesis is
directed at MRI brain scan classi“cation, there are other features in MRI brain scans to which
the techniques could be applied, such as the ventricles.

3. Image preproessing and registration

Although the primary concern of this chapter is the representation of images to permit
classi“cation according to some feature that appears across these images, more speci“cally
the classi“cation of MRI brain scans according to the nature of the corpus callosum, for this
to happen images must “rst be segmented and registered. In our case the images were
registered by trained physicians using the Brain Voyager QX software package [21] that
supports registration using the Talairach transformation. Segmentation was conducted using
a variation of of the Normalized Cuts (NCuts) segmentation technique. NCuts formulates
segmentation as a graph-partitioning problem. The basic NCut algorithm was proposed by
Shi and Malik [44]. However, the authors found that the basic NCuts algorithm did not
operate well when applied to large images such as MRI brain scan images. An established
enhancement to the basic NCuts algorithm, the multiscale normalized cuts algorithm
proposed by Cour et al. [11], was also considered. In the context of the corpus callosum
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application it was found that the multiscale normalized cuts algorithm could be improved
upon so as to reduce the computational resource required to achieve the segmentation.
A variation of the multiscale normalized cuts algorithm, developed by the authors, was
thus adopted. Details of the algorithm can be found in [17]. Alternative registration and
segmentation techniques can clearly be adopted. What is important to note, with respect to
the contents of this chapter, is that the start point for each of the techniques described is a
segmented corpus callosum.

4. Method 1: Region of interest image classi“cation using a hough
transform signature representation

The Hough transform was originally proposed by Paul Hough in 1962 [25]. Subsequently
it was re“ned, in various manners, with respect to a number of proposed image analysis
techniques directed at a great variety of application domains. In the context of image
analysis the Hough transform is principally used for the purpose of detecting parametric
shapes (boxes, cylinders, cones, etc.) in image data. The Hough transform was initially
used for the purpose of detecting straight lines in image data, then extended with respect
to simple parametric forms, and eventually generalised to detect any parametric shape
[2]. The fundamental idea behind the Hough transform is that image patterns can be
•transformedŽ (translated) into some alternative parameter space so that the desired shape
detection problem becomes one of simply identifying peaks in the new de“ned space. The
principle disadvantages of the Hough transform are: (i) its substantial storage requirement
and (ii) the associated computational overhead. The effect of these two disadvantages can be
partially reduced by utilising additional information from the image data to limit the range of
parameters that are required to be calculated with respect to each point in a given image. For
example, Ballard [2] used gradient information to support circle detection.

The proposed image classi“cation method, based on the Hough transform, is directed at the
extraction of shape signatures which can be used as feature vectors in a classi“cation process.
It is assumed that the input image is a binary representation of a region of interest (i.e. the
corpus callosum with respect to the focus of the work described in this chapter), that has
been appropriately segmented from •sourceŽ MRI brain scans of the form described above.
The proposed shape signature extraction method is founded on an idea “rst presented in
Vlachos et al. [45], which gave good results when classifying simple line drawn symbol
images according to their shapes. However, direct application of the Vlachos approach was
found to perform consistently badly with respect to the classi“cation of brain MRI scans
according to the nature of the corpus callosum. Therefore the proposed method commences
by simplifying the shape of the region of interest using a polygonal approximation method.
Then the signature extraction process, using the Vlachos approach, was applied.

The proposed image classi“cation technique based on the Hough transform comprises three
majors steps. We start with a data set of pre-labelled images from which the ROI (the
corpus callosum in our case) has been extracted. Then (Step 1), for each image, the ROI is
processed using a Canny edge detector [6] to determine its boundary. Secondly (Step 2), a
polygonal approximation technique is applied to reduce the complexity of the boundaries
by approximating the boundaries with a minimum number of line segments. Thirdly (Step
3), signature extraction using the Vlachos approach is applied to extract the desired feature
vectors which are then placed in a Case Base (CB). The CB ultimately comprises feature vectors
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extracted from all the images in the given training set and their corresponding class labels.
This CB can then used, in the context of a Case Based Reasoning (CBR) framework, to classify
unseen MRI brain scans according to the nature of the corpus callosum. Each of these steps is
considered in further detail in the following three sub-sections.

4.1. Preprocessing (Edge detection)

As already noted the extraction of the desired shape signatures (one per region of interest
within each image) commences by applying the Canny edge detector technique [6]. The
Canny operator detects the edge pixels of an object using a multi-stage process. First of all,
the region boundary is smoothed by applying a Gaussian “lter. Then the edge strength is
calculated by applying a simple 2D “rst derivative operator. The region is then scanned along
the region gradient direction, and if pixels are not part of the local maxima they are set to
zero, a process known as non-maximal suppression. Finally, a threshold is applied to select
the correct edge pixels. When the edge detection technique is applied to the corpus callosum
each region will be represented by its boundaries.

4.2. Polygonal approximation

The aim of the region boundary simpli“cation step is to obtain a smooth curve over a
minimum number of line segments describing the region•s boundary. This process is referred
to as the polygonal approximation of a polygonal curve which consists of a set of vertices. The
approximation of polygonal curves is aimed at “nding a subset of the original vertices so that
a given objective function is minimised. The problem can be de“ned in a number of ways, the
de“nition used here is referred to as the min-# problem. Given a N-vertex polygonal curve C,
approximate it by another polygonal curve Ca with a given number of straight line segments
M so that the approximation error is minimised.

One of the most widely used solutions to the min-# problem is a heuristic method called the
Douglas-Peucker (DP) algorithm [14]. With respect to the work described in thus chapter the
Douglas-Peucker (DP) algorithm was used to simplify the boundaries of the regions of interest
before the application of the Hough transform to extract signatures. The DP algorithm uses
the closeness of a vertex to an edge segment. This algorithm works in a top down manner
starting with a crude initial guess at a simpli“ed polygonal curve, namely the single edge
joining the “rst and last vertices of the polygonal curve. Then the remaining vertices are tested
for closeness to that edge. If there are vertices further than a speci“ed tolerance, � > 0, away
from the edge, then the vertex furthest from it is added to the simpli“cation. This creates a
new guess for the simpli“ed polygonal curve. Using recursion, this process continues for each
edge of the current guess until all vertices of the original polygonal curve are within tolerance
of the simpli“cation.

In the case of the approximation of the corpus callosum boundary as a closed curve, we have
to “nd an optimal allocation of all approximation vertices including the starting point. A
straightforward solution is to try all vertices as the starting points, and choose the one with
minimal error. The complexity of this straightforward algorithm for a N-vertex curve is N
times that of the algorithm for an open curve. There exist a number of heuristic approaches
for selecting the starting point. In this work we adopted a heuristic approach founded on that
presented in Sato [42]. In this approach, the farthest point from the centroid of the region of
interest is chosen as the starting point.
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Figure 3. Polygonal approximation of corpus callosum corresponding to � = 0.9 (M = 17).

Figure 4. Polygonal approximation of corpus callosum corresponding to � = 0.4 (M = 52).

The value of the tolerance � affects the approximation of the original polygonal curves. For
smaller values of tolerance, the polygonal curve is approximated by a large number of line
segmentsM which means that the approximation is very similar to the original curve. While
the larger values give a much coarser approximation of the original curve with a smaller
number of line segments M. Figure 3 shows an example of a simpli“cation of the boundary
of a corpus callosum using � = 0.9 resulting in 17 line segments. Figure 4 shows another
example using � = 0.4 resulting in 52 line segments.

4.3. Shape signature extraction

The generation of the shape signature based on the Straight Line Hough Trans- form (SLHT)
relies on creating an M × N accumulator matrix A, where (using the polar coordinate
scheme) each row corresponds to one value of � (length), and each column to one value of
� (orientation). As already noted the he procedure for generating the feature vector from the
accumulator matrix is founded on that presented in Vlachos et al. [45] and is as follows:

1. Determine the set of boundary pixels corresponding to the region of interest.

2. Transform each pixel in the set into a parametric curve in the parameter space.

3. Increment the cells in the accumulator matrix A as directed by the parametric curve.

4. Calculate a preliminary feature vector.

5. Calculate the vector mean.

6. Normalise the feature vector.
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By transforming every point (x, y) in the image into the parameter space, the line parameters
can be found in the intersections of the parametrized curves in the accumulator matrix as
show in Figure 4.1. In step 4, the accumulator matrix is projected to a one-dimensional �
vector by summing up the � values in each column. Finally the feature vector is normalised
according to its mean in steps 5 and 6. The extracted feature vector describing the ROI within
each image can then be used as an image signature.

4.4. Classi“cation

The signatures from a labelled training set can thus be collected together and stored in a Case
Base (CB) within a Case Based Reasoning (CBR) framework. Euclidean distance may then be
used as a similarity measure in the context of a CBR framework. Let us assume that we have
the feature vector T for a pre-labelled image and the feature vector Q for the test image (both
of size N). Their distance apart is calculated as:

dist(T, Q) =
N

�
j= 1

(Tj Š Qj )
2 (1)

Here dist = 0 indicates a perfect match, and dist = distmax indicates two images with
maximum dissimilarity.

To categorise •unseenŽ MRI brain scans, according to the nature of the corpus callosum,
signatures describing the unseen cases were compared with the signatures of labelled cases
held in the CB. The well established K-Nearest Neighbour (KNN) technique was used to
identify the most similar signature in the CB from which a class label was then extracted.

5. Method 2: Region of interest image classi“cation using a weighted
frequent subgraph representation

As already noted, the application of techniques to classify image data according to some
common object that features across an image set requires the representation of the image
objects in question using some appropriate format. The previous section considered
representing image objects using a signature generation process founded on the Hough
transform. In this section an image decomposition method is considered whereby the ROIs
are represented using a quad-tree representation. More speci“cally the Minimum Bounding
Rectangles (MBRss) surrounding the ROIs are represented using a quad-tree representation.
The conjectured advantage offered is that a quad-tree representation will maintain the
structural information (shape and size) of the ROI contained in the MBR. By applying
a weighted frequent subgraph mining algorithm, gSpan-ATW [28], to this representation,
frequent subgraphs that occur across the tree represented set of MBR can be identi“ed. The
identi“ed frequent subgraphs each describing, in terms of size and shape, some part of the
MBR; can then be used to form the fundamental elements of a feature space. Consequently,
this feature space can be used to describe a set of feature vectors, one per image, to which
standard classi“cation processes can be applied (e.g. decision tree classi“ers, SVM or rule
based classi“ers).

231Region Of Interest Based Image ClassiÞ cation: A Study in MRI Brain Scan Categorization
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The graph based approach for image classi“cation, as in the case of all the other methods
described in this chapter, commences with segmentation and registration to isolate the Region
Of Interest (ROI). Secondly, image decomposition takes place to represent the details of the
identi“ed ROI in terms of a quad-tree data structure. Feature extraction using a weighted
frequent subgraph mining approach (the gSpan-ATW algorithm with respect to the evaluation
described later in this chapter) is then applied to the tree represented image set (one tree per
image) to identify frequent subgraphs. The identi“ed subtrees (subgraphs) then form the
fundamental elements of a feature space (a set of attributes with which to describe the image
set). Finally, due to a substantial number of features (frequent sub- graphs) being generated,
feature selection takes place to select the most relevant and discriminatory features. Standard
classi“er generation techniques can then be applied to build a classi“er that can be applied
to unseen data. Each of the steps involved in the process is discussed in further detail in the
following subsections.

5.1. Image decomposition

Image decomposition methods are commonly used in image analysis, compression, and
segmentation. Different types of image decomposition mat be adopted, with respect to the
work described in this chapter a quad-tree representation is proposed. A quad-tree is a tree
data structure which can be used to represent a 2D area (such as images) which has been
recursively subdivided into •quadrantsŽ [31]. In the context of the representation of ROIs in
terms of quad-trees, the pixels representing the MBR surrounding each ROI are tessellated into
homogeneous sub-regions [16, 17]. The tessellation can be conducted according to a variety
of image features such as colour or intensity. With respect to the corpus callosum a binary
encoding was used, the •tilesŽ included in the corpus callosum were allocated a •1Ž (black)
and the tiles not included a •0Ž (white). A tile was deemed to be suf“ciently homogeneous if it
was 95% black or white. The tessellation continues until either suf“ciently homogeneous tiles
are identi“ed or some user speci“ed level of granularity is reached. The result is then stored in
a quad-tree data structure such that each leaf node represents a tile. Leaf nodes nearer the root
of the tree represent larger tiles than nodes further away. Thus the tree is •unbalancedŽ in that
some leaf nodes will cover larger areas of the ROI than others. It is argued that tiles covering
small regions are of greater interests than does covering large regions because they indicate a
greater level of detail (they are typically located on the boundary of the ROI). The advantage
of the representation is thus that it maintains information about the relative lo-cation and size
of groups of pixels (i.e. the shape of the corpus callosum). The decomposition process is
illustrated in Figures 5 and 6. Figure 5 illustrates the decomposition (in this case down to a
level of 3), and Figure 6 illustrates the resulting quad-tree.

5.2. Feature extraction using gSpan-ATW algorithm

From the literature two separate problem formulations for Frequent Subgraph Mining (FSM)
can be identi“ed: (i) transaction graph based, and (ii) single graph based. In transaction graph
based mining, the input data comprises a collection of relatively small graphs, whereas in
single graph based mining the input data comprises a very large single graph. The graph
mining based approach adopted with respect to the work described in this chapter focuses on
transaction graph based mining. In the context of transaction graph based mining, FSM aims
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Figure 5. Hierarchical decomposition (tessellation) of the corpus callosum [18].

Figure 6. Tree representation of the hierarchical decomposition given in Figure 5 [18].

to discover all the subgraphs whose occurrences in a graph database are over a user de“ned
threshold � . Many FSM algorithms have been proposed of which the most well known is
arguably gSpan [46].

Frequent subgraph mining is computationally expensive because of the candidate generation
and support computation processes that are required. The “rst process is concerned with the
generation of candidate subgraphs in a non-redundant manner such that the same graph is not
generated more than once. Thus graph isomorphism checking is required to remove duplicate
graphs. The second process is to compute the support of a graph in the graph database.
This also requires subgraph isomorphism checking in order to determine the set of graphs
where a given candidate occurs. Although algorithms such as gSpan can achieve competitive
performance compared with other FSM algorithms, its performance degrades considerably
when the graph size is relatively large or the graph features few node and/or edge labels. The
mechanism for addressing this issue adopted here was to use weighted frequent subgraph
mining.

Given the quad-tree representation a weighted frequent subgraph mining algorithm
(gSpan-ATW) was applied to identify frequently occurring subgraphs (subtrees) within the
tree representation. The Average Total Weighting (ATW) scheme weights nodes according to
their occurrence count. The nodes in the tree (see for example Figure 6) are labelled as being
either: •blackŽ, •whiteŽ or •nothingŽ. The black and white labels are used for the leaf nodes
and represent the shape of the corpus callosum. These should therefore be weighted more
highly than the •nothingŽ nodes. It can also be argued that these should be weighted more
highly because they are further away (on average) from the root than the •nothingŽ nodes,
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and therefore the leaf nodes can be said to provide more detail. The ATW scheme achieves
this.

The ATW weighting scheme was incorporated into the gSpan algorithm to produce
gSpan-ATW. As a result of the application of gSpan-ATW the identi“ed frequent subgraphs
(i.e. subtrees) each describing, in terms of size and shape, some part of a ROI that occurs
regularly across the data set, are then used to form the fundamental elements of a feature
space. Using this feature space each image (ROI) can be described in terms of a feature
vector of length N, with each element having a value equal to the frequency of that feature
(sub-graph).

5.3. Feature selection and classi“cation

As noted above the graph mining process typically identi“es a great many frequent
subgraphs; more than required for the desired classi“cation. Therefore a feature selection
strategy was applied to the feature space so that only those subgraphs that serve as good
discriminators between cases are retained. A straightforward wrapper method was adopted
whereby a decision tree generator was applied to the feature space. Features included as
•choice pointsŽ in the decision tree were then selected, whilst all remaining features were
discarded. For the work described here, the well established C4.5 decision tree algorithm [37]
was adopted, although any other decision tree generator would have suf“ced. On completion
of the feature selection process each image was described in terms of a reduced feature vector
indicating the selected features (subgraphs) that appear in the image. Once the image set had
been represented in this manner any appropriate classi“er generator could be applied. With
respect to the work described in this chapter the C4.5 algorithm was again adopted (both
appliations of C4.5 used the WEKA implementations [23]).

6. Method 3: Region of interest image classi“cation using a Zernike
moment signature representation

This section describes the third proposed approach to image classi“cation according to some
feature that appears across the image set. The proposed approach is founded on the concept
of Zernik Moments. Moments are scalar quantities used to characterize a function and to
capture its signi“cant features. They have been widely used for many years in statistics for the
description of the shape of probability density functions and in classic •rigid-bodyŽ mechanics
to measure the mass distribution of a body. From the mathematical point of view, moments
are •projectionsŽ of a function onto a polynomial basis.

Zernike moments are a class of orthogonal moments (moments produced using orthogonal
basis sets) that can be used as an effective image descriptor. Unfortunately, direct computation
of Zernike moments is computationally expensive. This makes it impractical for many
applications. This limitation has prompted considerable study of algorithms for the fast
evaluation of Zernike moments [3, 29, 36]. Several algorithms have been proposed to speed up
the computation. Belkasim et al. [3] introduced a fast algorithm based on the series expansion
of radial polynomials. Parta et al. [36] and Kintner [29] have proposed recurrence relations
for fast computation of radial polynomials of Zernike moments. Chong et al. [7] modi“ed
Kintners method so that it would be applicable for all cases. Unfortunately, all of these
methods approximated Zernike moment polynomials and consequently, produced inaccurate
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sets of Zernike moments. Wee et al. [48], proposed a new algorithm that computed exact
Zernike moments through a set of exact geometric moments; their method was accurate but
still entailed a signi“cant computational overhead.

The authors have thus developed an ef“cient method for exact Zernike Moment computation
based on the observation that exact Zernike moments can be expressed as a function
of geometric moments. The proposed algorithm is based on a quad-tree representation
of images (similar to that described in Section 5) whereby a given pixel represented
region is decomposed into a number of non-overlapping tiles. Since the geometric
moment computation for each tile is easier than that for the whole region this reduces the
computational complexity signi“cantly. The algorithm proposed by Wu et al. [50] for the
fast computation of geometric moments was adopted to calculate the required geometric
moments. The resulting Zernike moments were then used to de“ne a feature vector (one
per image) which can be input to a standard classi“cation mechanism.

6.1. Fast calculation of Zernike moments

As noted above a new method for Zernike Moment computation, based on the observation
that exact Zernike Moments can be expressed as a function of Geometric Moments (GMs),
is proposed here. The method eases the computational complexity associated with Zernike
Moment calculation. Given a pixel represented object, this is “rst decomposed into a number
of non-overlapping squares, for which GMs can be calculated.

The complex 2D Zernike moments of order p and repetition q are de“ned as:

Zpq =
p + 1

�

� 2�

0

� 1

0

�
Vpq(r, � )

� �

f (r, � )rdrd� (2)

where p = 0, 1, 2, ...,� and q is a positive or negative integer according to the condition p Š
|q| = even, |q| � p. * Is the complex conjugate. The Zernike polynomial:

Vpq(r, � ) = Rpq(r)eiq� (3)

describes a complete set of complex-valued orthogonal functions de“ned on the unit disk,
x2 + y2 � 1, with i =

�
Š1. The real-valued radial polynomial Rpq(r) is de“ned as:

Rpq(r) =
p

�
k= q

pŠk= even

Bp|q|krk (4)

where the polynomial coef“cient, Bp|q|k, is de“ned as:

Bp|q|k =
(Š1)

�
p Š k

2

�
�

p + k
2

�
!

�
p Š k

2

�
!
�

k + q
2

�
!
�

k Š q
2

�
!

(5)

Zernike polynomials are thus de“ned in terms of polar coordinates ( � , � ) over a unit disk,
while the object intensity function is always de“ned in terms of Cartesian coordinates (x, y),
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therefore the computation of ZM requires an image transformation. There are two traditional
mapping approaches [7]. In the “rst approach, the square image plan is mapped onto a unit
disk, where the centre of the image is assumed to be the origin of the coordinate system. In
this approach, all pixels outside the unit disk are ignored, which result in a loss of some image
information. In the second approach, the whole square image plan is mapped inside the unit
disk where the centre of the image is assumed to be the coordinate origin. In this paper, the
second approach is used to avoid loss of information. Zernike moments can be expressed in
terms of GMs as follows:

Zpq =
p + 1

�

p

�
k= |q|

pŠk= even

� (6)

where � is de“ned as:

� =
s

�
j= 0

|q|

�
m= 0

wm
�

s
j

��
|q|
m

�
Bp|q|kGkŠ2jŠm,2j+ m (7)

s = 0.5(k Š | q|), i =
�

Š1, G (a geometric moment), and:

w =

�
Š i if q > 0

i if q � 0
To speed up the calculation of Zernike moments in terms of GMs, as noted above, a quad-tree
decomposition was adopted as used in the graph based approach described in Section 5 and
in [50]. The GMs for each object can then be easily calculated by summing the GMs for all the
squares in the decomposition that are part of the object (the computation of GMs of squares is
easier than that for the whole object).

6.2. Feature extraction based on Zernike moments

In the context of the proposed ROI based image classi“cation approach, the calculated exact
Zernike moment magnitudes were used to de“ne a feature space representing the image
set. Each image, or more speci“cally the object of interest within each image, can then be
represented in terms of a feature vector. The feature vector { AFV } N will then consist of the
accumulated Zernike moment magnitudes from order p = 0 to order p = N with all possible
repetitions of q. For example, where N = 4, the feature vector { AFV } 4 will consist of the set
of all Zernike moments corresponding to the orders p = 0, 1, 2, 3, 4 coupled with all possible
repetitions of q : {| Z00|, |Z11|, |Z20|, |Z22|, |Z31|, |Z33|, |Z40|, |Z42|, |Z44|} . Consequently a set of
images that contain a common ROI (such as the corpus callosum in the case of the brain MRI
scan data of interest with respect to this chapter) can be represented as a set of feature vectors
which can be input to standard classi“cation techniques.

7. Method 4: Region of interest image classi“cation using a time series
representation

In this section the fourth proposed approach to ROIBIC, founded on a time series
representation coupled with a Case Based Reasoning (CBR) mechanism, is described. In
this approach the features of interest are represented as time series, one per image. There
are a number of mechanisms whereby the desired time series can be generated, the method
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proposed in this chapter is founded on a ROI intersection mechanism. The generated time
series are then stored in a Case Base (CB) which can be used to categorise unseen data using a
Case Based Reasoning (CBR) approach. The unseen data is compared with the categorisations
contained in the CB using a Dynamic Time Warping (DTW) similarity checking mechanism.
The class associated with the most similar time series (case) in the CB is then adopted as
the class for the unseen data. It should be noted that the phrase •time seriesŽ is used with
respect to the adopted representation because the proposed image classi“cation technique
is founded on work on time series analysis, not because the representation includes some
temporal dimension.

7.1. ROI Intersection Time Series Generation

Using the ROI intersection mechanism the desired image signature (•pseudoŽ time series) is
generated using an ordered sequence of M •spokesŽ radiating out from a single reference
point. The desired time series is then expressed as a series of values (one for each spoke)
describing the size (length) of the intersection of the vector with the ROI. The representation
thus maintains the structural information (shape and size) of the ROI. It should also be noted
that the value of M may vary due to the differences of the shape and size of the individual
ROI within the image data set.

Formally speaking it is assumed that there are M spokes and each spokei, radiating out from
some reference point, intersects the ROI boundary at two points (x1( i), y1( i)) and(x2( i), y2( i)) ;
then the proposed image signature is given by:

D( i) =
�

(x1( i) Š x2( i)) 2 + ( y1( i) Š y2( i)) 2, i = 1, 2, . . . ,M (8)

With respect to the corpus callosum application the time series generation procedure is
illustrated in Figure 7. The midpoint of the lower edge of the object•s Minimum Bounding
Rectangle (MBR) was selected as the reference point. This was chosen as this would ensure
that there was only two boundary intersections per spoke. The vectors were derived by
rotating an arc about the reference point pixel. The interval between spokes was one pixel
measured along the edge of the MBR. For each spoke the intersection distanceD i (where i is
the spoke identi“cation number) over which the spoke intersected with a sequence of corpus
callosum pixels was measured and recorded. The result was a time series with the spoke
number i representing time and the value D i , for each spoke, the magnitude (intersection
length). By plotting D i against i a pseudo time series can be derived as shown in Figure 7.

7.2. Similarity measuring using dynamic time warping

The objective of most similarity measures is to identify the distance between two feature
vectors. There are a number of methods where this may be achieved. In the case of time
series analysis a common similarity measuring technique is Dynamic Time Warping (DTW).
The DTW algorithm is a well-known algorithm in many areas. It was “rst introduced in 1960s
[4] and extensively explored in 1970s for application within speech recognition systems. DTW
operates as follows. In order to align two time series (sequences) A and B with lengths N and
M, an N × M matrix (D) is constructed, where each element ( i , j) of the matrix contains the
distance between the points A i and Bj . The goal is to “nd a path through this matrix, which
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Figure 7. Conversion of corpus callosum into time series using the ROI Int. method [18].

minimises the sum of the local distances of the points. The path from (1, 1) to (N, M ) in the
matrix D is called warping path W:

W = { w1, w2, ...,wk} (9)

which is subject to the following constraints:

€ Boundary condition : This requires the warping path to start at w1 = ( 1, 1) and “nish at
wk = ( N, M ).

€ Continuity : Given two consequetive points along the warping path, wkŠ1 = ( c, d) and
wk = ( a, b):

aŠ c � 1, (10)

bŠ d � 1

thus restricting the allowable steps in the warping path.

€ Monotonicity : Given wkŠ1 = ( c, d) and wk = ( a, b), then:

aŠ c � 0, (11)

bŠ d � 0

The above inequalities forces the points in W to be monotonically spaced in time. The
warping path on the D matrix is found using some dynamic programming algorithm, which
accumulates the partial distances between the sequences. IfD( i , j) is the global distance up
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to ( i , j) and the local distance at ( i , j) is given by d( i , j), then the DTW algorithm uses the
following recurrence relation:

D( i , j) = d(A i , Bj ) + min

	


�



�

D( i Š 1, j Š 1)

D( i Š 1, j)

D( i , j Š 1)

(12)

Given D(1, 1) = d(A1, B1) as the initial condition, we have the basis for an ef“cient recursive
algorithm for computing D( i , j). The algorithm starts from D(1, 1) and iterates through the
matrix by summing the partial distances until D(N, M ), which is the overall matching score
of the times series (sequences)A and B.

The computational cost of the application of DTW is O(NM ). In order to improve the
computational cost global constraints may be introduced where by we ignore matrix locations
away from the main diagonal. Two well known global constraints are the •Sakoe-Chiba bandŽ
[39] and •Itakura parallelogramŽ [27]. The Sakoe-Chiba band runs along the main diagonal
and has a “xed width R such that j Š R � i � j + R for the indices of the warping path wk( i , j).
While the Itakura parallelogram describes a region that serves to constrain the warping path
options. There are several reasons for using global constraints, one of which is that they
slightly speed up the DTW distance calculation. However, the most important reason is to
prevent pathological warpings, where a relatively small section of one time series maps onto
a relatively large section of another. In the work described here, the Sakoe-Chiba band was
adopted.

7.3. Image classi“cation based on time series representation

The time series based image classi“cation method commences, as in the case of the previous
methods, with the segmentation and registration of the input images as described in Chapter
3. Once the ROI have been segmented and identi“ed the next step is to derive the time series
according to the boundary line circumscribing the ROI. In each case the ROI is represented
using the proposed time series generation techniques described above. Each ROI signature
is then conceptualised as a prototype or case contained in a Case Base (CB), to which a Case
Based Reasoning (CBR) mechanism can be applied (as in the case of method 1).

As noted previously CBR can be used for classi“cation purposes where, given an unseen
record (case), the record can be classi“ed according to the •best matchŽ discovered in the CB.
With respect to proposed technique, and in the case of the corpus callosum application, the
CB comprises a set of pre-labelled ROI time series •signaturesŽ, each describing a record. The
DTW time series matching strategy was then adopted to identify a best match with a new
(•unseenŽ) ROI signature. To do this each pre-labelled signature of size N is compared to the
given •unseenŽ signature of size M using the DTW technique and a sequence of similarity
measures obtained. The well established k-nearest neighbour technique (KNN) was used to
identify the most similar signature in the CB from which a class label was then extracted.

8. Comparison of the proposed approaches

The four advocated approaches to ROI based image classi“cation were evaluated in the
context of the classi“cation of brain MRI scans according to the nature of the corpus callosum,
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a particular ROI that appears across such datasets. This section reports on the evaluation the
proposed approaches. The comparison was undertaken in terms of classi“cation performance
and run time complexity. The statistical analysis of the signi“cance of the reported results
was conducted using the best performing parameters with respect to each technique (so as
to consider each technique to its best advantage). In addition the proposed approaches were
compared with two notable alternative ROI representation techniques: the Curvature Scale
Space (CSS) [34] and the Angular Radial Transform (ART) [5]. These two techniques were
selected because in the MPEG-7 standard, CSS has been adopted as the contour-based shape
descriptor and ART as the region-based shape descriptor.

8.1. Datasets

To evaluate the techniques described in this thesis to classify medical images according to
the nature of the corpus callosum a number of data sets were used. As already noted the
data sets were generated by extracting themidsagittal slicefrom MRI brain scan data volumes
(bundles), one image per volume. Each data set comprised a number of brain MRI scans each
measuring 256× 256 pixels, with 256 grayscale levels and each describing a midsagittal slice.
To support the evaluation the data sets were grouped as follows: (i) Musicians, (ii) Epilepsy
and (iii) Handedness. Each group is described in some further detail as follows:

Musicians datasets For the musicians study the data set comprised 106 MRI scans, 53
representing musicians and 53 non-musicians (i.e. two equal classes). The study was of
interest because of the conjecture that the size and shape of the corpus callosum re”ects
human characteristics such as a musical ability.

Epilepsy datasets For the epilepsy study a data set comprising the 106 MRI brain scans used
for the musicians study complemented with 106 MRI brain scans from epilepsy patients, to
give a data set totalling 212 MRI brain scans, was used. The objective was to seek support
for the conjecture that the shape and size of the corpus callosum is in”uence by conditions
such as epilepsy. It should be noted that, as far as the authors are aware, the musicians
study did not include any epilepsy patents.

Handedness datasets For the handedness study a data set comprising 82 MRI brain scans
was used, 42 representing right handed individuals and 40 left handed individuals. The
study was of interest because of the conjecture that the size and shape of the corpus
callosum re”ects certain human characteristics (such as handedness).

All three brain MRI datasets were preprocessed, using the variation of the mult-iscale
mormalised cuts algorithm introduced in Subsection 3, so as to extract the corpus callosum
ROI. On completion of data cleaning (noise removal) a •localŽ registration process was
undertaken by “tting each identi“ed corpus callosum into a Minimum Bounding Rectangle
(MBR) so that each identi“ed corpus callosum was founded upon the same origin.

8.2. Experimental evaluation

Table ??shows the TCV results obtained using the musician data set. The HT, GB, ZM, TS
rows indicate the results using the Hough transform, frequent sub-graph, Zernike moments,
and time series based approaches respectively. The CSS and ART rows indicate the MPEG-7
descriptors (Curvature Scale Space and the Angular Radial Transform) respectively. The
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Acc Sens Spec
HT 91.51 92.45 90.57
GB 95.28 96.23 94.34
ZM 96.23 98.11 94.34
TS 98.11100.0096.23

CSS 86.79 88.68 84.91
ART 89.62 90.57 88.68

Table 1. TCV Classi“cation Results for Musicians Study

Acc Sens Spec
HT 90.2492.50 88.1
GB 93.9095.0092.86
ZM 93.9095.0092.86
TS 96.3497.5095.24

CSS 85.3785.0085.71
ART 87.8090.0085.71

Table 2. TCV Classi“cation Results for Handedness Study

•AccŽ, •SensŽ, and •SpecŽ columns indicate accuracy, sensitivity and speci“city respectively.
The best results are indicated in bold font. Inspection of Table ??demonstrates that the overall
classi“cation accuracies obtained using the four advocated approaches were over 90%, while
the overall classi“cation accuracy obtained using the time series based approach signi“cantly
improved over that obtained using the other three approaches. The best sensitivity and
speci“city were also obtained using the time series based approach (100% in the case of
sensitivity). The four advocated approaches all outperformed the CSS and ART techniques.
These are excellent results.

Table ?? shows the TCV results obtained using the handedness data set. The column and
row headers are de“ned as in Table ??. Inspection of Table ?? indicates that the four
advocated approaches also performed well with respect to handedness study. The best overall
classi“cation results were again obtained using the time series based approach, which showed
signi“cant improvement over the other three approaches. The best sensitivity and speci“city
were also obtained using the time series based approach. The four advocated approaches also
outperform the CSS and ART techniques. Again, these are excellent results.

Table ??shows the TCV results obtained using the epilepsy data set. The column and row
headers were de“ned as in Table ??. From Table ??it can be observed that a different result
was produced than that recorded with respect to the musicians and handedness studies. The
graph based and Zernike moments based approaches that consider all the pixels of each ROI
in the feature extraction process outperformed the Hough transform and time series based
approaches (recall that these approaches consider only the pixels of the boundary of the ROI).
Again all four of the advocated approaches also outperform the CSS and ART techniques. The
results for the epilepsy data set seem to be at odds with those obtained using the musicians
and handedness studies reported above. Subsequent discussion with medical domain experts
did not give an indication as to why this might be the case. However, the suspicion is that the
results re”ect the fact that although the nature of the corpus callosum may play a part in the
identi“cation of epilepsy there are also other factors involved.
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Acc Sens Spec
HT 76.4281.1371.70
GB 86.3287.7484.91
ZM 85.3887.7483.02
TS 77.3682.0872.64

CSS 68.4072.6464.15
ART 70.2873.5866.98

Table 3. TCV Classi“cation Results for Epilepsy Study

With respect to classi“cation accuracy in general all four ROI based image classi“cation
approaches performed remarkably well, although the time series based approach produced
the best results for the musicians and handedness studies while the graph based approach
produced the best results for the epilepsy study. There is no obvious reason why this might
be the case, visual inspection of the MRI scans does not indicate any obvious distinguishing
attributes with respect to the size and shape of the corpus callosum. Tracing the cause of
a particular classi“cation back to a particular part of the corpus callosum is thus seen as a
desirable •avenueŽ for future research. It is also interesting to note that the Hough transform
based approach performed consistently badly with respect to all of the above evaluation
studies suggesting that generating shape signatures using the Hough transform is not a
technique to be recommended in the context of feature based classi“cation, although the use
of the Hough transform is popular in other branches of image analysis.

In the literature there are a few reported studies on classifying medical images according
to the nature of the corpus callosum. For example, Sampat et al. [41] used the cross
sectional area of the corpus callosum and the inferior subolivary Medulla Oblongata
Volume (MOV) to distinguish patients with Relapsing-Remitting Multiple Sclerosis (RRMS),
Secondary-Progressive Multiple Sclerosis (SPMS), and Primary-Progressive Multiple sclerosis
(PPMS). Their study produced a classi“cation accuracy of 80%. Fahmi et al. [19] proposed
a classi“cation approach in order to distinguishing between healthy controls and autistic
patients according to the nature of the corpus callosum. They analysed the displacement
“elds generated from the non-rigid registration of different corpus callosum segments onto
a chosen reference within each group. Their reported result indicated that the classi“cation
accuracy was 86%. Golland et al. [22] adopted a version of •SkeletonsŽ for feature extraction,
coupled with the Fisher linear discriminant and the linear support vector machines, for
the classi“cation of corpus callosum data for schizophrenia patients. The best classi“cation
accuracy achieved using their support vector machine classi“cation method was less than
80%. These studies indicate how comparatively effective the classi“cation results obtained,
using the four proposed approaches, are. The results obtained using the proposed methods
signi“cantly improved on the results produced in these earlier studies.

The run time complexity of the four ROIBIC approaches using the musician, handedness, and
epilepsy datasets, are presented in Figures 8, 9 and 10 respectively. The classi“cation time is
the overall run time, i.e. it incorporates the feature extraction, training and testing phases.
All the experiments were performed with 1.86 GHz Intel(R) Core(TM)2 PC with 2GB RAM.
The graph based approach was computationally the most expensive, while the time series
based approach was computationally the least expensive. However, it is worth remarking
that, especially in the medical context, it is the classi“cation accuracy, not speed, which is the
most important feature of the proposed processes.
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Figure 8. Run time complexity for the classi“cation of the musician dataset.

Figure 9. Run time complexity for the classi“cation of the handedness dataset.

Figure 10. Run time complexity for the classi“cation of the epilepsy dataset.

In summary we can note that there is no constant •winnerŽ among the four proposed
ROI based image classi“cation approaches. However, excellent classi“cation results were
produced.

8.3. Statistical comparison of the proposed image classi“cation approaches

The AUC values for the best results obtained for all “ve dataset are given in Table 4. It should
be noted that the AUC values support the results reported in Sub-section 8.2. The Friedman•s
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Friedman test statistic = 10.68 (p < 0.005)
Musician Handedness Eplepsy AR

HT 92.6 (4) 91.3 (4) 78.6 (4) 4
GB 97.1 (2) 96.2 (2) 88.3(1) 1.4
ZM 96.4 (3) 94.7 (3) 87.2 (2) 2.4
TS 99.1(1) 96.8(1) 79.3 (3) 2.2

Table 4. Area Under the receiver operating characteristic Curve (AUC) results.

test [13, 20] was used to compare the AUCs of the different classi“ers. The Friedman test
statistic is based on the Average Ranked (AR) performances of the classi“cation techniques on
each data set, and is calculated as follows:

� 2
F =

12N
K(K + 1)



�
K

�
j= 1

AR2
j
K(K + 1)2

4

�

� (13)

where ARj = 1/ N � N
i= 1 r j

i , N denotes the number of data sets used in the study, K is the total

number of classi“ers and r j
i is the rank of classi“er j on data set i. � 2

F is distributed according to
the Chi-square distribution with K Š 1 degrees of freedom. If the value of � 2

F is large enough,
then the null hypothesis that there is no difference between the techniques can be rejected.
The Friedman statistic is well suited for this type of data analysis as it is less susceptible to
outliers than other comparison techniques. In Table 4 the numbers in the parentheses indicate
the average rank of each technique. The Friedman test statistic and corresponding p-value
is also shown. From the table it can be seen that these were all signi“cant ( p < 0.005), the
null hypothesis that there is no difference between the techniques can therefore be rejected.
From Table 4 the technique achieving the highest AUC on each data set and the overall highest
ranked technique is indicated in bold font. From the table it can be seen that the graph based
approach (GB) has the best Friedman score (average rank (AR)). The AR associated with the
Hough transform approach is statistically worse than the AR associated with all the other
approaches, supporting the results obtained earlier.

Figure 11. Dem•ar signi“cance diagram for the proposed image classi“cation approaches.

To determine the operational difference between the individual classi“ers a post hoc Nemenyi
test was applied [13]. The Nemenyi test states that the performances of two or more classi“ers
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are signi“cantly different if their average ranks differ according to a Critical Difference ( CD)
value, given by:

CD = q� ,� ,K

�
K(K + 1)

12N
(14)

where the value value for q� ,� ,K is based on the Studentised range statistic [13]. A post hoc
Nemenyi test was therefore applied to each class distribution and the results displayed using
a modi“ed version of a Dem•ar signi“cance diagram [30]. A Dem•ar diagram displays the
ranked performances of the classi“cation techniques, along with the critical difference, to
highlight any techniques which are signi“cantly different to the best performing classi“ers.
Figure 11 displays the Dem•ar diagram for the proposed classi“cation approaches. The
diagram shows the AUC performance rank for each approach, along with the Nemenyi CD
tail. The CD value for the diagram shown in Figure 11 is equal to 1.48. The diagram shows the
classi“cation techniques listed in ascending order of ranked performance on the y-axis; and
the image classi“cation techniques• average rank, across all data sets, along the x-axis. From
the “gure it can be seen that the graph based approach is the best performing classi“cation
technique with the time series approach coming in second. The diagram clearly again shows
that, despite its popularity, the Hough transform performs signi“cantly worse (with a value
of 4) than the best performing classi“ers in the context of the corpus callosum classi“cation
problem.

9. Discussion and conclusion

Referring back to Section 8 all four algorithms performed well, although the time series
approach produced the best results for the musicians and handedness studies, while the
graph based approach produced the best results with respect to the epilepsy study. Using
the Friedman statistic and the post hoc Nemenyi test incited that the graph based technique
provided the best overall performance (with the time series approach coming in second).
It is interesting to note that, for all the data sets, visual inspection of the MRI scans does
not indicate any obvious distinguishing attributes with respect to the size and shape of the
corpus callosum. It is also interesting to note that the HT, although popular in the literature,
performed consistently badly with respect to all of the above evaluation studies suggesting
that generating shape signatures using the HT is not a technique to be recommended in the
context of object based image classi“cation.

Thus, in summary, four techniques for single object based image classi“cation have been
described. Although the work described focused on the classi“cation of MRI brain scan
data according to a particular object (the corpus callosum) that features within this data, the
approach clearly has more general applicability. The main “ndings were that the graph based
approach produced the best performance followed by the time series based approach. The
HT based approach produced the worst performance in all cases. With respect to future work
the research team are interested in developing techniques to trace the cause of a particular
classi“cation back its origin (back to a particular part of the corpus callosum).
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