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1. Introduction 

Distributed system poses one of the main streams of information and communication 

technology arena with immense complexity. Designing and implementation of such 

complex systems are always an intricate endeavour. Likewise, performance evaluation is 

also a great concern of such complex system to evaluate whether the system meets the 

performance related system requirements. Hence, modeling plays an important role in the 

whole design process of the system for qualitative and quantitative analysis. However, in a 

distributed system, system functional behavior is normally distributed among several 

objects. The overall behavior of the system is composed of the partial behavior of the 

distributed objects of the system. So it is indispensable to capture the functional behavior of 

the distributed objects for appropriate analysis to evaluate the performance related factors of 

the overall system. We therefore adopt UML collaboration and activity oriented approach as 

UML is the most widely used modeling language which models both the system 

requirements and qualitative behavior through different notations. Collaboration and 

activity diagram are utilized to demonstrate the overall system behavior by defining both 

the structure of the partial object behavior as well as the interaction between them as 

reusable specification building blocks and later on, this UML specification style is applied to 

generate the SPN model by our performance modeling framework. UML collaboration and 

activity provides a tremendous modeling framework containing several interesting 

properties. Firstly, collaborations and activity model the concept of service provided by the 

system very nicely. They define structure of partial object behavior, the collaboration roles 

and enable a precise definition of the overall system behavior. They also delineate the way 

to compose the services by means of collaboration and role bindings [12]. 

Considering system execution architecture to specify the deployment of the service 

components is realized by the UML deployment diagram. Abstract view of the system 
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execution architecture captured by the UML deployment diagram defines the execution 

architecture of the system by identifying the system components and the assignment of 

software artifacts to those identified system components. Considering the system 

architecture to generate the performance model resolves the bottleneck of system 

performance by finding a better allocation of service components to the physical nodes. This 

needs for an efficient approach to deploy the service components on the available hosts of 

distributed environment to achieve preferably high performance and low cost levels. The 

most basic example in this regard is to choose better deployment architectures by 

considering only the latency of the service. The easiest way to satisfy the latency 

requirements is to identify and deploy the service components that require the highest 

volume of interaction onto the same resource or to choose resources that are connected by 

the links with sufficiently high capacity [12].  

It is indispensable to extend the UML model to incorporate the performance-related quality 

of service (QoS) information to allow modeling and evaluating the properties of a system 

like throughput, utilization and mean response time. So the UML models are annotated 

according to the UML profile for MARTE: Modeling & Analysis of Real-Time Embedded Systems 

to include quantitative system parameters [1]. Thus, it helps to maintain consistency 

between system design and implementation with respect to requirement specifications. 

Markov models, stochastic process algebras, SPN (Stochastic Petri Net) are popular and 

much studied analytical approaches to conduct performance modeling and evaluation. 

Among all of them, we will focus on the SPN as the performance model generated by our  

framework due to its increasingly popular formalisms for describing and analyzing systems, 

its modeling generality, its ability to capture complex system behavior concisely, its ability 

to preserve the original architecture of the system, to allow marking dependency firing rates 

& reward rates defined at the net level, to facilitate any modification according to the 

feedback from performance evaluation and above all, the existence of analysis tools. 

Several approaches have been followed to generate the performance model from system 

design specification. Lopez-Grao et al., described a conversion method from annotated UML 

activity diagram to stochastic petrinet model [2]. Distefano et al., proposed a possible 

solution to address software performance engineering that evolves through system 

specification using an augmented UML notation, creation of an intermediate performance 

context model, generation of an equivalent stochastic petri net model whose analytical 

solution provides the required performance measures [3]. D’Ambrogio proposed a 

framework for transforming source software models into target performance models by the 

use of meta-modeling techniques for defining the abstract syntax of models, the 

interrelationships between model elements and the model transformation rules [4]. 

Trowitzsch and Zimmermann proposed the modeling of technical systems and their 

behavior by means of UML and for the resulting models, a transformation into a Stochastic 

Petri Net was established [13]. Abdullatif and Pooly presented a method for providing 

computer support for extracting Markov chains from a performance annotated UML 

sequence diagram [14]. However, most existing approaches do not highlight more on the 
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issue of how to optimally conduct the system modeling and performance evaluation. The 

approach presented here is the first known attempt that introduces a new specification style 

utilizing UML behavioral diagrams as reusable specification building block which is later on 

used for generating performance model to produce performance prediction result at early 

stage of the system development process. Building blocks describe the local behavior of 

several components and the interaction between them. This provides the advantage of 

reusability of building blocks, since solution that requires the cooperation of several 

components may be reused within one self-contained, encapsulated building block. In 

addition, the resulting deployment mapping provided by our approach has great impact 

with respect to QoS provided by the system. Our aim here is to deal with vector of QoS 

properties rather than restricting it in one dimension. Our presented deployment logic is 

surely able to handle any properties of the service, as long as we can provide a cost function 

for the specific property. The cost function defined here is flexible enough to keep pace with 

the changing size of search space of available host in the execution environment to ensure 

an efficient deployment of service components. Furthermore, we aim to be able to aid the 

deployment of several different services at the same time using the same framework. The 

novelty of our approach also reflected in showing the optimality of our solution with respect 

to both deployment logic and evaluation of performance metrics. 

The objective of the chapter is to provide an extensive performance modeling framework 

that provides a translation process to generate SPN performance model from system design 

specification captured by the UML behavioral diagram and solves the model for relevant 

performance metrics to demonstrate performance prediction results at early stage of the 

system development life cycle. To incorporate the cost function to draw relation between 

service component and available physical resources permit us to identify an efficient 

deployment mapping in a fully distributed manner. The work presented here is the 

extension of our previous work described in [5, 6, 7, 12] where we present our  framework 

with respect to the execution of single and multiple collaborative sessions and to consider 

alternatives system architecture candidates to describe system functional behavior and later 

on to evaluate the performance factors. The chapter is organized as follows: section 2 

describes the performance evaluation of distributed system where the requirements of the 

successful performance evaluation are mentioned, section 3 introduces our performance 

modeling framework in details by considering the requirements outlined in the previous 

section, section 4 shows the applicability of our performance modeling framework with 

respect to performance modeling of a distributed system, and section 5 mentions the 

concluding remarks with future directions.  

2. Performance evaluation of distributed software system 

Performance evaluation is an integral part of any distributed software system which gives 

an indication of whether the system will meet non functional properties, once system 

built. The evaluation can be done in one of the two stages of the software development 

process: 
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1. Evaluation can be conducted at the early stage of the software development process 

2. Evaluation can be done when the development process is completed. 

Conducting the performance evaluation in any of the two stages has some merits and 

demerits. Early assessment of performance evaluation allows system designer predicting the 

system response in order to meet the non functional requirements before the system being 

built. This in turn guides the system designer about the system development process in right 

manner which thus increases the productivity and quality in accordance with the reduction in 

cost. But conducting performance evaluation in the early stage of the software development 

process is challenging because of the absence of the real system in hand. So predication in 

advance not always guides the system designer in right way. Modeling system functional 

behavior perfectly works as a catalyst to successfully conduct the system performance 

evaluation. System functional behavior is disseminated across several components that are 

physically distributed which increases the complexity in developing distributed software 

systems. Perfect modeling of distributed system functional behavior is realized by capturing 

the local behavior of the system components and also the interaction among them. It is very 

difficult to achieve these tasks in correct way when development of system is limited in the 

laboratory where modeling will be done by generating case study or scenario. 

Conducting performance evaluation after the system development process being completed 

is less challenging than the former case. It is possible to retrieve the real system response in 

order to meet the system non functional requirements as the real system is already 

implemented. So the designer can get a real understanding about the correct status of the 

development process to know whether the system can meet the non functional requirements 

and end user’s expectation. If the system fails to satisfy non functional requirements and 

can’t meet the end user expectation, the only alternative is to rethink about the system 

design process.  Any change in the system design process can cause the modification in the 

system development process. In worst case the development process might start from the 

beginning which in turn costs a lot.  

In order to conduct the performance evaluation of distributed software system, the decision 

is not only influenced by when the evaluation should be performed but also other factors 

like which evaluation technique is appropriate and reasonable. There are mainly two 

evaluation techniques: 

1. Simulation based evaluation 

2. Analytic solution 

Simulation based solution of the actual implementation gives a better assessment of the 

performance evaluation of the system. Simulation based solution gives the freedom to build 

the system arbitrary detailed and there is no restriction on building the simulation model of 

the real system [8]. Thus, it allows modeling and evaluating the system performance in a 

flexible way. But to develop the simulation model is not an easy task and sometimes it is 

error-prone. Implementing a complex system is usually a time-consuming, expensive task 

and needs experience [8]; mastering to handle this complexity is driven by the gaining vast 
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knowledge in simulation language and how to apply this language to build and present the 

logic behind the complex distributed system to capture system functional behavior properly 

for conducting performance evaluation. 

Analytical solution is another way to conduct the performance evaluation of the complex 

distributed software system. Presence of well established mathematical formula for analytical 

methods makes it popular to the scientific community to obtain the performance evaluation 

of the systems. This method of finding solution is more acceptable than simulation based 

evaluation because of the direct applicability of the mathematical formula and the availability 

of evaluation tools. Another advantage of using analytic model is the rapid development of 

model for performance evaluation of large and multifaceted system using the formalisms of 

analytical methods. However, sometimes such analytical models can usually be constructed 

by placing some structural restrictions and assumptions on the original system model based 

on the explicit modeling formalism which has been selected; the reason is that analytical 

models have a limited expressiveness in some cases to capture the complex system behavior. 

While it is sometimes doable to simplify the model of the system in order to make it 

analytically tractable, there are many cases in which the significant aspects of the system can 

not be effectively represented into the analytical model for performance evaluation [8]. 

In this chapter we particularly focus on the performance evaluation of the distributed 

software system at the early stage of the system development process using analytical 

models. The requirements for performance evaluation of distributed software system are not 

only influenced by the question of when to conduct the evaluation and which method is 

appropriate for the obtaining performance results but also driven by the other requirements 

such as: 

1. Need for an efficient approach that will help to model the system functional behavior in 

a way that can reflect real system behavior so that performance evaluation can be 

meaningful afterwards. 

2. Deployment mapping is an integral part of the distributed software system 

development process which is defined by the assignment of software components in the 

physical resources that are distributed. For large and complex system it requires an 

efficient approach for handling the deployment mapping so that it can also ensure the 

efficiency with respect to performance evaluation. 

3. Model that captures the system functional behavior will be used as an input model for 

developing the analytical model. So we need a mechanism that can also include the 

performance parameters to the input models for conducting the successful evaluation. 

4. Need for a scalable and efficient approach to establish the correspondence between the 

input model that will be utilized to capture the system functional behavior and the 

output model that will be used to conduct the performance evaluation of the distributed 

software system. 

5. At last, developing a tool based support for the whole process of performance 

evaluation considering above requirements which can ensure the rapid development, 

evaluation and user friendliness.   
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The following Figure 1 mentions the requirements or factors that we need to consider for the 

successful performance evaluation of the distributed software systems. In order to capture 

all the above mentioned factors, it needs an efficient approach or developing a framework 

that will allow rapid and successful performance evaluation of distributed software system 

which at the end reflects the aim of this chapter. 

 

Figure 1. Performance modeling framework 

3. Performance modeling framework 

We already mentioned our main objective in the previous section that will be presented 

broadly in this section. In order to achieve the main objective, we need to follow an 

engineering approach that will accelerate the distributed software system development 

process. We also need to define the method that will be accounted for evaluating the system 

performance. We limit ourselves to methods targeting system development process using the 

standards of UML (Unified Modeling Languages) [9]. In the evaluation side we limit ourselves 

to methods that will analytically solve our problem using the technique SPN (Stochastic Petri 

Nets). This section mainly presents these two main techniques and also focuses on their 

properties that will be utilized to design our performance modeling framework.  

3.1. Capturing system functional behavior 

We use UML collaboration as main specification unit to specify system functional behavior. 

The UML standard focuses in particular on the structural aspects of UML collaborations. 

UML does not, however, elaborate detailed semantics of the behavioral implications of the 
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structural composition. Collaborations are intended as a context in which behaviors may be 

defined. Compared to the other uses of collaborations, and what we need, this is an obvious 

shortcoming. We will later see how a combination of collaborations with activities may 

solve this problem [9].  

Collaboration is an illustration of the relationship and interaction among software objects in 

the UML. Objects are shown as rectangles with naming label inside. The relationships 

between the objects are shown as line connecting the rectangles [11]. As a representative 

example, we introduce a scenario description utilizing UML collaboration 2. Several users 

equipped with cell phone or smart phone want to receive weather information of their 

current location using his/her hand held device. The user request is first transferred to 

authentication server through base transceiver station to ensure the authenticity of the user. 

Thereafter, the request of the legitimate user is transferred to the location server to retrieve 

the location information of the user. The location information is then transferred to weather 

server for retrieving the weather information according to the location of the user. Figure 2 

defines this scenario as UML 2 collaboration. Participants in the system are users, mobile 

terminals, base transceiver stations, authentication servers, location servers, weather servers 

which are represented by the collaboration roles user, MT, BTS, AuS, LS, and WS.  The users 

are the part of the environment and therefore labeled as <<external>>.The default 

multiplicity of the users, mobile terminals, base transceiver stations, authentication servers, 

location servers, weather servers are one to many, which are denoted by (1..*). The 

interactions between the collaboration roles are represented by the collaboration such as 

mobile terminal and BTS interact through t: transfer, BTS and authentication server, location 

server, weather server interact successively through a: authenticate, l: request location info, w: 

request weather info, while the user interacts with the mobile terminal by collaboration g: 

generate request [6].  

 

Figure 2. Collaboration diagram 
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The specifications for collaborations are given as coherent, self-contained reusable building 

blocks. The internal behavior of building block is described by the UML activity. It is 

declared as the classifier behavior of the collaboration and has one activity partition for each 

collaboration role in the structural description [6]. For each collaboration, the activity 

declares a corresponding call behavior action refereeing to the activities of the employed 

building blocks. Depending on the number of participants, connectivity to other blocks and 

level of decomposition, we distinguish three different kinds of building blocks [10]: 

1. The most general building block is collaboration with two participants providing 

functionality that is intended to be composed with other functionality. We refer to such 

a building block as service collaboration. 

2. Building blocks that involve only local behavior of one participant are referred to as 

activity blocks. They are represented by activities. 

3. A special building block is system collaboration, which is collaboration on the highest 

composition level. In contrast to a service, a system is closed and cannot be composed 

with other building blocks. 

 

 

Figure 3. Activity diagram for expressing the internal behavior of collaboration 

(a) (b)

(c)
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Hereby collaborations of Figure 2 are modeled by a call behavior action referring to the 

activity describing the behavior of the corresponding collaboration [10]. Activity diagram 

presents complete behavior in a quite compact form and may define connections to other 

behaviors via input and output pins [6]. Here we specify the behavior of one user request to 

show how the request is generated from his/her mobile terminal and served by the BTS, 

authentication server, location server and weather server and later on, compose this 

behavior to show how the requests will be processed by the BTS, authentication servers, 

location servers and weather servers so that the overall system behavior can be delineated. 

The activity transfer describes the behavior of the corresponding collaboration shown in 

Figure 3 (a). It has one partition for each collaboration role: mobile terminal (MT) and base 

transceiver station (BTS). Activities base their semantics on token flow [1]. The system starts 

by placing a token in the initial node of the mobile terminal when one request is generated 

by the user through his/her mobile terminal. The token is then transferred to the BTS where 

it moves through the fork node generating two flows. One flow places a token in the waiting 

decision node w which is the extension of a decision node with the difference that it may 

hold a token similar to an initial node, as defined in [1]. w is used in combination with join 

nodes j1 and j2 to explicitly model the acceptance or rejection of the user request based on 

the user authenticity. The other flow is forwarded as input to the authentication server to 

check whether the user is legitimate to generate service request. If the user is legitimate to 

generate the request a token is offered to the join node j1. If w still has its token j1 can fire 

which emits a token which then forwarded to the location server for further processing. If 

the user is not legitimate to generate the request, a token is offered to the join node j2. If w 

still has its token j2 can fire notifying the user upon the cancellation of request and then 

terminates the activity.   

In order to validate the user identity (mobile number in this case) provided by a user who 

requests for service, BTS participates in the collaboration authenticate together with the 

authentication server. This is specified by collaboration a: authenticate where BTS plays the 

role of client and the authentication server plays the role of server. The behavior of the 

collaboration defined by the UML activity which is divided into two partitions, one for each 

collaboration role: client & server shown in Figure 3(b). The activity is started on the client 

side, when user id is provided as parameter u_id at the input pin. The input is then directly 

sent to the server, where it is converted into a database request in the call behavior action 

processing. Thereafter, it is the task of the collaboration between the server and the database 

to provide the stored user information. In order to get the information, the request leaves 

the activity authenticate and the server waits for the reception of the response. This is 

modeled with the input and output pins request and response. Depending on the validity of 

the user id, the server may decide to report ok or nok (not ok) to the client by the call 

behavior action validate. The result is then forwarded to the corresponding output pin in the 

client side and the activity is terminated. The semantics of all the pins are given in [12]. 

Likewise, we can describe the behavior of collaboration l: Request Location info ( shown in 

Figure 3(c)) and w: Request Weather info through activity partition of client and server where 

BTS plays the role of client and location server and weather server play the role of server to 

deliver the requested information to the user through his/her mobile terminal. 
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The collaborative building blocks with help of activities specify overall system functional 

behavior which is introduced in Figure 4 for our scenario. For specifying detail behavior, 

UML collaborations and activities are used complementary to each other; UML 

collaborations focus on the role binding and structural aspect, while UML activities 

complement this by covering also the behavioral aspect for composition. For this purpose, 

call behavior actions are used. Each sub-service is represented by a call behavior action 

referring to the respective activity of the building blocks. Each call behavior action 

represents an instance of a building block. For each activity parameter node of the referred 

activity, a call behavior action declares a corresponding pin. Pins have the same symbol as 

activity parameter nodes to represent them on the frame of a call behavior action. Arbitrary 

logic between pins may be used to synchronize the building block events and transfer data 

between them. By connecting the individual input and output pins of the call behavior 

actions, the events occurring in different collaborations can be coupled with each other. 

There are different kinds of pins described as follows [10]: 

1. Starting pins activate the building block, which is the precondition of any internal 

behavior. 

2. Streaming pin may pass tokens throughout the active phase of the building block. 

3. Terminating pins mark the end of the block’s behavior. If collaboration is started and 

terminated via several alternative pins, they must belong to different parameter sets. 

This is visualized in UML diagram by an additional box around the corresponding 

node.  

Figure 4 shows the activity diagram for our system to highlight the overall behavior of the 

system by composing all the building blocks. The initial node (∙) marks the starting of the 

activity. The activity is started on the client side. When a user service request is generated 

via mobile terminal, g: Generate request will transfer the user service request as parameter 

u_req to the BTS via collaboration t: Transfer. Once the request arrived at the BTS the user id 

as parameter u_id is transferred to the authentication server to check whether the user is 

authentic to accept the service and the activity is represented by a: authenticate. The activity 

authenticate initiates a database request, modeled by collaboration d1: DBRetrieve and 

terminates with one of the alternative results ok or nok. After arriving the positive response 

at the BTS, request for location information is forwarded to the location server represented 

by activity Request location info. Location server makes a database request which is modeled 

by d1: DBRetrieve and terminates with result l_info (Location information). After getting the 

location information, request for weather information according to user current location is 

forwarded by the BTS to the weather server represented by activity Request weather info. 

Weather server makes a database request which is modeled by d2: DBRetrieve and 

terminates with result w_info (Weather information). After that, the final result is transferred 

to the user hand held device by BTS via activity t: Transfer. But if the user is failed to prove 

his/her identity then immediately a nok is sent to the user’s hand held device.   

So far, we introduced the system functional behavior with respect to specific example. Now 

we would like to introduce the specification in more generalized way. For example, the  
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Figure 4. Activity diagram for detail system behavior 

general structure of the building block t is given in Figure 5 where it only declares the 

participants A and B as collaboration roles and the connection between them is defined as 

collaboration use tx (x=1…nAB (number of collaborations between collaboration roles A and 

B)). The internal behavior of the same building block is shown in Figure 6(b). The activity 

transferij (where ij = AB) describes the behavior of the corresponding collaboration. It has one 

activity partition for each collaboration role: A and B. Activities base their semantics on 

token flow [1]. The activity starts by placing a token when there is a response (indicated by 

the streaming pin res) to transfer by either participant A or B. After completion of the 

processing by the collaboration role A and B the token is transferred from the participant A 

to participant B and from participant B to Participant A which is represented by the call 

behavior action forward. 

 

Figure 5. Collaboration diagram in generalized way 

The detailed behavior of collaboration is given in following Figure 6(a). The initial node (∙) 
indicates the starting of the activity. The activity is started at the same time from each 

participant A and B. After being activated, each participant starts its processing of the 

request which is mentioned by call behavior action Pi (Processingi, where i = A, B). 

Completions of the processing by the participants are mentioned by the call behavior action 

di (Processing_donei, i = A, B). After completion of the processing, the responses are 

delivered to the corresponding participants indicated by the streaming pin res. The response 

of the collaboration role A will be forwarded to B and vice versa which is mentioned by 

collaboration t: transferij (where ij = AB). 

B    tx: transferABA 
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Figure 6. (a) Detail behavior of collaborative building block (b). Internal behavior of collaboration 

3.2. Method for efficient Deployment mapping 

Deployment diagram can be used to define the execution architecture of the system by 

identifying the system physical components and the assignment of software artifacts to 

those identified physical components [11]. After designing the deployment diagram the 

relation between system component and collaboration will be delineated to describe the 

service delivered by the system. The service is delivered by the joint behavior of the system 

components which may be physically distributed. The necessary partial behavior of the 

component used to realize the collaboration is represented by the collaboration role. In this 

way, it is possible to expose direct mapping between the collaboration roles to the system 

components to show the probable deployment of service components to the physical nodes 

of the system [6]. 

We consider two design alternatives of system architecture captured by UML deployment 

diagram to demonstrate the relationship between collaboration and system component for 

the scenario mentioned in Figure 2. For our defined scenario the identified system 

components by the 1st variation of deployment diagram are Mobile terminal, Base 

transceiver station, Authentication server, Location server and Weather server. After 

designing the deployment diagram the relationship between system component and 

collaboration will be delineated to describe the service delivered by the system. The service 

is delivered by the joint behavior of system components which may be physically 

distributed. The necessary partial behavior of the components used to realize the 

collaboration is represented by the collaboration role. Behavior of the components Mobile 

terminal, Base transceiver station, Authentication server, Location server, Weather server 

are represented by the collaboration roles MT, BTS, AuS, LS & WS to utilize the 

collaboration t: transfer, a: authenticate, l: request location info, w: request weather info. Here it is 

one to one mapping between system component & collaboration role shown in Figure 7(a).  

We consider other variation of deployment diagram for mentioned scenario. In this 

variation of deployment diagram the identified system components are mobile terminal, 
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Base transceiver station, application server. In this case, the behavior of the components 

Mobile terminal and Base transceiver station is represented by the collaboration roles MT 

and BTS to utilize the collaboration t: transfer and the behavior of the component application 

behavior is represented jointly by the collaboration role AuS, LS and WS to utilize the 

collaboration a: authenticate, l: request location info, w: request weather info. In second case, the 

mapping between system component & collaboration role is generalized into one to many 

relations mentioned in Figure 7(b). 

 

Figure 7. UML deployment diagram with service components deployment mapping  

For large and complex system, conducting the deployment mapping is not straight forward 

like the previous cases. The deployment mapping has implication with respect to satisfying 

the non functional properties of the system. So we need for an approach that will be apposite 

for conducting the deployment mapping for complex system considering constraints and 

capabilities of the system components. We introduce our approach by considering the system 

as collection of N interconnected nodes. Our objective is to find a deployment mapping for this 

execution environment for a set of service components C available for deployment that 

comprises the service. Deployment mapping M can be defined as  :M C N between a 

numbers of service components instances c, onto nodes n mentioned in Figure 8. A 

components ciC can be a client process or a service process, while a node, nN is a physical 

resource. Generally, nodes can have different responsibilities, such as providing services (S1), 

relaying traffic (R1), accommodating clients (C1), or a mixture of these (SC1). Components can 

communicate via a set of collaborations. We consider 3 types of requirements in the 

deployment problem where the term cost is introduced to capture several non-functional 

requirements those are later on utilized to conduct performance evaluation of the systems: 

1. Components have execution costs 

2. Collaborations have communication costs and costs for running of background process 

known as overhead cost  

3. Some of the components can be restricted in the deployment mapping to specific nodes 

which are called bound components.  

(a) (b)
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Figure 8. Service component mapping example                                                          

Furthermore, we consider identical nodes that are interconnected each other and are capable 

of hosting components with unlimited processing demand. We observe the processing cost 

that nodes impose while host the components and also the target balancing of cost among 

the nodes available in the network. Communication costs are considered if collaboration 

between two components happens remotely, i.e. it happens between two nodes [15]. In 

other words, if two components are placed onto the same node the communication cost 

between them will not be considered. The cost for executing the background process for 

conducting the communication between the collaboration roles is always considerable no 

matter whether the collaboration roles deploy on the same or different nodes. Using the 

above specified input, the deployment logic provides an optimal deployment architecture 

taking into account the QoS requirements for the components providing the specified 

services. We then define the objective of the deployment logic as obtaining an efficient (low-

cost, if possible optimum) mapping of components onto the nodes that satisfies the 

requirements in reasonable time. The deployment logic providing optimal deployment 

architecture is guided by the cost function F(M). The cost function is designed here to reflect 

the goal of balancing the execution cost and minimizing the communications cost. This is in 

turn utilized to achieve reduced task turnaround time by maximizing the utilization of 

resources while minimizing any communication between processing nodes. That will offer a 

high system throughput, taking into account the expected execution and inter-node 

communication requirements of the service components on the given hardware architecture. 

The evaluation of cost function F(M) is mainly influenced by our way of service definition. 

Service is defined in our approach as a collaboration of total E components labeled as ci 

(where i = 1…. E) to be deployed and total K collaborations between them labeled as kj, 

(where j = 1 … K). The execution cost of each service component can be labeled as fci; the 

communication cost between the service components is labeled as fkj and the cost for 

executing the background process for conducting the communication between the service 

components is labeled as fBj. Accordingly, we only observe the total cost ( ˆ
nl , n = 1… X) ofa 
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given deployment mapping at each node where X defines the total number of physical 

nodes available in the execution environment. We will strive for an optimal solution of 

equally distributed cost among the processing nodes and the lowest cost possible, while 

taking into account the execution cost fci, i = 1….E, communication cost fkj, j = 1….K and cost 

for executing the background process fBj, j = 1….k. fci, fkj and fBj are derived from the service 

specification, thus the offered execution cost can be calculated as
| |

1

E

ii
fc

 . This way, the 

logic can be aware of the target cost T [15]: 

 
| |

1

1

| |

E

ii
T fc

X 
      (1) 

To cater for the communication cost fkj, of the collaboration kj in the service, the function 

q0(M, c) is defined first [15]: 

    0 , { | }q M c n N c n M        (2) 

This means that 0( , )q M c returns the node n that hosts components in the list mapping M. 

Let collaboration  1 2,jk c c . The communication cost of kj is 0 if components c1 and c2 are 

collocated, i.e. 0 1 0 2( , ) ( , )q M c q M c , and the cost is fkj if components are otherwise (i.e. the 

collaboration is remote). Using an indicator function I(x), which is 1 if x is true and 0 

otherwise, this expressed as 0 1 0 2( ( , ) ( , )) 1I q M c q M c  , if the collaboration is remote and 0 

otherwise. In order to determine which collaboration kj is remote, the set of mapping M is 

used. Given the indicator function, the overall communication cost of service, Fk(M), is the 

sum [15]: 

       | |

0 ,1 0 ,21
, ,

k

k j j jj
kF M I q M K q M K f


    (3) 

Given a mapping M = {mn} (where mn is the set of components at node n & n ϵ N) the total 

load can be obtained as ˆ
in c mni

fcl  . Furthermore the overall cost function F(M) 

becomes (where Ij = 1, if kj external or 0 if kj internal to a node) [15]:  

  | | | |

1 1
ˆ( ) | | B

N k

n k jn j
F M l T F M f

 
                 (4) 

3.3. Approach for incorporating performance information 

UML is no doubt a well established language for modeling system functional behavior. But 

UML has lacking of incorporating non functional parameters in the model while specifying 

the functional behavior of any system. This needs for an approach or specification to 

incorporate the performance parameters in the UML for quantitative analysis. That’s why 

we use a specification called the UML profile for MARTE for Modeling and Analysis of Real-

Time and Embedded systems, provides support for specification, design, and 

verification/validation stages [1]. This new profile is intended to replace the existing UML 

Profile for Schedulability, Performance and Time. This specification of a UML profile adds 
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capabilities to UML for model-driven development of Real Time and Embedded Systems 

(RTES) [1]. 

MARTE defines foundations for model-based descriptions of real time and embedded 

systems. These core concepts are then refined for both modeling and analyzing concerns. 

Modeling parts provides support required from specification to detailed design of real-time 

and embedded characteristics of systems. MARTE concerns also model-based analysis. In 

this sense, the intent is not to define new techniques for analyzing real-time and embedded 

systems, but to support them. Hence, it provides facilities to annotate models with 

information required to perform specific analysis. Especially, MARTE focuses on 

performance and schedulability analysis. But it defines also a general analysis framework 

that intends to refine/specialize any other kind of analysis. Among others, the benefits of 

using this profile are thus [1]:  

1. Providing a common way of modeling both hardware and software aspects of an RTES 

in order to improve communication between developers.  

2. Enabling interoperability between development tools used for specification, design, 

verification, code generation, etc.  

3. Fostering the construction of models that may be used to make quantitative predictions 

regarding real-time and embedded features of systems taking into account both 

hardware and software characteristics. 

We apply several stereotypes of MARTE that permit us to map model elements into the 

semantics of an analysis domain such as schedulability, and give values for properties 

that are needed in order to carry out the analysis [1]. Specific tagged values are also 

applied. Tagged values are a kind of value slots associated with attributes of specific 

UML stereotypes [1]. In order to annotate the UML diagram we use several stereotypes 

and tag values according to the UML profile for MARTE. The stereotypes are the 

following [1]: 

1. saStep is a kind of step that begins and ends when decisions about the allocation of 

system resources are made.  

2. ComputingResource represents either virtual or physical processing devices capable of 

storing and executing program code. Hence its fundamental service is to compute.  

3. Scheduler is defined a kind of ResourceBroker that brings access to its brokered 

ProcessingResource or resources following a certain scheduling policy mentioned by 

tag value schedPolicy. The ResourceBroker is a kind of resource that is responsible for 

allocation and de-allocation of a set of resource instances (or their services) to clients 

according to a specific access control policy [1].  

The tagged values are the following [1]:  

1. execTime: The duration of the execution time is mentioned by the tagged value execTime 

which is the average time in our case. The execution cost of service component is 

expressed by this tagged value in the annotated UML model that is later on used by the 

performance model to conduct the performance evaluation. 



 
Performance Evaluation of Distributed System Using SPN 

 

273 

2. deadline defines the maximum time bound on the completion of the particular execution 

segment that must be met. The overhead cost and communication cost between the 

service components are specified by this tagged value in the annotated UML model that is 

later on used as well by the performance model to conduct the performance evaluation. 

3.4. Scalable and automated model transformation 

We already mentioned that SPN model will be generated as analytical model from the UML 

specification style to conduct the performance evaluation. This needs for an efficient, 

scalable and automated approach to conduct the model transformation for large, complex 

and multifaceted distributed system. In this literature, the approach for efficient model 

transformation is realized by producing model transformation rules that can be applied in 

generalized way for various application domains. As we generate SPN model as analytical 

model we will give a brief introduction about SPN model. SPN model has the following 

elements: Finite set of the places (drawn as circles), finite set of the transition defined as 

either timed transition (drawn as thick transparent bar) or immediate transition (drawn as 

thin black bar), set of arcs connecting places and transition, multiplicity associated with the 

arcs, marking that denotes the number of token in each place. SPN model is mentioned 

formally by the 6-tuple {Φ, T, A, K, N, m0}:  

Φ = Finite set of the places  

T = Finite set of the transition   

A  {Φ × T}  {T × Φ} is a set of arcs connecting Φ and T 

K: T →   {Timed (time>0), Immediate (time = 0)} specifies the type of the each transition 

N: A→   {1, 2, 3…} is the multiplicity associated with the arcs in A  

m →: Φ    {0, 1, 2...} is the marking that denotes the number of tokens for each place in Φ. The 

initial marking is denoted as m0.  

By utilizing the above formal representation of the SPN model, we initiate the model 

transformation rules that will generate SPN model from UML collaboration and activity 

oriented approach that captures the system functional behavior. The model transformation 

rules are the following: 

Rule 1: The SPN model of a collaboration role is represented by the 6-tuple in the following 

way: 

Φ= {Pi, di} 

T = {do, exit} 

A = {{(Pi × do)   (do × di)}, {(di × exit)   (exit × Pi)}} 

K = (do →   Timed, exit →   Immediate) 

N = {(Pi × do) →   1, (do × di) →   1, (di × exit) →   1, (exit × Pi)→  1} 

mo = {(Pi →   1}, (di →   0)} 
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Figure 9. Model transformation rule 1 

SPN model of a collaboration role is mentioned in Figure 9 (where Pi = Processing of ith 

collaboration role and di = Processing done of the ith collaboration role). 

Rule 2: When the collaboration role of a building block deploys onto a physical node the 

equivalent SPN model is represented by 6-tuple in following way:  

Φ = {Pi, di, PPn} 

T= {do, exit} 

A = {{(Pi × do)   (do × di)}, {(PPn × do)  (do × PPn)}, {(di × exit)   (exit × Pi)}} 

K = (do →   Timed, exit →   Immediate) 

N= {(Pi × do) →   1, (do × di) →   1, (PPn × do) →   1, (do × PPn) →   1(di × exit) →   1, (exit × Pi)→  1} 

mo = {(Pi→   1}, (di →   0), (PPn →   q)} 

Initially place PPn contains q (where integer q > 0) tokens which define the upper bound of 

the execution of the process in parallel by a physical node n and the timed transition do will 

fire only when there is a token available in both the place Pi and PPn. The place PPn will 

again get back it’s token after firing of the timed transition do indicating that the node is 

ready to execute other processes deployed on that physical node. The equivalent SPN model 

when a collaboration role deploy on a physical node is mentioned in Figure 10:  

 

Figure 10. Model transformation rule 2 
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Rule 3: The SPN model of a collaboration where collaboration connects only two 

collaboration roles those deploy on the same physical node  can be represented by the 6-

tuple in the following way in Figure 11:  

Φ = {Pi, di, Pj, dj PPn} 

T= {doi, doj,tij} 

A = {(Pi × doi)   (doi × di), (PPn × doi)  (doi × PPn), (di × tij)   (tij × Pi), (Pj × doj)   (doj × dj), 

(PPn × doj)  (doj × PPn), (dj × tij)   (tij × Pj)} 

K = {(doi, doj, tij) →   Timed} 

N= {((Pi × doi), (doi × di), (PPn × doi), (doi × PPn), (di × tij), (tij × Pi), (Pj × doj), (doij × dj), (PPn × 

doj), (doj × PPn), (dj × tij), (tij × Pj)) →   1} 

mo = {(Pi→   1), (di →   0), (Pj→   1) (dj →   0), (PPn →   q)} 

Here timed transition tij in the SPN model is only realized by the overhead cost as service 

components i and j deploy on the same physical node which makes the communication cost 

= 0. 

 

Figure 11. Model transformation rule 3 

The SPN model of a collaboration where collaboration connects only two collaboration roles 

those deploy on the different physical node can be represented by the 6-tuple in the 

following way in Figure 11:  

Φ= {Pi, di, Pj, dj PPn, PPm} 

T= {doi, doj, tij} 

A = {(Pi × doi)   (doi × di), (PPn × doi)  (doi × PPn), (di × tij)   (tij × Pi), (Pj × doj)   (doj × dj), 

(PPm × doj)  (doj × PPm), (dj × tij)   (tij × Pj)} 
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K = {(doi, doj, tij) →   Timed} 

N= {((Pi × doi), (doi × di), (PPn × doi), (doi × PPn), (di × tij), (tij × Pi), (Pj × doj), (doij × dj), (PPm × 

doj), (doj × PPm), (dj × tij), (tij × Pj)) →   1} 

mo = {(Pi→   1), (di →   0), (Pj→   1), (dj →   0), (PPn →   q), (PPm →  q)} 

Here timed transition tij in the SPN model is realized by both the overhead cost and 

communication cost as service components i and j deploy on the different physical node.  

3.5. Performance model Evaluation 

We focus on measuring the throughput of the system from the developed SPN model.  We 

are interested in throughput calculation as a measure of job that a system can process in a 

given time period which in turn justify the efficiency of our deployment logic mentioned in 

section 3.2 in accordance with system performance evaluation. Before deriving formula for 

throughput estimation, we consider several assumptions that will allow us to determine the 

parameters necessary for the throughput calculation of our system.  

1. Executions of the processes occur independently each other.  

2. All the communications occur in parallel.  

3. Finally the communications between interconnected nodes will be started following the 

completion of all the processing and communication inside each physical node.  

The above assumption is important for retrieving the parameters necessary for the 

throughput calculation from our system specification. We define the throughput as function 

of expected number of jobs in the system, E(N) and cost of the network, C_Net which 

defines the time required to complete the expected number of jobs in the system. The value 

of E(N) is calculated by solving the SPN model using SHARPE [16]. Cost of the network, 

C_Net is defined in the following: First the cost of a subnet (Csn) will be calculated as 

follows:  

  | |

1
max ( )B

m

x i j ki
Csn fc f F M


      

  | |

1
max B

m

i ji
fc f


    (5) 

Here:  

 Csnx =  cost of the xth subnet (where x = 1….n; n is the total number of subnet that  

comprises the network) 

  fci  = execution cost of the ith process of the xth subnet 

  m  = total number of service components deployed on the xth subnet   

 fBj = overhead cost of collaboration j (where j =1….n; n is the total number of 

collaboration in the xth subnet)  

  fkj = communication cost of collaboration j (where j =1….n; n is the total number of 

collaboration in the xth subnet)  
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  Fk(M) = 0 (defined in section 3.2.); as in this case processes connected by the 

collaboration deploy on the same physical node 

Now we evaluate the cost between each pair of subnet with respect to the subnet’s own 

processing cost, overhead cost and the cost associated with the communication with other 

subnet in the network.  

   max , ( )}Bx i j j kCsnp Csn Csn f F M     (6) 

Here: 

 Csnpy =  cost of the yth subnet pair (y = 1….n; n is the total number of subnet pair in the 

network where each subnet pair corresponds between two subnets) 

 Csni , Csni  = cost of the ith and jth subnet (where (i, j) ϵ x and i≠j) 
 Fk(M) = 1 (defined in section 3.2.2); as in this case processes connected by the 

collaboration deploy on the different physical nodes 

  1_ max ,....,...., nC Net Csnp Csnp   (7) 

 
( )

_

E N
Throughput

C Net
   (8) 

4. Case study 

As a representative example, we consider the scenario dealing with heuristically clustering of 

modules and assignment of clusters to nodes [15, 17]. This scenario is sufficiently complex to 

show the applicability of our performance modeling framework. The problem is defined in 

our approach as a service of collaboration of E = 10 components or collaboration roles (labeled 

C1 . . . C10) to be deployed and K = 14 collaborations between them depicted in Figure 12. We 

consider three types of requirements in this specification. Besides the execution cost, 

communication cost and overhead cost, we have a restriction on components C2, C7, C9 

regarding their location. They must be bound to nodes n2, n1, n3, respectively. The internal 

behavior of the collaboration Ki of our example scenario is realized by the call behavior action 

through same UML activity diagram mentioned in Figure 6(b). The detail behavior of the 

collaboration role C is realized through same UML activity diagram already illustrated in 

Figure 6(a). However, there is no behavior modeled in detail, only that collaboration between 

processes deployed on different physical nodes. The UML collaboration diagram can be 

modeled by the activity that may model the detail behavior but the level of details must be 

selected with care in order for the model to scale while generating the performance model. 

In this example, the target environment consists only of N = 3 identical, interconnected 

nodes with a single provided property, namely processing power and with infinite 

communication capacities depicted in Figure 13. The optimal deployment mapping can be 

observed in Table. 1. The lowest possible deployment cost, according to equation (4) is 17 + 

100 + 70 = 187 [15, 17]. 
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Figure 12. Collaborations and components in the example scenario 

 

Figure 13. The target network of hosts  

 

Figure 14. Annotated UML model  

In order to annotate the UML diagram in Figure 12 and 13 we use the stereotypes saStep, 

computingResource, scheduler and the tag values execTime, deadline and schedPolicy which are 

already described in section 3.3. Collaboration Ki is associated with two instances of deadline 
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(Figure 14) as collaborations in example scenario are associated with two kinds of cost: 

communication cost and overhead cost. 
 

Node Components nl


 | nl


  –  T | Internal collaborations 

n1 c4, c7, c8 70 2 k8, k9 

n2 c2, c3, c5 60 8 k3, k4 

n3 c1, c6, c9, c10 75 7 k11, k12, k14 

 

∑ cost 

17 100 

117 

Table 1. Optimal deployment mapping in the example scenario [15, 17] 

By considering the above deployment mapping and the transformation rules, the 

corresponding SPN model of our example scenario is depicted in Figure 15. Figure 15 

sketches the resulting SPN model by illustrating details of all the places and transitions. 

According to the transformation rule 1, each collaboration role is defined by the two places 

Pi and di and the passing of token from place Pi to di is realized by the timed transition ti 

 

Figure 15. SPN model of our example scenario 
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which is derived from the annotated UML model. Initially, there will be a token from place 

P1 to P10. According to rule 2, in order to define the upper bound of the execution of parallel 

processes by a network node, we introduce three places PP1, PP2 and PP3 in the SPN model 

for the corresponding three physical nodes and initially, these three places will contain q (q 

> 0) tokens where q will define the maximum number of the process that will be handled in 

parallel by a physical node at certain time. In order to ensure the upper bound of the parallel 

processing of a network node n1, we introduce arcs from place PP1 to transition t4, t7 and t8. 

That means, components C4, C7 and C8 can start their processing if there is token available in 

place PP1 as the firing of transitions t4, t7 and t8 not only depend on the availability of the 

token in the place P4, P7 and P8 but also depend on the availability of the token in the place 

PP1. Likewise, to ensure the upper bound of the parallel processing of a network node n2 

and n3, we introduce arcs from place PP2 to transition t2, t3 and t5 and from place PP3 to 

transition t1, t6, t9, t10. 

For generating the SPN model from annotated UML model, firstly, we will consider the 

collaboration roles deploy on the processor node n1 which are C4, C7 and C8. Here components 

C7 connects to C4 and C8. The communication cost between the components is zero but there is 

still cost for execution of the background process. So according to rule 3, after the completion 

of the transition from place P7 to d7 (places of component C7), from P4 to d4 (places of 

component C4) and from P8 to d8 (places of component C8) the places d7, d4 and d7, d8 are 

connected by the timed transition k8 and k9 to generate the SPN model. Collaboration roles C2, 

C3 and C5 deploy on the processor node n2. Likewise, after the completion of the transition 

from place P2 to d2 (places of component C2), from P3 to d3 (places of component C3) and from P5 

to d5 (places of component C5) the places d2, d3 and d2, d5 are connected by the timed transition 

k3 and k4 to generate the SPN model according to rule 3. Collaboration roles C6, C1, C9 and C10 

deploy on the processor node n3. In the same way, after the completion of the transition from 

place P1 to d1 (places of component C1), from P6 to d6 (places of component C6), P9 to d9 (places of 

component C9) and from P10 to d10 (places of component C10) the places d1, d6; d1, d9 and d9, d10 

are connected by the timed transition k11, k12 and K14 to generate the SPN model following rule 

3. In order to generate the system level SPN model we need to combine the entire three SPN 

model generated for three processor nodes by considering the interconnection among them. In 

order to compose the SPN models of processor node n1 and n2, places d4 and d3 are connected 

by the timed transition k1 and places d4 and d5 are connected by the timed transition k2 

according to rule 3. Likewise, to compose the SPN models of processor node n2 and n3, places 

d2 and d1 are connected by the timed transition k5 and places d5 and d1 are connected by the 

timed transition k6 according to rule 3. In order to compose the SPN models of processor node 

n1 and n3, places d7 and d1 are connected by the timed transition k7, places d8 and d6 are 

connected by the timed transition k10 and places d8 and d9 are connected by the timed transition 

k13 according to rule 3. By the above way, the system level SPN model is derived and all these 

are done automatically. The algorithm for automatic generation of SPN model from the 

annotated UML model is beyond the scope of this chapter.  

The throughput calculation according to equation (8) for the different deployment mapping 

including the optimal deployment mapping is shown in Table 2. The optimal deployment 

mapping presented in Table 1 (first entry) also ensures the optimality in case of throughput 
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calculation though we present here the throughput calculation of some of the deployment 

mappings of the software artifacts but obviously, the approach presented here confirms the 

optimality. 

Deployment Mapping Possible total 

cost 
Throughput 

n1 n2 n3 

{c4, c7, c8} {c2, c3, c5} {c1, c6, c9, c10} 187 (min) 0.0663 (max) 

{ c4, c7}, {c2, c3, c5, c6,} {c1, c8, c9, c10} 232 0.0603 

{c4, c6, c7, c8} {c2, c3, c5} {c1, c9, c10} 218 0.0575 

{c5, c7, c8} {c2, c3, c4} { c1, c6, c9, c10} 227 0.0574 

{c1, c6, c7, c8} {c2, c3, c4} {c5, c9, c10} 247 0.0545 

{ c3, c7, c8} {c2, c4, c5} {c1, c6, c9, c10} 252 0.0538 

{c4, c7, c8} { c1, c2, c3, c5} { c6, c9, c10} 217 0.0532 

{ c1, c6, c7, c8} {c2, c3, c5} { c4, c9, c10}} 257 0.052 

{c3, c6, c7, c8} {c1, c2, c4, c5}, {c9, c10} 302 0.0469 

{c6, c7, c8} { c1, c2, c4, c5} {c3, c9, c10}} 288 0.0464 

Table 2. Deployment mapping in the example scenario along with throughput 

5. Conclusion 

The contribution of this chapter is to develop a framework that focuses on the performance 

evaluation of the distributed system using SPN model. The developed framework 

recognizes the fact of rapid and efficient way of capturing the system dynamics utilizing 

reusable specification of software components that has been utilized to generate SPN 

performance model. The deployment logic presented here, is applied to provide the optimal, 

initial mapping of components to hosts, i.e. the network is considered rather static. 

Performance related QoS information is taken into account and included in the SPN model 

with equivalent timing and probabilistic assumption for enabling the evaluation of 

performance prediction result of the system at the early stage of the system development 

process. However, our eventual goal is to develop support for run-time redeployment of 

components, this way keeping the service within an allowed region of parameters defined 

by the requirements. Our modeling framework support that, our logic will be a prominent 

candidate for a robust and adaptive service execution platform for assessing a deployment 

of service components on an existing physical topology. Future work includes providing a 

tool based support of the developed performance modeling framework.   
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